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Abstract: The development of deep-sequencing methods is now unveiling a new landscape of

previously undetected gene fusion across different tumor types. Chromosomal translocation

involving the NTRK gene family occur across a wide range of cancers in both children and

adults. Preclinical studies have demonstrated that chimeric proteins encoded by NTRK rear-

rangements have oncogenic properties and drive constitutive expression and ligand-indepen-

dent activation. Larotrectinib (ARRY470, LOXO101, Vitrakvi) is a highly and potent inhibitor

of TRKA, TRKB, and TRKC, and has demonstrated rema rkable antitumor activity against

TRK-fusion-positive cancers with a favorable side-effect profile in phase I/II clinical trials. In

November 2018, the US Food and Drug Administration granted accelerated approval to

larotrectinib for adult and pediatric patients with solid tumors harboring NTRK gene fusions

without known acquired resistance mutation. In this review, we discuss the clinical activity and

safety profile of larotrectinib, focusing on the clinical trials that led to its first global approval.
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Introduction
Chromosomal translocations are well-known oncogenic drivers in hematological and

solid malignancies, and targeting gene fusions has become a highly effective strategy

to treat rearrangement-driven cancers.1–4 Somatic chromosomal rearrangements

involving the NTRK1, NTRK2, or NTRK3 genes occur in approximately 1% of all

solid cancers and have been observed across a wide spectrum of tumor types.5,6

NTRK1, NTRK2, and NTRK3 encode TRKA, TRKB, and TRKC, which consist in

single-pass transmembrane proteins with high affinity for NGF, BDNF, and NT3.7

Upon binding with their respective ligands, TRKA, TRKB, and TRKC undergo

conformational changes that lead to the activation of different downstream pathways,

including Ras–Raf–MAPK, PI3K–Akt–mTOR and PLCc–PKC.7,8 In normal condi-

tions, these receptors are involved in central nervous system development and

maturation9 However, the unrestrained activation of TRK-dependent pathways result-

ing from TRK fusion proteins leads to cell transformation, growth, and proliferation.

Typically, TRK fusion proteins arise from chromosomal rearrangements involving the

5′ region of a partner gene that is expressed by the progenitor tumor cell and the 3′

region of one of the NTRK genes.8 The resultant mRNA fusion transcript encodes an

in-frame protein encompassing the N-terminus of the fusion partner and the C-

terminus of the TRK protein, including the tyrosine-kinase domain.8
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Studies based on in vitro and in vivo models have

recently shown that inhibiting the kinase activity of the

TRK fusion proteins represents a promising therapeutic

strategy.10–14 Accordingly, several clinical trials are cur-

rently ongoing to evaluate the efficacy of tyrosine-

kinase inhibitors (TKIs) in NTRK fusion-positive

tumors.

Although gene rearrangements represent the most com-

mon oncogenic alteration affecting the NTRKgenes, point

mutations, in-frame deletions, and alternative splicing of

the NTRK gene family have also been reported to confer

oncogenic properties.15,16 However, whether NTRK point

mutations have any predictive value with regard to tyro-

sine-kinase inhibition is still unclear.

In this review, we summarize the clinical development

of the pan-TRK inhibitor larotrectinib for the treatment of

adult and pediatric patients with solid tumors harboring

NTRK gene fusions.

NTRK gene fusion in cancer
Chromosomal fusion events involving the carboxyterm-

inal-kinase domain of TRK and different upstream

aminoterminal partners have been identified across dif-

ferent tumor types in both children and adults (Figure

1).5 Preclinical models and early clinical data indicate

that these fusions lead to oncogene addiction, regard-

less of tissue of origin, and it has been estimated they

occur in approximately 1% of all solid tumors.8 The

increasing diffusion of sequencing technologies and

availability of potential treatment strategies will likely

boost the number of patients diagnosed with an NTRK

gene fusion.

Lung cancer
NTRKrearrangements occur in a very small fraction of

patients with lung cancer. Using fluorescent in situ hybri-

dization (FISH) and targeted next-generation sequencing

(NGS), Vaishnavi et al detected NRTK fusions in three of

91 (3.3%) patients with lung cancer and identified two

novel NTRK fusion partners (NRTK–MPRIP and NTRK–

CD74).17 Additionally, a novel TRIM24–NTRK2 gene

fusion has been identified in lung adenocarcinoma using

a computational pipeline for the identification of gene

fusions to the entire RNAseq data set from the Cancer

Genome Atlas.4 More recently, in a phase I study of

entrectinib for NTRK-rearranged solid tumors, Farago

etal used a anchored multiplex PCR for detection of fusion

transcripts involving NTRK1.18 Among 1,378 patients

screened, one patient with lung adenocarcinoma harbored

a novel SQSTM1–NTRK1 fusion transcript and one patient

harbored a previously described TPM3–NTRK1

rearrangement.19 Although the reported incidence of

NTRK1 fusion was 0.1%, the discrepancy with previous

studies is likely to reflect the different sample size and the

population screened for this study.

Colorectal cancer
Since its first identification in 1986, NTRK fusion has

subsequently been documented in approximately 0.5%–

2.0% of patients with colorectal cancer.20,21 Different stu-

dies have shown that TPM3–NTRK1 gene rearrangement

is a recurrent event in colorectal carcinoma.20–22 Along

with TPM3-NTRK1–fusion, TPR-NTRK1–fusion has also

been reported in colorectal tumors.21 More recently, a

novel oncogenic rearrangement was identified in a patient

with liver and adrenal gland metastases of colorectal
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Figure 1 NTRK gene fusions.

Abbreviations: LBD, ligand binding domain; Tyr, tyrosine.
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cancer and involved LMNA as a partner gene.23 In a

single-institution retrospective study in heavily pretreated

colorectal cancer patients, NTRK fusion was detected in

2.5% of cases.24 Pietrantonio et al found a nearly doubled

incidence (4%, n=13) of NTRK fusions in a cohort of 346

colorectal cancer patients. Of note, ten of 13 patients with

NTRK fusion (76.9%) also had high microsatellite

instability.25

Papillary thyroid cancer
Two years after the identification of NTRK fusions in

colorectal cancer, NTRK rearrangements were detected in

four patients with papillary thyroid carcinoma (PTC).26

Subsequent studies revealed that NRTK rearrangements

in PTC commonly involve the tyrosine-kinase domain of

NRTK1 and the 5-terminal of three different partner genes

(TRKT1, TRKT2, and TRKT3). In all three fusion variants,

the chimeric protein has cytoplasmic localization and

shows constitutive phosphorylation of the kinase

domain.27

The current estimated incidence of NTRK1 fusion in

PTC is <12%.4 However, the prevalence of these rearran-

gements varies broadly across different studies, ranging

from ≥15% in the Italian population to <10% in the

Japanese, Chinese, and French.28–31 Importantly, ETV6-

NTRK3 is a common chromosomal rearrangement in

radiation-associated thyroid cancer, as was identified in

14.5% (nine of 62) of subjects exposed to radiation after

the Chernobyl disaster.32 In addition, NTRK fusion onco-

genes have recently been detected in 26% (seven of 27) of

a small cohort of pediatric patients with PTC.33

Miscellaneous tumors
NTRK rearrangements have been reported in 92%–100%

of secretory breast cancer and mammary analogue secre-

tory carcinoma of the salivary gland, showing specific

clinical and pathological correlates. Regardless of site of

origin, these alterations arise from the same chromosomal

rearrangement t(12;15)(p12;q26.1) that results in ETV6-

NTRK3–fusion.34–36 NTRKrearrangements have increas-

ingly been reported also in brain tumors. Frattini et al

identified two in-frame fusions encompassing the NTRK1

gene (BCAN-NTRK1–and NFASC–NTRK1) among 185

glioblastoma samples.37 More recently, NTRK1 rearrange-

ments were described in 3% (three of 115) of glioblasto-

mata using anchored multiplex PCR. The development and

diffusion of highly sensitive and specific techniques, such

as targeted NGS for routine clinical testing, has led to the

identification of NTRK fusions in a wide spectrum of rare

tumors, including gastrointestinal stromal tumor, infantile

fibrosarcoma, and other types of soft-tissue cancer, with

prevalence ranging from 1% of adult-type sarcoma to 92%

of congenital fibrosarcoma.8,38

NTRK-detection methods
To date, no clinical or pathological features have been

associated with NTRK alterations, apart from reported

mutual exclusivity with other driver alterations, such as

EGFR mutations or aALK in non-small-cell lung cancer.14

Therefore, there is no clear indication of which patients

should be tested for NTRK fusion, and NTRK fusion

should be considered in a wide patient population.39

In spite of the recent approval of larotrectinib and the

status of breakthrough therapy designation granted to

entrectinib by the US Food and Drug Administration, no

companion diagnostic test has been determined so far. The

design of trials involving larotrectinib and other TRK

inhibitors has allowed the use of either NGS or FISH,

according to the procedures of each designated laboratory.

As such, different methods can potentially be used,

although NGS has been employed more often than others.-
38,40 The main advantage of NGS lies in its ability to test

multiple genes simultaneously with a limited amount of

tissue. This feature is extremely valuable in tumors where

NTRK alterations are rare and where other potentially

actionable molecular targets might be present, as in the

case of non-small -cell lung cancer. However, not all NGS

platforms are designed to detect NTRK fusions, represent-

ing a potential pitfall. Furthermore, it has been observed

that DNA-based NGS assays might occasionally be unable

to detect some fusions involving NTRK2 or NTRK3, due to

the presence of large intronic regions; therefore, the use of

RNA-based fusion assays in substitution or as comple-

ments to DNA-based strategies has been proposed.37,40–43

Compared to NGS, other common techniques, such as

FISH and reverse-transcription (RT) PCR have a shorter

turnaround time and are less expensive. However, neither

of these allows for wide parallel detection of multiple

genomic alterations. In particular, FISH would imply the

need for multiple runs to determine the presence of fusions

in all the three NTRK genes.44 On the other hand, RT-PCR

is designed to identify only known rearrangements, and is

hence unable to detect novel fusions.45 These characteris-

tics make such strategies as FISH or RT-PCR viable alter-

natives to NGS for tumors with a high frequency of NTRK

rearrangements involving known fusion genes (especially
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infantile tumors, such as infantile fibrosarcomas or meso-

blastic nephromas), while NGS should be employed in

tumors with low prevalence of NTRK fusion or when

other potential drivers can be involved.46

Immunohistochemistry (IHC) is potentially able to

detect TRK protein overexpression, which might represent

an indirect proof of functional NTRK rearrangements.

Notably, two different case series employing IHC with a

pan-TRK antibody in different solid tumors showed excel-

lent concordance with NTRK fusions, with high sensitivity

(95%–97%) and specificity (97%–100%).47,48 More

recently, Gatalica et al screened 11.502 tumor samples

for 53 gene fusions and sequencing of 592 genes, with

simultaneous IHC study of TrkA/B/C. The authors identi-

fied 31 cases (0.27% of the entire cohort) with NTRK

fusion. Strong and uniform Trk expression was detected

with pan-Trk IHC in seven of eight NTRK1 fusion cases

and eight of nine NTRK2 fusion cases, while NTRK3

fusion cases were positive in only six of eleven (55%)

cases, with overall sensitivity of 75%.49 In another study

conducted by Feng et al, 12 of 164 (7%) tumors for which

the Trk IHC–specific staining was more than zero tumor

cells demonstrated the presence of NTRK fusion by ISH,

while ten of 88 (11%) cases for which IHC-specific stain-

ing was >25% of tumor cells demonstrated presence of

fusion on ISH, suggesting lower sensitivity for IHC com-

pared to the the aforementioned studies.50

In light of these data, IHC has been proposed as a

potential screening tool for NTRK fusions, although further

validation and confirmatory molecular assessment of posi-

tive cases are advised. Finally, liquid biopsy is acquiring

increasing relevance in cancer diagnostics, and NTRK

rearrangements might potentially be assessed through cir-

culating free DNA in peripheral blood.51

Safety and efficacy of larotrectinib in
tumors harboring NTRK gene
fusions
Pharmacodynamic
Larotrectinib (ARRY470, LOXO101, Vitrakvi) is a highly

selective and potent inhibitor of TRKA, TRKB and

TRKC. It blocks the ATP-binding site of TRK-family

receptors with an in vitro 50% inhibitory constant of

Table 1 Larotrectinib summary

Chemical structure

Molecular formula C21H22F2N6O2

IUPAC name (3-{S})-{N}-[5-[(2-{R})-2-(2,5-difluorophenyl)pyrrolidin-1-yl]pyrazolo[1,5-a]pyrimidin-3-yl]-3-hydroxypyr-

rolidine-1-carboxamide

Molecular weight 428.444 g/mol

Pharmacodynamic Highly selective and potent inhibitor of TRKA, TRKB, and TRKC

Mean absolute bioavailability

(capsules)

34%

Maximum concentration 788 ng/mL

AUC (0–24 hours) 4,351 ng/h/mL

Mean volume of distribution Vss 48 L

Mean clearance (Cl/F) 98 L/h

Half-life 0.5–2 hours

Excretion 58% fecal

39% (20% unchanged) renal

Abbreviations: IUPAC, international union of pure and applied chemistry; NSCLC, non-small-cell lung cancer; GIST, gastrointestinal stromal tumor.
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5–11 nmol/L (Table 1).8,52 When evaluated on a panel of

226 non-TRKs, larotrectinib showed minimal or no activ-

ity, including no relevant hERG inhibition.8,52 In vitro

assays of TRK-expressing tumors showed that larotrecti-

nib inhibition of TRKs induce cellular apoptosis and G1

cell-cycle arrest.52 In vivo experiments on athymic nude

mice treated with larotrectinb confirmed a dose-dependent

tumor inhibition.52

Pharmacokinetics
Larotrectinib is quickly absorbed and reaches peak plasma

concentration 0.5–2 hours after oral administration. In

both children and adults, the mean half-life of larotrectinib

is 1.5–2 hours.44 Larotrectinib shows a linear pharmaco-

kinetic profile across different dosing schedules, with no

accumulation after repeated dosing. Food-intake restric-

tions were not required in clinical trials, and larotrectinib

administration was allowed via nasogastric and gastro-

stomy tubes in patients who were unable to take the drug

orally. In healthy subjects, the AUC of orally administered

larotrectinib solution was similar to that of the capsules

and maximum concentration was 36% greater with the oral

solution. Although the AUC of larotrectinib was similar,

maximum concentration was reduced by 35% after oral

administration of a single 100 mg capsule of larotrectinib

with a high-fat meal. Larotrectinib is primarily metabo-

lized by CYP3A4 isoenzymes and eliminated by biliary

and renal excretion.44 Detailed pharmacokinetic para-

meters are reported in Table 1.

Clinical efficacy and safety of larotrectinib

in solid tumors
Efficacy and safety data of larotrectinib in patients harbor-

ing NTRK-rearranged tumors derive from a developmental

program that includes three clinical trials: a phase I trial in

adults (NCT02122913), a phase I/II trial in children

(SCOUT, NCT02637687), and a phase II basket trial in

adults and adolescents (NCT02576432).

The SCOUT trial (NCT02637687) is a three-arm, mul-

ticenter, phase I/II study in patients aged 1 months to 21

years with primary central nervous system tumors or

locally advanced/metastatic solid tumors that have

relapsed and progressed and for which no standard treat-

ments exist. A protocol amendment also allows patients

with locally advanced infantile fibrosarcoma who would

require mutilating surgery to achieve complete resection of

the tumor. NTRK fusion status was not mandatory for

enrollment (except for patients who were between 1

months and 1 years of age); however, the study was

enriched with TRK-translocated tumors, due to investiga-

tors' choice of testing for NTRK fusions at local institu-

tions. The phase I dose-escalation portion of the SCOUT

trial has been published, while the phase I follow-up and

phase II part are ongoing. In the phase I dose-escalation

part, the maximum tolerated dose was not reached and a

dose of 100 mg/m2 twice daily (maximum 100 mg per

dose) was recommended for the phase II portion of the

study. Fifteen patients with known NTRK fusions were

evaluable for efficacy, with 14 (93%CI 68–100) achieving

an objective response: two a complete response (CR) and

12 a partial response (PR) according to the independent

radiology review and RECIST version 1.1. All patients

without documented NTRK translocation experienced dis-

ease progression as best response. Two patients with

known NTRK fusions developed disease progression

while on the study.44

Overall, five pediatric patients with locally advanced

NTRK-translocated sarcomas (three with fibrosarcoma,

two with other sarcomas) were treated with neoadjuvant

larotrectinib.44,51All five patients achieved a PR and pro-

ceeded to surgical resection. Surgical resection was R0 in

three patients, R1 in one, and R2 in one. Among patients

with R0 resection, complete pathological response was

achieved in two cases and a near-to-complete response in

one case. These patients were started on follow-up, and

were disease free at 7–15 months after surgery. The two

patients with R1 and R2 residual disease after surgical

excision were resumed on larotrectinib, obtaining excel-

lent disease control after seven to 20 cycles. No post-

operative complications were associated with

larotrectinib in the adjuvant setting.44,53

An integrated safety and efficacy analysis of the first 55

consecutive patients enrolled in the larotrectinib develop-

ment–program trials was recently published. This report

included children from the phase I portion of the SCOUT

trial (NCT02637687), as well as adult and adolescent

patients from the dose-escalation phase 1 (NCT02122913)

and phase 2 NAVIGATE (NCT02576432) trials.The

pPrimary end point was best overall response assessed by

an independent radiology review committee according to

RECIST criteria version 1.1. Secondary end points included

the overall response rate according to the investigator’s

assessment, duration of response, progression-free survival,

and safety. Analyses were performed according to the inten-

tion-to-treat principle. The maximum tolerated dose of
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larotrectinib was not reached in any of the trials in either the

pediatric or adult population. A dose of 100 mg twice daily

was selected for adults and children who had a body-surface

area of at least 1 m2. As previously mentioned, the SCOUT

trial defined a twice-daily dose of 100 mg/m2 selected for

children who had a body-surface area of <1 m2.38 The study

population included patients with age ranging from 4 months

to 76 years and a heterogeneous number of cancer diagnoses,

including mammary analogue secretory carcinoma of the

salivary gland, infantile fibrosarcoma and other soft-tissue

sarcoma, thyroid tumors, lung tumors, colon tumors, mela-

nomas, gastrointestinal stromal tumors, and primary central

nervous system tumors. Only patients with known NTRK-

translocation status were included in the pooled analysis. At

the primary data cutoff, the overall response rate was 75%

(95%CI 61%–85%), seven patients (13%) had CR, 34 (62%)

had PR, 13% had stable disease, five (9%) had progression,

and two were not evaluable for response, due to clinical

deterioration. Median time to response was 1.8 (0.9–6.4)

months, and after a median follow-up of 8.3 months, the

median duration of response had not been reached. At 1

year, 71% of patients had ongoing response and 55% were

progression-free. Median progression-free survival was not

reached after a median follow-up duration of 9.9 months.38

The first patient with an NTRK fusion tumor enrolled in the

clinical trial was still on treatment after 27 months.38,50 In a

recent update of this cohort, including an additional 35

NTRK-rearranged patients, larotrectinib confirmed remark-

able activity in NTRK-positive tumors. Six patients with PR

deepened to CR, and after almost 13 months of median

follow-up, median duration of response and progression-

free survivalhad not been reached. Among the 35 newevalu-

able patients, the overall response rate by investigator assess-

ment was 74%54

Within the first 55 patients, the majority of adverse

events (93%) were grade 1 or 2. Treatment-related adverse

events of grade 3 occurred in <5% of patients and included

increased AST or ALT, nausea, dizziness, anemia and

decreased neutrophil count. No treatment-associated

grade 4 or 5 toxicity was reported. Larotrectinib dose

reduction was necessary in eight patients (15%) due to

grade 2 or 3 events (increase in AST or ALT [n=4],

dizziness [n=2], and decrease in absolute neutrophil

count [n=2]), and in all cases response to treatment was

maintained at lower doses. None of the patients who

responded to larotrectinib discontinued the study drug

due to the development of AEs.38 An extension of the

safety-data analysis on all patients treated with

larotrectinib across the trials, independently of NTRK

fusion status, confirmed the tolerability profile of the

drug, but reported warnings and precautions for potential

development of neurotoxicity, hepatotoxicity, and embryo–

fetal toxicity.55 Neurological adverse events of any grade

occurred in 53% of patients, including grade 3 and grade 4

neurological adverse events in 6% and 0.6% (one single

case of encephalopathy) of patients, respectively.

Hepatotoxicity of any grade occurred in 45% of patients,

including grade 3 increased AST or ALT in 6% of patients

and one patient with grade 4 increased ALT. Embryo–fetal

toxicity concern derives from literature reports on human

subjects with congenital mutations leading to changes in

TRK signaling and findings from animal studies.54

More recently, in a phase I dose-escalation study in

patients with advanced solid tumors, eight of 70 patients

enrolled had documented NTRK gene fusion. Among

these, responses were observed in seven patients harboring

NTRK gene fusions and one patient with NTRK1 gene

amplification. After independent and central radiology

review, all patients with NTRK gene fusions were con-

firmed to have had an objective response (including two

CRs and six PRs). Of note, none of the patients with

NTRK point mutations experienced an objective response.

Most treatment-related adverse events were grade 1 or 2,

while 19% of patients (13 of 70) had grade 3 adverse

events, which was anemia in 6% of cases. None of the

patients enrolled in this trial had a grade 4 or 5 treatment-

related adverse event.55

Resistance mechanisms to
larotrectinib
Oncogene-addicted tumors amenable to targeted therapies

invariably develop acquired resistance to TKIs, which

occur often by secondary mutation affecting the drug-

binding site or by the activation of bypass tracks.

Consistently with this assumption, acquired resistance to

TKIs has also been reported in patients with fusion-driven

cancers, including NTRK-positive patients who progressed

on or following larotrectinib in phase I/II studies (Table 2).

Among six patients with progressive disease as their best

response to larotrectinib, one had received a TRK inhibitor

prior to trial enrollment and was found to harbor the

NTRK3G263R mutation, known to interfere with larotrecti-

nib binding to the receptor. For three of the five remaining

patients, IHC on tumor material showed lack of expression

of TRK fusion, which raised concerns of false-positive
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tumor testing at a local institution or that the identified

translocation was not expressed at protein level. In the

same cohort, ten patients developed progression after an

initially documented objective response or stable disease

for at least 6 months. Importantly, NTRK-resistant second-

ary mutations were identified in all nine patients who

underwent tumor sampling or plasma sampling after pro-

gression, and included NTRK1G595R NTRK3G623R,

NTRK1F589L, NTRK1G667S, and NTRK3G696A.38 Although

data from structural modeling analyses of these mutants

have indicated that the resultant amino-acid substitutions

prevent the binding of larotrectinib to the kinase because

of steric hindrance,38,56 in vitro kinase assays have shown

that G595R-mutant TRKA has increased ATP affinity

compared with that of the normal protein, suggesting that

other factors are involved in determining the resistant

phenotype.57 Of note, a novel highly selective second-

generation pan-TRK inhibitor (LOXO195) has been devel-

oped to overcome G595R-mediated resistance to TRK

inhibitors, and is currently being investigated in a multi-

center, open-label phase I/II clinical trial (NCT03215511).

Conclusion
The development of highly sensitive deepsequencing

methods is now unveiling a new landscape of gene fusions

across different tumor types. NTRK rearrangements define

a unique subset of patients with advanced solid cancer, and

have recently been established as clinically targetable

genomic alterations. Phase I/II studies have shown that

larotrectinib is safe and effective in patients with NTRK

fusions, regardless of age, cancer type, and fusion partner.

The availability of promising targeted treatment calls for

the integration of NTRK status into the diagnostic work-

flow for all tumor types, including those in which NTRK

fusions have not yet been described. Recent data indicate

that the annual incidence of NTRK-rearranged cancers is

approximately 2,500–3,000 in the US, which implies that

there is a subset of patients that might benefit from a

targeted approach, regardless of histology.39,49 In addition,

novel agents designed to overcome resistance to larotrec-

tinib are under clinical investigation, and are expected

further to improve outcomes of patients with NTRK-rear-

ranged solid tumors.
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