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Abstract: Statins (3-hydroxy-3-methyl glutaryl coenzyme A [HMG-CoA] reductase inhibitors) 

are the most commonly used lipid-lowering drugs. Their main lipid-lowering effect is achieved 

by an increase in the expression of low-density lipoprotein cholesterol receptors associated with 

inhibition of cholesterol synthesis through inhibition of HMG-CoA reductase – the first and 

rate-limiting step in cholesterol synthesis. However, beyond cholesterol synthesis inhibition, 

inhibition of the HMG-CoA reductase affects as well the synthesis of other molecules with 

significant roles in different, yet often intercalating, metabolic pathways. On this basis, and 

supported by an increasing series of advocating epidemiological and experimental data, an 

extended dialogue has been established over the last few years regarding the nonlipid or 

“pleiotropic” actions of statins.
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Introduction
Statins are the most widely prescribed lipid-lowering drugs worldwide. They 

have been persistently shown to decrease serum low-density lipoprotein (LDL) 

cholesterol (by as much as 70%), total cholesterol and serum triglycerides and 

increase serum high-density lipoprotein (HDL) cholesterol. Statins target mainly 

hepatocytes and inhibit 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) 

reductase, the enzyme that converts HMG-CoA into mevalonic acid, a cholesterol 

precursor. The mevalonate pathway then branches out before the synthesis of 

squalene and cholesterol (Figure 1). Other biologically important products are 

dolichols, which are involved in lipoprotein synthesis, ubiquinone, and the 

isoprenoids, farnesyl-pyrophosphate (PP) and geranylgeranyl-PP.1 Isoprenoids 

can be covalently bound to proteins, a process termed prenylation, and play 

an important role in the post-translational modification of regulatory proteins, 

such as G proteins, Ras, Rho, and Rab, that influence the polymerization, the 

membrane anchoring and intracellular trafficking and thus the biologic activity 

of these proteins.2

Large-scale epidemiologic studies, such as 4S,3 WOSCOPS,4 CARE,5 LIPID,6 

AFCAPS/TexCAPS,7 REVERSAL,8 AVERT,9 PROVE IT-TIMI 22,10 HPS,11 and 

ASCOT-LLA12 have provided solid data showing statins’ preventive effects on the 

progression of atherosclerosis and its clinical sequelae. The beneficial effects of statins 

on vascular clinical events had been attributed solely to their lipid-lowering action 

until recently. However, the results from these and several other recent clinical studies 
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have been surprising and intriguing. In particular, statins’ 

efficacy even in patients with normal cholesterol levels,11,13 

as well as the rapidity and magnitude of their action have 

suggested that other factors are at play. Careful comparison 

of the cardiovascular event rates in patients on statins 

with the rates expected for those with similar lipid levels 

from epidemiological data has shown that statin treatment 

decreases the rate below that expected.4,14 Furthermore, 

although some regression in lesion size has been achieved 

with statins,15 it is not of such a magnitude that could explain 

their clinical efficacy. The increasing perception of the 

inflammatory pathology of atherosclerosis has led to further 

research for the multipotentiality of these drugs. The term 

“pleiotropic effects” signifies effects of statins other than 

cholesterol-lowering, though for many of these effects it 

has not been proved that they are really independent of their 

hypocholesterolemic action.

Mechanisms of action
Direct lipid actions
inhibition of HMG-CoA reductase
Statins target hepatocytes and inhibit HMG-CoA reductase, 

the enzyme that converts HMG-CoA into mevalonic acid, 

a cholesterol precursor (Figure 1). Through the inhibition 

of this rate-limiting step in cholesterol synthesis statins 

achieve an increase in the expression of LDL cholesterol 

receptors, which results in increased take up by hepatocytes 

of LDL cholesterol from the circulation and a decrease in 
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plasma LDL cholesterol level. Statins do not simply exert a 

competitive action against the normal substrate in the enzyme 

active site; instead, they bind reversibly HMG-CoA reductase 

and result in a conformational change in the enzyme active 

site, preventing HMG-CoA reductase from attaining a 

functional structure. The resultant increase in hepatic cell 

LDL receptors determines the reduction of circulating LDL 

and of its precursors (intermediate-density [IDL] and very 

low-density [VLDL] lipoproteins).16 Statins’ efficacy in 

the reduction of triglyceride concentration parallels LDL 

cholesterol reduction.17 HMG-CoA reductase inhibition 

by statins results also in the inhibition of hepatic synthesis 

of apolipoprotein B-100 and, thus, in the reduction of the 

synthesis and secretion of triglyceride rich lipoproteins, as 

well as in an increase in the production of receptors for apoli-

poprotein B. Statins have only modest effect on HDL increase 

and no influence on the concentration of lipoproteins.

reduction of LDL susceptibility towards oxidation
At least five mechanisms have been proposed to explain 

statins’ antioxidant properties:18 (a) the reduced lipoprotein 

cholesterol and reduced level of oxidation substrate, as a 

result of their hypocholesterolemic effect; (b) the inhibition of 

the generation of superoxide by macrophages, which results 

in the decrease of cell oxygen production. The attenuation of 

the formation of superoxide anion in endothelial cells is also 

achieved by statins by preventing the prenylation of p21 Rac 

protein; (c) the preservation of the activity of the endogenous 

antioxidant system, like superoxide dismutase; (d) the binding 

of statins to phospholipids on the surface of lipoproteins 

(fluvastatin and lovastatin bind to LDL phospholipids) 

preventing the diffusion towards the lipoprotein core of free 

radicals generated during oxidative stress; and (e) the potent 

antioxidative potential of the metabolites (ie, atorvastatin and 

fluvastatin metabolites).

inhibition of the expression  
of type A scavenger receptor
The inhibition of the expression of type A scavenger recep-

tor in THP-1 cells and in human monocytes19 decrease the 

receptor-mediated degradation of oxidized LDL (oxLDL). 

Statins also reduce mRNA level and CD36 expression on 

the cell surface, as well as LDL binding to human U937 

monocytes.20

intracellular signaling pathways
Several of the pleiotropic effects of statins, which affect 

endothelial function and redox equilibrium as well, have 

been attributed to the prenylation of regulatory proteins, 

such as the G proteins, and the enzymes involved in this 

prenylation have been proposed as potential targets for 

therapeutic intervention.21 Prenylated proteins may interact 

with specific membrane-bound receptor proteins and 

hence prenylation mediates protein–protein interactions. 

The complex process of cell signaling is very important 

for intercellular communication. Extracellular signaling 

molecules, which are water-soluble and have high molecular 

weight, need to bind to specific receptors on the cell surface, 

which transduce the extracellular signals into the cell by 

intracellular signaling pathways. Many intracellular signaling 

molecules are prenylated proteins. The specific receptors on 

the cell surface are associated with trimeric G protein, or 

have Ser/Thr/Tyr kinases activities. The trimeric G protein 

has a geranylgeranylated subunit (gamma), allowing this 

signaling protein to be inserted in the cell membrane near 

specific membrane receptors and to receive extracellular 

signals, which are then transferred to the secondary signaling 

molecules in the cell. Another important class of prenylated 

signaling molecules are the components of Ras family, which 

are farnesylated and intermediate the Ser/Thr/Tyr kinases 

activities of membrane receptors from the cell surface. 

The small monomeric G proteins, such as Rho, are also 

regulated by prenylation. It has been known for some time 

that Rho is a regulator of actin-containing stress fibers of the 

cytoskeleton22 and more recently of focal adhesion sites, a 

cell membrane component connected to stress fibers. These 

sites are foci where integrins congregate and through which a 

cell makes adhesive contacts with extracellular components, 

either other cells or extracellular matrix proteins. They also 

contain the proteins focal adhesion kinase (pp125 FAK), 

p130, and paxillin.23 Recent evidence confirmed the 

essential role of Rho in the assembly of the focal adhesion 

sites.24 Other G protein pathways may also be involved 

in focal adhesion formation, as the lipoxygenase-derived 

arachidonic acid metabolite 5-hydroxyeicosatetraenoic 

acid can activate neutrophil self-adhesion via the G protein 

pathway Raf-1/Mek/ Erk.25 In the case of the β1 integrins, 

which are involved in leukocyte adhesion to extracellular 

matrix, there is direct evidence that adhesion of U937 cells 

involves geranylgeranylated signaling proteins.26

Despite the fact that several effects of statins were 

shown to be independent of cholesterol lowering in vitro, 

extensive evidence links hypercholesterolemia in vivo with 

increased lipid peroxidation and increased oxidative stress,27 

and increased oxygen radical formation accompanying 

hypercholesterolemia influences many of the same factors 

that are modulated by statins via inhibition of prenylation. 
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It is well established that multiple signaling pathways 

regulating the expression of atherogenic genes are oxidation-

sensitive, either because oxLDL activates them by binding 

to cell surface receptors or because increased extracellular 

lipid oxidation causes a shift in the intracellular redox 

balance.28 Among the many oxidation-sensitive pathways 

that affect cell growth, secretory activity, and death, three are 

particularly relevant in inflammation and atherogenesis. The 

first of these is nuclear factor-κB (NFκB), which regulates 

adhesion molecules and growth factors, including vascular 

cell adhesion molecule-1 (VCAM-1), intercellular adhesion 

molecule-1 (ICAM-1), and monocyte chemoattractant 

protein-1 (MCP-1), important contributors to monocyte and 

T cell recruitment into the arterial intima.29 The second is the 

apoptotic signaling pathway that is activated through Fas/FasL 

and tumor necrosis factor (TNF) receptors and regulates the 

expression of caspases and other effectors of apoptosis.30 

The third oxidation-sensitive pathway is the peroxisome 

proliferators-activated receptor γ (PPARγ) pathway. PPARγ 

is a nuclear receptor that regulates fat cell development and 

glucose. It is also highly expressed in macrophage/foam 

cells of atherosclerotic lesions. Activation of PPARγ by 

oxLDL or synthetic ligands upregulates the expression of the 

ABC-A1 transporter involved in reverse cholesterol transport 

from peripheral cells, but it also downregulates a number of 

pro-inflammatory factors, including TNFα, interleukin-1α 

(IL-1α), IL-6, the inducible nitric oxide synthase (iNOS), 

and gelatinase B, one of the metalloproteinases thought to 

promote plaque rupture.31 Therefore, many of the factors 

which hypercholesterolemia and its associated oxygen radical 

formation affect are modulated by statins via inhibition of 

prenylation. For example, the conversion of NO into the 

less active peroxynitrate is the mechanism through which 

hypercholesterolemia induced LDL oxidation interferes 

with NO-mediated vasodilatation. Statins act on this site by 

decreasing the activity of NAD(P)H oxidase and therefore 

by increasing endothelial NO production and decreasing the 

production of reactive oxygen species (ROS), reducing thus 

both LDL oxidation and intracellular oxidative stress.32

Pleiotropic effects
Recent evidence revealed a multitude of actions of statins, 

other than lipid-lowering, on different types of cells, which 

have been addressed with the term “pleiotropic” and are 

predominantly vasoprotective. These include inhibition 

of smooth muscle cell growth, inhibition of neointima 

formation, induction of apoptosis in smooth muscle cells, 

reduction of leukocyte adhesion to and transmigration 

through endothelial cells, induction of endothelial nitric oxide 

synthase, inhibition of endothelin and MCP-1 expression 

in endothelial cells, inhibition of MCP-1, tissue factor 

and matrix metalloprotease-9 expression in macrophages. 

Figure 2 summarizes the mechanisms through which statins 

exert their vasoprotective effects.

Effects on endothelial dysfunction and inflammation
Atherosclerosis is a complex inflammatory process 

characterized by the presence of monocytes, macrophages, 

and T lymphocytes in the atheroma.33 Endothelial dysfunction 

is one of the earliest manifestations of atherosclerosis, 

occurring well before the presence of any angiographic 

evidence of disease.34 Studies in animals and humans have 

shown that the combination of hemodynamic strain and 

the accumulation of lipids may initiate an inflammatory 

process in the artery. Activated endothelial cells express 

several types of leukocyte adhesion molecules, which cause 

blood cells rolling along the vascular surface to adhere 

at the site of activation.35 An important characteristic of 

endothelial dysfunction is the paradoxical vasoconstriction 

caused by acetylcholine because of the impaired synthesis, 

release, and activity of endothelium-derived nitric oxide 

(NO). Statins reverse endothelial dysfunction through the 

reduction of both extracellular LDL oxidation (by reducing 

substrate availability) and intracellular oxidative stress (by 

cholesterol-independent effects on NO and, indirectly, by 

reducing oxLDL). Geranyl-geranylation of the GTP-inding 

protein Rho decreases endothelial cell nitric oxide synthase 

(eNOS) expression and inhibits nitric oxide-induced vascular 

relaxation. By blocking synthesis of geranyl-geranyl-PP, 

statins decrease geranylation of Rho and upregulate eNOS.37,38 

Nitric oxide generation in endothelial cells is also promoted 

by another mechanism. Statins activate the protein kinase 

Akt/PKB, which results in enhanced phosphorylation (activa-

tion) of its natural substrate, eNOS.38 Regarding the effects 

of statins on Akt activation and nitric oxide, Laufs and col-

leagues39 showed that statins prevent the hypoxia-induced 

downregulation of NOS 3 in human endothelial cells via 

inhibition of mevalonate synthesis. Furthermore, in human, 

increased circulating NO was found in response to fluvastatin 

treatment, which correlated with decreased circulating soluble 

P-selectin and ICAM-1 levels.40 Kureishi and colleagues38 

found that simvastatin activates the signaling molecule Akt in 

human umbilical vein endothelial cells (HUVEC), an effect 

requiring phosphatidylinositol 3-kinase (PI3-kinase), which 

indeed is normally the upstream activator of Akt, and being 

inhibited by the specific PI3-kinase inhibitor wortmannin. 
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Normally, PI3-kinase activity is suppressed by mevalonate, 

so that the decrease in mevalonate concentration caused 

by statin action would be expected to increase PI3-kinase 

activity. Akt itself undergoes phosphorylation by PI3-kinase, 

thereby phosphorylating NOS 3 (one of several substrates for 

Akt) and thus increasing NO production. Enhanced NOS 3 

activity, and hence NO production, will give rise not only 

to vasodilatation but also to other potentially beneficial and 

vasoprotective effects: inhibition of atherogenesis, inhibi-

tion of platelet activation and aggregation, attenuation of 

endothelial cell apoptosis, and promotion of angiogenesis. 

Increased formation of NO promotes arterial vasodilatation 

and inhibits atherogenesis.41 NO is therefore emerging as a 

prime target for pharmacologic intervention.42 Resistance to 

the inhibitory effect of oxLDL on NOS 3 activity has also 

been elicited by statin treatment in vitro. By contrast with 

the induction of NOS 3 by statins, which has a generally 

beneficial action, lovastatin inhibited NOS 2 (the inducible 

isoform of NOS) expression in rat astrocytes, microglia, 

and macrophages.43 This may be advantageous, as the large 

quantities of NO generated by NOS 2 may not be as benign as 

the smaller amounts generated through NOS 3. In addition to 

preventing the Rho-mediated downregulation of eNOS, other 

effects of statins have been linked to geranyl-geranylation, 

such as inhibition of proliferation and induction of apoptosis 

in SMCs,44 inhibition of integrin-dependent leukocyte adhe-

sion and increased fibrinolytic activity.45 The observation of 

some of these effects, eg, improved vascular function,46 in 

the absence of hypercholesterolemia supports the notion that 

they are cholesterol-independent. Unequivocal evidence that 

many of the above effects are due to protein prenylation has 

been provided by the fact that they are reversible by addi-

tion of geranylgeranyl-PP (or farnesyl-PP), which does not 

restore cholesterol synthesis, but not by addition of squalene 

or cholesterol.

Recent evidence suggests that statins possess anti-

inflammatory properties because of their ability to reduce the 

number of inflammatory cells in atherosclerotic plaques.47 

The mechanisms have yet to be fully elucidated but seem to 

involve inhibition of adhesion molecules expression, reduction 

of leukocyte adhesion,48 as well as inhibition of inflammatory 

and chemotactic cytokine production. Lovastatin and sim-

vastatin have been found to reduce the production of MCP-1 

in human peripheral blood mononuclear cells or endothelial 

cells following exposure to lipopolysaccharide (endotoxin), 

other bacterial products, or the inflammatory cytokine IL-1. 
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Figure 2 Pathways of the effects exerted by statins.
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Likewise, they reduced the exudates content of MCP-1 and 

the degree of leukocyte accumulation in a mouse air-pouch 

inflammation model.49 The expression of MCP-1 in both 

endothelial cells and monocyte-derived macrophages 

of atherosclerotic plaques is believed to be important in 

mediating monocyte chemotaxis and hence in stimulating 

atherogenesis. Indeed, it has been found that statins reduce 

the expression of adhesion molecules on leukocytes,50 

inhibit leukocyte-endothelium interactions,51 and reduce 

inflammatory cell number within atherosclerotic plaques.52 

Xenos and colleagues53 have shown in human iliac artery 

endothelial cell cultures that fluvastatin caused a substantial 

reduction in ICAM-1 expression, through the upregulation 

of eNOS and AMP kinase. Cicha and colleagues54 in their 

study on HUVEC cultures found that statins reversed the 

shear stress-induced expression of adhesion molecules on 

endothelial cells. Moreover, Lin and colleagues55 found in 

human aortic endothelial cell cultures that statins caused a 

similar reversion of homocystein-induced VCAM-1 expres-

sion upregulation. Interestingly, Liang and colleagues56 

found in HUVEC cultures that simvastatin reduced VCAM-1 

expression on endothelial cells as well as the adhesiveness 

of monocytes, through inhibition of NF-κΒ activation by 

C-reactive protein (CRP).

Integrins are activated through a conformational change 

of their molecule and it has been suggested recently that 

the principal regulation of integrins in vivo is by receptor 

clustering into adhesion complexes.57 Rho geranylgeranyl-

ation by HMG-CoA reductase products is likely to play a 

crucial role in this procedure.58 Cerivastatin was shown by 

Yoshida and colleagues59 to reduce human monocyte cell 

line adhesion to endothelial cells under physiological flow 

conditions via RhoA-dependent mechanisms. Similarly, 

atorvastatin was found to reduce the adhesion of U937 cells 

to HUVEC and to decrease RhoA and FAK activation also in 

those cells.60 It is likely that HMG-CoA reductase inhibitors 

can inhibit focal adhesion complex formation and thereby 

inhibit leukocyte adhesion. In the absence of an activating 

signal, the β2 integrin leukocyte function antigen-1 (LFA-1) 

does not associate with lipid rafts. After its activation in 

T-lymphocytes, LFA-1 is mobilized to the lipid raft domains. 

The association between LFA-1 and lipid rafts is required 

for LFA-1-dependent adhesion to occur, and similar results 

were obtained with α4β1 integrin.61 The recent work of Lum 

and colleagues62 provided direct evidence of the involvement 

of these events in leukocyte-endothelial adhesion. RhoA 

molecule, beyond its involvement in these events of integrin 

activation that take place in leukocytes, with particular 

relevance to atherosclerosis, it is also involved in endothelial 

cells in creating receptor clusters, which allow adhesion 

to monocytes. Association with the actin cytoskeleton 

is required, but the formation of stress fibers is not.63 

Monocyte adhesion and spreading on human endothelial 

cells is dependent on Rho regulated receptor coupling in 

the latter. Therefore, both types of cell involved in the 

monocyte-endothelial interaction could possibly be affected 

by statin-mediated modification of Rho signaling, though 

evidence from cellular adhesion studies suggests that it is 

mainly the monocyte that is affected in vivo. Surprisingly, 

lovastatin, simvastatin, and other statins were found capable 

of binding to a novel site on the I-domain of LFA-1.64 This 

domain is probably involved in activation changes that allow 

binding to ICAM-1. Interestingly, even the lactone forms 

of the statins were capable of binding despite having no 

activity against HMG-CoA reductase. This binding inhibits 

the adhesive activity of LFA-1 while, a novel high affinity 

statin- related compound, LFA703, was found to have 

powerful anti-inflammatory activity. However, this field 

remains controversial, as long as statin-LFA-1 interaction 

was not confirmed by others.

Further parallel evidence was obtained from the 

suppression of IL-8 and MCP-1 production by cerivastatin 

in macrophages.65,66 Similarly, in endothelial cells, the 

more lipophilic statins upregulate PPARγ, resulting in 

decreased expression of IL-1, IL-6, and cyclooxygenase 

(COX)-2.67 The decrease in IL-6 production could provide 

an explanation for the decreased production of CRP observed 

in vivo in patients on statin therapy, as IL-6 is the principal 

inducer of its synthesis in the liver.68 More recently, it was 

shown in an in vitro system that human adipocytes can 

release CRP under inflammatory conditions and that this 

phenomenon may be modulated by statin treatment,69 a find-

ing which might explain in part the beneficial cardiovascular 

effects of these drugs.70 Furthermore, recently it was found 

that statins reduce IL-6 induced CRP directly in hepatocytes 

via inhibition of protein geranylgeranylation and of the 

phsophorylation of the transcription factor STAT3.71,72 Other 

probable beneficial effects of statins include an increase 

in the number and mobilization of circulating endothelial 

progenitor cells (EPCs), which are cell with reparative 

action on sites of ischemic injury, the inhibition of the 

migration and proliferation and the induction of apoptosis 

of vascular smooth muscle cells (SMCs)73 and the inhibition 

of leukocyte–endothelial cell interactions.74 Statin treatment 

has also been found to reduce effectively experimental 

atherosclerosis as well.75–77
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effects on immune responses
Although strictly speaking not yet proven, there is substantial 

evidence that statins may modulate immune responses. These 

include effects on the intimal recruitment, differentiation, 

proliferation, and secretory activity of a number of immune 

cells, mainly monocyte/macrophages and T cells.78–82 

Recently, statins were found to inhibit the expression of 

class II major histocompatibility antigens (MHC-II) on human 

macrophages, endothelial cells and SMCs stimulated by inter-

feron γ (IFN-γ).83,84 Precise regulation of MHC class II gene 

expression plays a pivotal role in the control of the immune 

response especially after transplantation. The expression of 

MHC-II on the surface of antigen-presenting cells together with 

processed antigens and cellular cofactors results in activation 

of the T cell receptor. Statins’ effect on the expression of 

MHC-II is exerted by both lipophilic and hydrophilic statins 

at nanomolar to micromolar concentrations, but it is limited to 

antigen-presenting cells requiring co-stimulation by IFN-γ, an 

effect which is dose-dependent for both MHC class II protein 

as well as mRNA. Whereas a limited number of specialized 

antigen-presenting cells express MHC class II constitutively, 

numerous other cells become MHC class II-positive upon 

induction with IFN-γ.85 This means that professional 

antigen-presenting cells constitutively expressing MHC-II, 

eg, B cells and dendritic cells are not affected. This complex 

regulation is under the control of the class II transactivator 

CIITA. Statins were found to inhibit promoter IV of the 

MHC-II transactivator CIITA, which regulates transcription 

of MHC-II and thus synthesis of the MHC-II protein.86,87 In 

contrast, statins did not affect the expression of MHC class I, 

pointing to specific actions in the MHC class II signaling 

cascade. This discovery has been proposed88 to provide a firm 

scientific rationale to recommend the use of this drug as an 

immunosuppressor. The reduction of MHC-II molecules on 

the vast majority of arterial cells leads to a reduction of  T cell 

proliferation and differentiation. Mixed lymphocyte reactions 

showed that statin treatment of endothelial cells and SMCs 

indeed reduced T cell proliferation and IL-2 release. These 

in vitro data provide evidence that the overall effect of reduced 

activation and proliferation of  T cells, mostly the Th1 cell 

subpopulation which is the one that secretes cytokines such as 

IFN-γ that promote inflammation, in the arterial wall, would 

likely be beneficial.

In another study, statins were found to exert a selective 

blocking of the β2 integrin LFA-1.89 LFA-1, also known 

as CD11a/CD18, is expressed on the surface of leukocytes 

and, when activated, binds to ICAM-1. In addition to its 

role in leukocyte adhesion and extravasation, LFA-1 is a 

co-stimulator of T cells. At least one clinically used statin, 

lovastatin, as well as several modified statin compounds 

subsequently developed, bound selectively to a novel site 

of LFA-1 and prevented LFA-1–mediated adhesion and 

lymphocyte co-stimulation. This effect was unrelated to the 

statins’ inhibition of HMG-CoA.

Antioxidant effects
Another class of actions for statins and a potential mecha-

nism by which statins may improve endothelial function is 

through their antioxidant effects. In this regard, a recent study 

showed that pravastatin therapy caused an early significant 

decrease in serum malondialdehyde concentration, an index 

of lipid peroxidation and plaque instability, and increase in 

flow-mediated dilation of the brachial artery, before any 

substantial reduction in blood lipid levels, in 37 patients with 

unstable angina.90 These findings suggest that pravastatin 

exerts pleiotropic effects on endothelial dysfunction during 

the early phase of the acute coronary syndrome, that are 

independent of the degree of plasma cholesterol lowering;91 

however, it has never been unequivocally demonstrated 

in humans that prolonged statin treatment exerts effects 

independent of LDL cholesterol lowering because the use 

of statins always resulted in reduced LDL cholesterol levels. 

In a recent study, Pretnar-Oblak and colleagues92 found a 

significant improvement of the cerebrovascular reactivity 

to intravenous application of l-arginine, a perceived index 

of cerebral endothelial function, as well as flow-mediated 

dilatation of the brachial artery, after a three-month treatment 

with atorvastatin in patients with lacunar cerebral infarctions, 

a state of endothelial impairment. In their elegant study, 

Landmesser and colleagues93 showed that despite the similar 

reduction in LDL cholesterol levels caused by simvastatin 

and ezetimibe, a novel cholesterol absorption inhibitor, 

only simvastatin resulted in beneficial effects on endothelial 

function.

effects on plaque stability
It is now established that atherosclerotic plaques are hetero-

geneous and vary in their tendency to undergo thrombosis 

and the consequent acute clinical events. Plaques with a 

high degree of smooth muscle cell proliferation, giving rise 

to well-developed tough fibrous caps on the luminal side of 

the lesions, rarely are complicated by thrombosis and are 

termed stable plaques. On the other hand, lesions rich in 

inflammatory macrophages and lipid deposits are mechani-

cally weaker, as metalloproteinase enzymes from macro-

phages digest the extracellular matrix and weaken the wall. 
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They frequently crack, so exposing circulating platelets to an 

abnormal vascular wall that rapidly induces activation and a 

thrombotic mass.94 These are unstable plaques, the inflamma-

tory nature of which is central to their clinically hazardous 

behavior. Coronary events are the result of unstable 

atherosclerotic lesion rupture and thrombus formation.95 High 

circulating cholesterol, apart from promoting atherogenesis, 

may also give rise to an increase in thrombogenesis through 

an increase in tissue factor expression.96 Fluvastatin has 

been shown to decrease this prothrombotic tendency with 

an associated reduction in tissue factor, and this may be 

partly through cholesterol lowering but also through non-

cholesterol-mediated actions, such as reduced prenylation of 

the Rho protein Cdc42. Statins influence plaque stability by 

preventing macrophage activation, reducing the uptake and 

endogenous synthesis of cholesterol and the production of 

metalloproteinases by macrophages.97 Metalloproteinases are 

the enzymes responsible for weakening the plaque’s fibrous 

cap, thereby increasing the risk of rupture. In addition, lipid 

lowering by statins contributes to stability by reducing plaque 

size, by modifying the physicochemical properties of the 

lipid core,98 by combined reduction in lipids, lipid oxidation, 

matrix-metalloproteinase-2, inflammation, and cell death, or 

by increases in tissue inhibitor of metalloproteinase-1 and 

collagen content.99

effects on thrombogenesis and thrombolysis
It is now established that atherosclerotic plaques are hetero-

geneous and vary in their tendency to undergo thrombosis and 

the consequent acute clinical events. Plaques rich in inflam-

matory macrophages and lipid deposits are mechanically 

weaker (“unstable plaques”), as metalloproteinase enzymes 

from macrophages digest the extracellular matrix and weaken 

the wall, they frequently crack, so exposing circulating 

platelets to an abnormal vascular wall that rapidly induces 

activation and a thrombotic mass. High circulating choles-

terol, beyond promoting atherogenesis, may also give rise to 

an increase in thrombogenesis through an increase in tissue 

factor expression, in platelet reactivity, in thromboxane A
2
 

(TXA
2
) synthesis, in platelet α

2
 adrenergic receptor density, in 

platelet cytosolic calcium, and changes in platelet membrane 

phospholipids and cholesterol. Platelets play a critical role in 

the development of acute coronary syndromes.102 Although 

the precise mechanisms involved are not fully understood, 

statins have been shown to influence platelet function,101 

probably through reduction in the production of TXA
2
, 

increased synthesis of prostacyclin,102 and modifications 

in the cholesterol content of platelet membranes. Notably, 

one of the well-characterized effects of endothelial NO is 

its inhibition of platelet aggregation. Thrombosis on mildly 

damaged swine arteries at high shear rate was reduced by 

half with atorvastatin.103 Likewise, blood from patients on 

statins showed significant reduction in platelet thrombus 

formation,104 and platelet-derived thrombin generation was 

decreased.105 Both lipid-lowering and nonlipid-related effects 

are likely to contribute, as patients with hypercholesterolemia 

have hyperreactive platelets, which would be normalized with 

lipid lowering.106 Furthermore, multiple other routes of action 

have been detailed.107 Hypercholesterolaemic patients also 

have increased circulating coagulation factors and increased 

soluble CD41 ligand, a cell-activating factor derived 

from activated platelets; these components are reduced 

by pravastatin or cerivastatin treatment.108 Mechanisms 

involved in the antithrombotic action of statins may include 

the augmented production of NO from endothelial cells, as 

described above. In addition, atorvastatin administered to 

mice was found to enhance platelet production of NO, and 

this was accompanied by a decrease in circulating markers 

of platelet activation,109 which is probably related to the 

reduction of geranylation of Rap1b, a protein involved in 

platelet aggregation.110,111 The effect of statins on other cells 

involved in thrombosis also appears to play a part. Human 

aortic smooth muscle cells in vitro were found to increase 

their expression of COX-2 and production of prostacyclin, a 

platelet inhibitory agent, under the influence of mevastatin or 

lovastatin.102 In addition, statins have been shown to mitigate 

platelet stimulation in a time- and dose-dependent manner, 

to decrease the prothrombin fragments F1+2 in plasma from 

patients with type 2 diabetes, independent of cholesterol 

levels, and to act as inhibitors of tissue factor-dependent 

thrombin generation.112 The authors of a recent study 

hypothesized that statins decrease the exocytosis of Weibel–

Palade bodies, which are endothelial cell granules whose 

contents promote thrombosis and vascular inflammation.113 

Simvastatin decreased thrombin-stimulated Weibel–Palade 

body exocytosis by 89%, in part by increasing the synthesis of 

NO, which induced s-nitrosylation of the n-ethylmaleimide-

sensitive factor, a critical regulator of exocytosis. Simvastatin 

treatment also decreased the myocardial infarct size by 58% 

in wild-type but not eNOS knockout mice. Furthermore, 

simvastatin decreased endothelial exocytosis and neutrophil 

infiltration into the ischemic reperfused myocardium, which 

was mediated in part by the P-selectin contained in the 

Weibel–Palade bodies. However, simvastatin did not affect 

the exocytosis and inflammation in the myocardial infarcts of 

eNOS knockout mice. Inhibition of endothelial exocytosis is 
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a novel mechanism by which statin inhibitors reduce vascular 

inflammation, inhibit thrombosis, and protect the ischemic 

myocardium. Recently, an in vivo study investigated the 

effects of rosuvastatin on vascular remodeling and thrombo-

sis after arterial injury in apoE-/- mice. In the rosuvastatin 

treated mice, the size of the neointimal area and the severity 

of the luminal stenosis were significantly reduced, and these 

effects were independent of systemic lipid lowering.114

Furthermore, statins exert antithrombotic effects on 

monocytes through reduction of the synthesis of plasminogen 

activator inhibitor (PAI)-1, a change likely to result in 

enhanced fibrinolysis and thrombus dissolution.115,116 The 

same result may be achieved in another route in endothelial 

cells, as statins cause an increase in expression of tissue 

plasminogen activator (t-PA). Activation of the coagulation 

pathway may also be impeded, as tissue factor expression has 

been found to be prevented by statins in human endothelial 

cells.117 There is increasing evidence from in vitro studies that 

statins positively affect the fibrinolytic system of cultured 

smooth muscle cells as well as endothelial cells. In these 

studies a decrease in PAI-1 and an increase in t-PA were 

observed after co-treatment with statins in endothelial cells.118 

It seems likely that further pathways remain to be discovered. 

Remarkably, statins may have a direct influence on the coagu-

lation pathway itself, as patients treated with simvastatin 

were seen to have decreased rates of stimulated activation 

of fibrinogen, prothrombin, factor V, and factor XIII.119 

These changes did not relate to cholesterol lowering. Finally, 

initiation of thrombosis may be substantially inhibited by 

the stabilization of plaques by statin therapy. Furthermore, 

fluvastatin has been shown to decrease prothrombotic 

tendency with an associated reduction in tissue factor,121 

and this may be partly through cholesterol lowering but also 

through noncholesterol-mediated actions, such as reduced 

prenylation of the Rho protein Cdc42.

Clinical studies
Statin therapy has been shown to reduce cardiovascular risk 

even in patients without vascular disease.121 Large epidemio-

logic studies have shown that CRP is a predictor of cardiovas-

cular disease in the general population122–125 as well as special 

patient populations, such as patients with diabetes mellitus 

and patients with end-stage renal disease.126–129 Statin therapy 

lowers high sensitivity-CRP (hs-CRP) levels in patients with 

hypercholesterolemia.130 Long-term therapy with pravastatin 

in the Cholesterol and Recurrent Events (CARE) trial also 

reduced the levels of CRP,131 a change which was not found 

to correlate with the reduction in LDL cholesterol levels. 

The latter finding seems to be confirmed by recent trials, 

such as the PRINCE study.132 In the more recent JUPITER 

study,133 a four-year treatment with rosuvastatin resulted in 

considerable decrease in hs-CRP levels and cardiovascular 

morbidity in healthy adults without hyperlipidemia. However, 

any potential clinical benefits conferred by the lowering of 

hs-CRP levels are difficult to separate from those of the lipid-

lowering effects of statins without further clinical studies and, 

even in the JUPITER study in patients with no hyperlipidemia, 

hs-CRP lowering was escorted by a significant reduction in 

LDL cholesterol levels below normal levels during the first 

year of the study. Lately, the independent effects of statins on 

CRP are debated.134 In their extensive meta-analysis, Genser 

and colleagues135 found a close correlation between statin-

induced reductions in LDL cholesterol and CRP which has 

not been evident from individual studies. This discrepancy 

could be attributed to the great variability and the non-normal 

distribution of the values of CRP. As long as serum CRP 

originates predominately from the liver and secondly form 

the sites of inflammation, different degrees of inflammation 

could probably stimulate different sites of CRP production. 

If this hypothesis is true, CRP measured in low degrees of 

inflammation, such as in the general population, could origi-

nate from local production in atherosclerotic plaques, while 

CRP measured in higher degrees of inflammation, such as in 

end-stage renal disease patients, could originate predominantly 

from liver production. Statins effects might differ in each situ-

ation, and their effects on the CRP produced by the liver might 

be linked somehow with the inhibition of HMG-CoA reduc-

tase, while peripherally produced CRP might be genuinely 

independent. Unfortunately, in CARE study there has not been 

a separate analysis of the correlation between CRP and lipid 

decrease in those patients with the highest levels of CRP, it is 

however characteristic that these patients enjoyed the maximal 

cardiovascular benefits. However, in PRINCE study such 

a correlation was indeed found in the patients with hsCRP 

values within the highest quartile. Other studies revealed 

several other beneficial effects of statins, most notably their 

immunosuppressant effects in heart transplant recipients. 

These studies have suggested a better transplant outcome 

in patients taking statin therapy136,137 as well as improved 

endothelial function and reduced inflammatory cytokine 

release.138 In renal transplant recipients, some evidence for 

similar beneficial effects of statins on endothelial functions 

has been noted139,140 and, probably, on the rate of acute rejection 

reactions,141 although the later is still debatable.142–144

The effect of serum lipids on monocyte adhesion 

molecules has not been investigated until recently. 
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The monocyte adhesion molecules CD11b145 and CD14 have 

been found to be elevated and l-selectin to be decreased 

(usually, this occurs as a consequence of cell activation) in 

patients with hypercholesterolemia compared with control 

subjects; furthermore, the levels of each of these adhesion 

molecules were found to correlate with those of LDL.146 

Simvastatin was found to correct the levels of each of these 

towards normal. The exposure of normal leukocytes to LDL 

induced changes similar to those in the hypocholesterolemic 

patients. It is important to note that changes in monocyte 

adhesion molecule expression in the patients can be a direct 

consequence of their exposure to increased LDL levels. 

Reversal with statins may therefore be attributable both to 

their hypocholesterolemic effect and to another direct effect 

on the cells unrelated to lipid lowering. Finally, several 

in vivo studies have also investigated the effect of statin 

therapy on the regulation of the fibrinolytic system. Although 

the results are inconsistent, in some studies statins decrease 

PAI-1 plasma levels.147

Conclusions
In recent years several in vitro and in vivo studies have 

provided solid evidence suggesting that statins exert multiple 

vasoprotective effects. Some of them are likely to be indepen-

dent of the lipid-lowering effects of these drugs. However, 

caution is needed when an effect is to be disconnected from 

others, as long as it is now clear that there are multiple inter-

connections between lipid- and nonlipid-lowering pathways 

and the endothelium is the center where many different 

physiologic intercalating pathways converge. Furthermore, 

hypercholesterolemia itself has an inflammatory effect on 

the vascular endothelium and liver.148 To this extent, the 

correlation between different effects of statins appears to be 

like the causality dilemma, “which came first, the chicken 

or the egg?”, and it wouldn’t be surprising if future research 

revealed a correlation of effects which nowadays seem 

independent. Given all the evidence that research has come 

up to, it is now tempting to question the multiple-dispersed 

“pleiotropic” effects of statins in favor of a unifying theory 

that would bind together the pieces of the puzzle.
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