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Objective: CD166 is known as a tumor stem cell specific marker, associating with tumor

metastasis. The purpose of this study was to further discuss CD166 gene on cell proliferation,

invasion, metastasis, and the epithelial-mesenchymal transition (EMT) in CNE-2R cell line

of nasopharyngeal carcinoma (NPC).

Materials and methods: CNE-2R cells were transfected with lentivirus CD166-shRNA,

and quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western

blotting were used to confirm the silencing effects. The wound healing test and transwell

test were carried out to assess cell invasive and migratory abilities in vitro. With the

establishment of xenograft nude mouse model, Western blotting and immunohistochem-

istry were undertaken to detect the expression level of E-cadherin, N-cadherin, and

vimentin. In vivo metastasis detection was carried out by injecting tumor cells into

nude mice via the tail vein.

Results: The invasive and migratory abilities of CNE-2R cells were significantly reduced

after CD166 was downregulated. In addition, silencing of CD166 of CNE-2R cells increased

the expression of E-cadherin, while down-regulated the expression of N-cadherin and

vimentin. Immunohistochemistry of tumors showed consistent results with in-situ tumor

formation experiment. Additionally, the growth of transplanted tumor was inhibited. In

addition, in vivo metastasis test proved that knockdown of CD166 suppressed pulmonary

metastasis and liver metastasis according to hematoxylin and eosin (H&E) staining.

Expression of E-cadherin increased, while expression of N-cadherin and vimentin decreased,

as revealed by Western blotting of metastatic lung tumors.

Conclusion: Silencing of CD166 in CNE-2R cells evidently inhibited proliferation, inva-

sion, metastasis, and EMT process in vivo and in vitro.
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Introduction
Nasopharyngeal carcinoma (NPC) is an uncommon malignant tumor of the head

and neck, while it, with a high incidence, has been reported in southern Asia,

especially southern China.1,2 The rapid evolution of intensity-modulated radiation

therapy (IMRT) is taken the foremost treatment for NPC at present.3 Several NPC

patients were effectively treated with IMRT; however, the high rate of distant

metastasis leads to treatment failure for NPC.4 Thus, it is essential to further

explore the basic mechanism of radiation resistance in cell migration and invasion

to promote the survival rate of radiation-resistant NPC.
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Cells can transform from epithelial to mesenchymal

states in a dynamic manner during embryonic process, and

then cells are allowed to migrate and invade due to the

change of mesenchymal state in the epithelial-mesenchymal

transition (EMT).5 EMT plays a major role in differentiating

multiple tissues and organs, and it is also associated with

tissue repair and organ fibrosis, in addition to accelerate

progression of metastasis carcinoma.6,7 The decreased

expression of E-cadherin is correlated with EMT, playing

an important role during tumor progression.8 Vimentin has

a high expression in different types of cancer, promoting

tumor growth and invasion.9 The hallmark of EMT is the

loss of epithelial surface markers, most notably E-cadherin,

and the acquisition of mesenchymal markers, including

vimentin and N-cadherin.10 Previous studies have shown

that CD166 is associated with the adjustment of EMT in

colorectal cancer and lung cancer.11,12 However, the role of

the CD166 gene in NPC has been rarely studied.

The occurrence of radio-resistance drugs is a complex

process, and changes at the genetic level may certainly lead

to some changes in protein levels. Our research group iden-

tified differentially secreted proteins in the cultured NPC

radio-resistant cell line CNE-2R and its parental cell line

CNE-2 by proteomics-related identification technique

in vitro. Besides, CD166 is positively expressed in CNE-

2R, while is negatively expressed in CNE-2; higher expres-

sion could also be observed in patients’ serum being radio-

resistant NPC than that in radiation-sensitive patients;13 we

found that the sensitivity of radiation of NPC cells with

positive expression of CD166 is not comparable to that of

NPC cells with negative expression.14 It is suggested that the

expression of CD166 in the cell membrane is associated with

radio-sensitivity of NPC cells.

In this study, CD166 was silenced by lentivirus-

mediated RNA interference technique of CNE-2R cells.

We aimed to indicate whether CD166 was connected to

cell migration, invasion, and EMT, in addition to search

for radio-resistant NPC biomarkers.

Materials and methods
Ethics statement
The procedures involving animal use were approved by Ethics

Committee of the Affiliated Tumor Hospital of Guangxi

Medical University (Nanning, China) (approval number:

LW2018045). All animal experiments were conducted in

accordance with the Laborayary animal –Guideline for ethical

reiew of animal welfare.

Cell culture and infection
Our group generated the radio-resistant human NPC cell

line CNE-2R, by fractional exposure of CNE-2 to

radiation.15 CNE-2, a human NPC cell line with low differ-

entiation, was purchased from Fudan University Shanghai

Cancer Center (Shanghai, China). The cell line was tested

through short tandem repeat (STR)-DNA profiling. CNE-

2R cells were cultured in RPMI-1640 medium (Sigma-

Aldrich, St. Louis, MO, USA), supplemented with 10%

fetal bovine serum (FBS; Biological Industries, Cromwell,

CT, USA), 1% penicillin/streptomycin in an incubator at

37°C in presence of 5% CO2. CD166 inhibitor and

scrambled inhibitor were transferred into CNE-2R cells

cultured in 6-well plates using lentivirus with the sequences

(CD166-shRNA:ACAGATTGAACCTCTCAGAAA) and

(NC:TTCTCCGAACGTGTCACGT), respectively, at

a multiplicity of infection (MOI) of 20. The virus solution

was then removed, and replaced by RPMI-1640 medium

containing 10% FBS after 8 hrs, in which the infection

efficiency was observed by inverted fluorescence micro-

scope after 96 hrs of infection.

RT-qPCR analysis of mRNA expression of

CD166 after lentivirus

Total RNA was abstracted using TRIzol reagent

(Invitrogen, Carlsbad, CA, USA). Complementary

DNA (cDNA) was amplified using ReverTra Ace

qPCR RT Kit (Toyobo, Osaka, Japan). The protocol

was conducted with the following cycling parameters:

at 37°C for 15 mins, and at 98°C for 5 mins for 40

cycles. All quantitative reverse transcription polymerase

chain reaction (RT-qPCR) examinations were performed

using 96-microwell plates in a 7300 Real-Time PCR

System (Applied Biosystems, Foster city, CA, USA).

The RT-qPCR amplification was conducted in a 20 μl
final reaction volume using THUNDERBIRD Probe and

SYBR qPCR Mix (Toyobo, Osaka, Japan) according to

the manufacturer’s instructions. Quantifications were

normalized by taking β-actin as an internal reference

and were calculated by using the 2ΔΔCt method. Primer

sequences were as follows:

CD166 forward, 5’- ACTTGACGTACCTCAGAATC

TCA −3’;
and reverse, 5’- CATCGTCGTACTGCACACTTT −3’;
β-actin forward, 5’-AGAGCTACGAGCTGCCTGAC-3’;
and reverse, 5’-AGCACTGTGTTGGCGTACAG-3’.
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Western blot analysis
The protein was collected from cells of each group by

radio-immunoprecipitation assay (RIPA) buffer (Beyotime

Institute of Biotechnology, Shanghai, China) plus protease

inhibitor, in which the xenograft tumors and lung metastasis

tissues were lysed after grinding, and then the supernatant

was collected. In addition, protein concentrations were

detected with bicinchoninic acid (BCA) assay kit

(Beyotime Institute of Biotechnology, Shanghai, China).

Besides, 50 μg of total protein was separated by sodium

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE), and then cut and transferred onto polyvinylidene

difluoride (PVDF) membranes. After that, the hybridized

membranes were blocked in 5% fat-free milk in TBST

(containing 0.05% Tween-20) for 1 hr and incubated with

primary rabbit monoclonal antibody at 4°C overnight. Next,

that was followed by the membranes, which were incubated

in a horseradish peroxidase (HRP)-conjugated goat anti-

rabbit secondary antibody (1:1000) for 1 hr. Moreover, β-
actin or GAPDH antibody was used as an internal reference.

The images were collected by using enhanced chemilumi-

nescence (ECL) reagent. The primary antibodies used in

this study were as follows: anti-CD166 antibody,

E-cadherin, N-cadherin, vimentin, and β-actin; all of these
antibodies were purchased from Cell Signaling Technology

(Danvers, MA, USA)

Wound healing detection
The migration capacities of cells were determined by

scratch-wound assay. A Culture-Insert 3 Well was placed

in 6-well plates; the cell suspension was regulated to 3×105

cells/ml, and 70 µl was applied to each well. After appro-

priate cell attachment (24 hrs), the Culture-Insert 3 Well

was removed by using sterile tweezers; then the used well

or dish was filled with serum-free medium, and cultured for

48 hrs at 5% CO2 at 37°C. The width of the wound was

photographed with an inverted phase contrast microscope.

All the examinations were performed in triplicate.

Transwell migration assay
The migration and invasive abilities were evaluated using

8 µm pore size 24-well transwell chambers. The concen-

tration of cell was adjusted to 2×105 cells/ml with serum-

free medium. Besides, 600 μl of 10% FBS-containing

medium was placed to the lower chamber, in which

2×104 cells suspended in 100 µl serum-free medium

were seeded into the upper chamber for 24 hrs. Non-

migratory cells were cleared, while the migratory cells in

the lower chamber were fixed with paraformaldehyde, then

stained by Giemsa and dried at room temperature. An

automated system for whole microscopic image acquisi-

tion was used, and 5 microscopic fields (20×) were ran-

domly selected for cell counting, and then changes in the

number of cells were calculated. For invasion assay, gen-

eral chamber was replaced by Matrigel-coated transwell

membranes. All tests were carried out in triplicate.

Subcutaneous xenograft detection in

nude mice
Male BALB/C nude mice (age, 4-week-old) were purchased

from Chongqing Tengxin Biotechnology Co. Ltd.

(Chongqing, China). The nude mice were randomly

assigned into 3 groups (n=5 for each group), including

control, NC, and CD166-shRNA. For subcutaneous tumor

formation in vivo, cells were suspended (1×106 cells/mL) in

200 μL of phosphate-buffered saline (PBS) and injected

subcutaneously into the groin on the right side of the mice.

Tumor growth was examined every 4 days. The nude mice

were executed by cervical dislocation after 4 weeks of

observation, and the tumor tissues were removed as well.

Metastasis experiment in nude mice
For metastasis in vivo, nude mice were also assigned into

control, NC, and CD166-shRNA groups; 5×105 cells sus-

pended in 100 μL of PBS were injected into the tail vein of

each nude mouse. After 6 weeks of injection, the mice

were sacrificed and lungs and livers were removed.

Hematoxylin and eosin (H&E) staining
The harvested lung and liver tissues were fixed with 4%

paraformaldehyde dehydrated, and then embedded in par-

affin; paraffin-embedded sections were stained with H&E.

Immunohistochemistry (IHC) analysis0
For IHC, paraffin-embedded sections were toasted in an

incubator at 60°C for 3 hrs, and then deparaffinized in

xylene for 30 mins and rehydrated in a decreasing progres-

sively concentration 100% ethyl alcohol, 90% ethyl alcohol,

80% ethyl alcohol, and 70% ethyl alcohol for 10 mins.

Antigen retrieval was conducted by high temperature and

high pressure in citric acid-sodium citrate buffer (pH 6.0) for

3 mins. Endogenous peroxidase activity was blocked by 3%

hydrogen peroxide for 15 mins, and then the sections were

incubated with standard goat serum for 10 mins, and
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incubated with primary rabbit monoclonal antibody at 4°C

overnight. Next, the sections were exposed to HRP-

conjugated secondary antibody, and then incubated with

Streptomycin avidin-peroxidase. After incubating with

DAB (3,3’-diaminobenzidine tetrahydrochloride) to bind

non-specific antigen, the sections were counterstained with

the use of hematoxylin, as negative control, and the primary

antibody was replaced by PBS. Eventually, the sections were

dehydrated with gradient ethanol, transparent with xylene,

and sealed with neutral gum. Chemical staining was

assessed and marked by two pathologists independently.

Differences were resolved by consensus as well. The inten-

sity of staining score ranked 0–3: 0 point (no staining), 1

point (light yellow), 2 points (yellow), and 3 points (brown-

ish yellow). The percentage score of stained cells was con-

sidered as 0 point (no staining), 1 point (<30% positive

expression), 2 points (30~60% positive expression), and 3

points (>60% positive expression). The staining intensity

was added to the percentage score as the total staining

score for each tissue sample (range, 0–6). Besides, 0–3

points were considered as low expression, and 4–6 points

were classified as high expression.

Results
Effective silencing of CD166 in CNE-2R

cells
The lentivirus was successfully established and infected

into the CNE-2R cells. The percentage of green fluores-

cence protein (GFP)-positive cells was above 90% after

96 hrs in both CD166-shRNA group and NC group

(Figure 1A and B). The efficiency of shRNA and lenti-

virus-mediated downregulation on the expression of

CD166 was detected by RT-qPCR and Western blotting

both at gene and protein levels. As shown in Figure 2,

either the mRNA or protein expression levels of CD166

was notably declined in the shRNA-transduced group

compared with the NC group and control group

(Figure 2A and B) (*P<0.01).

Silencing of CD166 attenuated migration

and invasion abilities in CNE-2R cells in

vitro
The consequence of the wound-healing experiment indi-

cated that migration ability of the CD166-shRNA group

was markedly lower than that of control group and NC

group with the scratch-healing rate of 15.28%±1.42% com-

pared with 47.44%±2.84% and 39.18%±1.07% (*P<0.001,

Figure 3A and B). Transwell assay was carried out to sug-

gest that the migration ability of CD166-shRNA group was

evidently poorer than that of NC group and control group

(Figure 3C and E). Additionally, the number of invasive

cells was evidently less in the CD166-shRNA group (8.20

±1.64) compared with NC group (34.80±3.30) and control

group (41.20±2.80) (*P<0.01, Figure 3D and F). Taken

together, we found that down-regulation of CD166 expres-

sion could suppress cell proliferation and metastasis.

Silencing of CD166 inhibited EMT in

CNE-2R cells
EMT plays a critical role in cell invasion and metastasis.

As illustrated in Figure 4, Western blotting suggested that

knockdown of CD166 increased the E-cadherin expres-

sion, while restrained N-cadherin and vimentin expression,

indicating that silencing of CD166 suppressed the invasion

ability of EMT in CNE-2R cells (Figure 4 A and B).

Silencing of CD166 inhibited EMT in

xenograft nude mouse model
The xenograft nude mouse model was established to

demonstrate the effects of CD166 on tumor growth

in vivo (Figure 5A). The EMT-related markers were

tested by using IHC. The results indicated that the

tumor size of CD166-shRNA group was remarkably

lower than that of CNE-2R group and NC group

(Figure 5B and C). Expression of CD166 in vivo was

detected by IHC and Western blotting, indicating that

the corresponding expression of CD166 protein in nude

mice injected with CD166-shRNA-infected cells was

evidently less than that of the CNE-2R group and NC

BrightA

B

C
D

16
6-

sh
R

N
A

N
C

Flourescent

Figure 1 Evaluation of the lentivirus transduction rate, which was calculated by

cellular enumeration under an inverted fluorescence microscope (magnification,

×200). (A) NC group; (B) CD166-shRNA group.
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Figure 3 Silencing of CD166 inhibited the migration and invasion of CNE-2R cells. Notes: (A and B) Wound-healing assay to compare cell migration and invasion in

the CD166-shRNA group, NC group, and control group (magnification, ×100). (C and E) The effects of silencing of CD166 on cell migration detected by transwell

assay, (D and F) Effects of silencing of CD166 on cell invasion detected by transwell assay, (magnification ×200). *P<0.05, the CD166-shRNA group compared with

the NC group and control group.
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Figure 4 Silencing of CD166 decreased EMT in CNE-2R cells. (A) After CD166 was silenced in CNE-2R cells, E-cadherin was upregulated, and N-cadherin was

downregulated as proved by Western blot analysis. (B) Schematical representation of N-cadherin, E-cadherin, and vimentin expression. *P<0.05, the CD166-shRNA

group compared with the NC group and control group.
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Figure 2 CD166 was downregulated in the CNE-2R cell lines. (A) The analysis of CD166 mRNA expression in respective groups was conducted by RT-qPCR. (B) Western

blot analysis showing CD166 expression in different groups. *P<0.01, the CD166-shRNA group compared with the NC group and control group.
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group (Figure 6D–F). The expression of E-cadherin,

N-cadherin, and vimentin was examined by IHC to

verify the level of EMT. Vimentin and N-cadherin

had a higher expression level in both CNE-2R group

and NC group compared with CD166 group, while

E-cadherin was less expressed in CNE-2R group and

NC group compared with CD166 group (P<0.05,

Figure 6A–C).

Silencing of CD166 suppressed metastasis

in vivo
Nude mice injected with tumor cells through the tail

vein were sacrificed 6 weeks later, and the metastatic

tumor nodules on the surface of the lung in the control

group and the NC group could be obviously observed by

naked-eye (Figure 7A and C). H&E staining showed

that the pulmonary and liver metastasis ability of the

CD166 group was significantly weaker than that of the

NC group and the control group (P<0.05, Figure 7B and

D). Western blot analysis indicated that knockdown of

CD166 increased the E-cadherin expression, while

restrained the expression of N-cadherin and vimentin

(*P<0.05, Figure 7E and F), indicating that silencing

of CD166 suppressed the metastasis in vivo.

Discussion
Radiotherapy is currently recommended as a principal

treatment for NPC. However, distant metastasis is a main

failure cause of NPC radiation therapy, especially for

patients who are not sensitive to radiation. Therefore, the

possible mechanism of tumor metastasis should be further

elucidated.

CD166, also known as ALCAM, located on the

human chromosome 3q13.1-q13.2, is one of the ligands

of the lymphocyte antigen CD6 and is also one of the

members of the immunoglobulin superfamily.16 CD166/

ALCAM is associated with the growth and development

of cells in several tissues. Studies have shown that

CD166/ALCAM had a high level of expression with the

appearance of various tumor cells, which was related to

the development of tumors. CD166/ALCAM has been

verified to have a supervisory role in growth of various

tumors and characteristics of metastasis-associated tumor

cells in vitro; besides, increased expression of CD166/

ALCAM has been observed in a variety of tumors, such

prostate cancer,17,18 esophageal cancer,19,20 breast

cancer,21–23 lung cancer,24,25 colorectal cancer,26,27 and

malignant melanoma,28,29 which was associated with the

malignant progression of tumors.

A
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(m

m
3 )

Time(days)

Figure 5 Effects of silencing of CD166 in xenograft nude mouse model. (A) Nude mice used in the experiment. (B) Tumor obtained from nude mice. (C) Growth curve of

xenograft tumors of nude mice.
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In our previous study, CD166/ALCAM was found to

be highly expressed in CNE-2R, while rarely expressed in

CNE-2.13 The serum level of CD166/ALCAM in patients

with radiation-resistant tumors was higher than that of

radiation-sensitive patients; at the cell membrane level, it

has been proven that CNE-2 and CNE-2R cells with high

expression of CD166/ALCAM had a lower radio-

sensitivity than those of CNE-2 and CNE-2R with nega-

tive expression. In addition, the expression of CD166/

ALCAM was correlated with the radio-sensitivity of

NPC.14 In the present study, we applied lentivirus-

mediated shRNA to downregulate CD166/ALCAM in

CNE-2R cell line. The date of wound healing assay and

transwell assay showed that the motility and invasive cap-

ability of CNE-2R cells were decreased, demonstrating

that CD166/ALCAM could promote proliferation and

metastasis of CNE-2R cells.

Cadherins are a family of cell–cell adhesion molecules

and are divided into subclasses with distinct adhesive speci-

ficities and tissue distribution. E-cadherin-mediated cell–cell
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Figure 6 Expression of CD166 and EMT-related protein of nude mice xenograft model with the downregulation of CD166. (A–C) IHC suggested that E-cadherin was

upregulated, while N-cadherin and vimentin were downregulated (magnification, ×200). (D) CD166 expression of nude mouse xenograft model identified by IHC. (E and F)
CD166 expression of nude mouse xenograft model identified by Western blotting. *P<0.05, the CD166-shRNA group compared with the NC group and control group.
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adhesion prevents invasiveness of human carcinoma cells,

and loss of E-cadherin expression is related to invasive

ability of different kinds of cancer.30–33 N-cadherin, another

adhesion molecule, is able to increase invasive capability in

cancers.34,35 Vimentin is involved in cell–cell adhesion,

migration, invasion, signal transduction, cytoskeletal rear-

rangement, and cell morphology and plasticity

regulation.9,12,36 In the present study, silencing of CD166/

ALCAM increased the E-cadherin expression, restrained

N-cadherin, and vimentin expression in vitro and vivo.

which indicated that EMT level of CNE-2R cells was sig-

nificantly decreased, and the cell migration and invasion

abilities were also reduced after silencing of CD166/

ALCAM. Additionally, according to in vivo metastasis stu-

dies, liver and lung metastases were notably reduced after

CD166/ALCAM knockdown. Moreover, the EMT level was

obviously declined in the metastatic lung tissue. A previous

research study demonstrated that CD166/ALCAM can be

taken as a special marker for colon cancer stem cells into

account, that is related to tumor’s chemical resistance and

radiation resistance, and also can initiate tumor formation as

well as activation of EMT.37 In conclusion, silencing of

CD166/ALCAM could suppress metastasis and proliferation

of CNE-2R cells. However, the intrinsic mechanism that

how CD166/ALCAM can promote the ability of NPC to

resist against radiation and undergo cell migration is still

complex, and further experiments are therefore required to

explore the expression of CD166/ALCAM and its specific

mechanism to EMT, and migration in radiation-resistant

NPC.

Conclusion
In this study, it was revealed that downregulation of

CD166 inhibited cell proliferation, migration and invasion.

Besides, EMT of CNE-2R cells evidently suppressed with

silencing of CD166.
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