The role of medical data in efficient patient care delivery: a review

Kasaw Adane 1
Mucheye Gizachew 2
Semalegne Kendie 3

1 Unit of Quality Assurance and Laboratory Management, School of Biomedical and Laboratory Sciences, University of Gondar, Ethiopia; 2 School of Biomedical and Laboratory Sciences, Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia; 3 School of Sociology and Social Work, Department of Social Work, University of Gondar, Gondar, Ethiopia

Background: Implementing accurate data management systems ensure safe and efficient transfer of confidential health care data. However, health care professionals overlooked their important tasks of medical data processing. Hence, using high-quality electronic health record (EHR) applications in health care is important to minimize medical errors. Therefore, this review tries to indicate the roles of EHR in advancing quality health care service provisions.

Methods: The keywords identified were EHR, EMR, medical data processing, and a few related terms with different combinations. PubMed (National Library of Medicine), Google Scholar, and Google search engine were used to search for articles from those databases. Searching was done using boolean words “AND”, “OR”, and “NOT” using all [All fields] and [MeSH Terms] searching strategies.

Results: Articles were screened using the title, checked by their abstract, and the remaining related full-text materials were included or excluded by two individuals deciding its eligibility. Finally, 73 materials issued from 2013–2018 were used for qualitatively synthesizing and reconciling the idea to produce this review article.

Conclusion: Poor medical data processing systems are the key reasons for medical errors. Employing standardized data management systems reduce errors and associated sufferings. Therefore, using electronic tools in the health care institution ensures safe and efficient data management. Therefore, it is important to establish appropriate medical data management systems for efficient health care delivery.

Keywords: electronic medical data, health care data, medical data processing

Background

The mission of health care institutions – restoring patient’s health – demands effective and efficient medical data for evidence-based intervention. 1 Installing an appropriate health care data management system with valid case definition enables efficient data extraction, 2 improves communication for clinical decision making in medical practice, 2–4 and clinical research, 9,10 and upgrades the quality of health care services. 11 Healthcare professionals are responsive to improve recording, distributing, monitoring, and implementing preventive measures to decrease morbidity. 12 This requires consistent, complete, comprehensive, and accurate information which attracts more attention in the health care industry. 3

The health care industry uses a paper-based record (PBR) and/or electronic health record (EHR) system to manage patient’s data. The EHR has become an integral part of medical care, 13 which transforms health care service quality 14,15 and improves...
clinicians’ satisfaction and facilitates patients’ decision.5,16 Accurate information from EHR enables physicians’ order entry and measures clinical validity, which in turn upgrades the quality of patient care.17 This functionality is crucial during diagnosis and therapy,13 which benefits medical and legal practices too.18

Decision-support embedded features – standardized checklists, alert signals, predictive tools, and guidelines1 – motivate and encourage health care organization leaders and persuade physicians to better utilize best practice alerts (BPAs) in a more effective and efficient way.19 In line with this, research reports backed up a position that health care practices are being transformed from PBR to EHR systems,17 although a report revealed that, in the eye care practice, EHR is less versatile for recording.20

Patient data were readily accessible and transferable21 from the EHR system. This helps to make an accurate diagnosis and decision making22 by reducing the access time and use.1,2 Notification signal flags or BPAs prompt about “what content” and “with whom” to share23–25 that trigger potential engagement in health care service provision27 and decision-making processes,28 as it builds trust29 and confidence30 in the quality of patient care.17 This functionality is crucial during diagnosis and therapy,13 which benefits medical and legal practices too.18

The EHR application improves the process,36 trustworthiness, safety, and efficiency of patient care delivery.29 Hence, implementing standardized policies, processes, and procedures for an appropriate health care data management system that advances the quality of health services and efficiency,14,37 avoids non-value adding activities,34 and ensures major quality and safety improvement.16,17,23,34 Therefore, this paper intends to indicate the roles of EHR in improving the quality of health care service provisions.

Methods

The keywords identified were EHR, EMR, electronic health record, electronic medical record, medical data recording, medical data processing, medical data retention, medical data destruction, health care, patient care, animal data, and plant data with different combinations. Searching was done using boolean words “AND”, “OR”, and “NOT”.

We used \{[(EHR OR EHR[MeSH terms]) OR EMR) OR (EMR[MeSH terms]) OR (electronic health record) OR (electronic health record[MeSH terms]) OR (electronic medical record) OR (medical data recording[MeSH terms]) OR (medical data processing) OR (medical data processing[MeSH terms]) OR (medical data destruction) OR (medical data destruction[MeSH terms])] AND [((health care) OR (health care)[MeSH terms]) OR (patient care) OR (patient care)[MeSH Terms])\} to search articles from PubMed and Google Scholar databases and Google search engine. Information was extracted from downloaded materials and used for qualitative synthesis.

Result

PubMed (National Library of Medicine [NLM]) databases and Google Scholar databases, as well as the Google search engine, were used for downloading published materials using EndNote8 Version X1 for Window’s application. Published materials which were searched using the EndNote application were subsequently screened and checked for relevance using titles, abstracts, and full-text articles, which was done by two individuals, independently inspecting for its eligibility. From a total of 4,606 searched published materials, 73 full-text materials issued from 2013–2018 were used for the development of this review after passing the subsequent screening, selections, and checking processes. Information generated from referenced materials was qualitatively synthesized and the idea was reconciled to produce this review article. The overall study selection process is depicted in Figure 1.

Discussion

Patient health care data management processes

Although the health care industry is an information enterprise, its data recording practices and its data protection laws vary considerably among hospitals and countries.38,39 The overall health care data management policies must define confidentiality and prevent reconstruction after destruction controlled by security personnel.

The document destruction policy must define the medical data retention policy and its codes of practice that must file the advantages and disadvantages of destroying or maintaining medical data.40

The benefits of EHR implementation

Implementing EHR increases the quality of services and ensures the safety of patients upon using decision-support tools result in error reduced services that increase clinicians
and patient’s satisfaction, which in turn increases the health care seeking-behavior of clients.

Currently, about 1,000 EHR applications are published every month for the purpose of increasing performance, reducing fatigue, improving accessibility, ensuring compliance, fidelity, and satisfaction, with acceptable safety gains.

The EHR tool was implemented in the United States and the United Kingdom, which own the largest private and public health care systems in the world, respectively, and succeeded in providing quality patient care. It is an essential tool for the application of modern information technology that improves the quality of health care services consistent with medico-legal considerations.

Accessing the EHR tool facilitates the health care delivery, made more accurate decisions, and contributes to the health care quality improvement and research output at reduced cost. The tool also ensures the safe transfer of health care data that meets the patient’s expectation, supports the continuity of patient care, and maintains the compliance with medication adherence. Moreover, the tool helps diabetes goal achievement, while the service delivery process is assisted from non-physician workers.

The data generated from the EHR measure prevention, process, and outcome metric. Implementing high-quality EHR improves epidemic surveillance, decreases the length of patient stay, achieves work efficiency by reducing non-value adding activities, achieves goals, and helps to make for timely decisions at reduced cost. The system reduces the nurses and the clerk’s time spent to access data to make timely interventions. In its effectiveness, it ensures the quality of services at a reduced cost. The potential benefits of EHR are improving quality, ensuring continuity of patient care, efficiency, and positive financial return on investment.

The effective use of EHR improves the patient’s safety, trust, and their satisfaction on the health care system appeared orienting patients towards a health related information sources. Patients usually want to control how and what details to be notified when their data are accessed.
The tools could be customized to notify and ensure the safe transfer of patient private confidential data, and they need to get protected. The interoperability of medical information among health care institutions increases the medical staff’s understanding of the disease, diagnosis, and decision-making processes. The EHR allows automated disease surveillance, and helps in promotion and participation of safe and effective health care practices.

The challenges of implementing EHR

The EHR is perceived as a “double-edged sword” as it improves quality on the one hand and increases privacy and safety risks on the other. These are important concerns of patients’ for transferring their health care data.

Although its adoption rate is currently rising, EHR is found at a low rate, particularly in developing countries. Some of the factors for this low adoption rate include behavioral factors (lack of perceived benefits, poor confidence, dissatisfaction, physicians’ resistance, lack of stakeholders’ interest, and ignorance on more advanced systems), technical factors (interoperability, lack of financial support or specific financial incentives, and lack of technology infrastructure), legal factors (lack of legal framework and lack of comprehensive EHR national policy and strategy), socio-demographic factors (age and education level of physicians), practice related factors (high skill demand and lack of training), and knowledge related factors (poor awareness).

The Delphi study disclosed the barriers of medical practices to implement EHR, as hindered by a myriad of intrinsic (behavioral and cognitive) and extrinsic (economic and technological) barriers when faced with the initial decision to invest in an EMR system.

Healthcare service at a distance

Traditional telephone services were the milestones of modern telemedicine. Implementing electronic communication applications with high computational power enables the control of operations at a distance possible. Although reducing medical errors is an international agenda, physicians still commit different types of errors during manual medical data processing incurred during recording and/or fail to timely record health care data. Errors associated with medical data are common and costly. However, the social, spiritual, psychological, and ethical scopes of the technology, as well as the technical feasibilities of the technology, must be considered, and all stakeholders must contribute while planning and implementing new health care technologies. The PBR systems are practically more error-prone, however, the mere replacement of the system with EHR could not ensure accuracy. Hence, efficient processing, usage, and storage of medical data are important for both clinical and public health decisions.

The future perspectives

The promising EHR implementation systems, people, process, and product factors play an integral role in the fate of its implementation. The stakeholder’s benefit from the systems which protect the patient’s need and ensure their privacy. The access to accurate and complete clinical information is the main component of effective decision making. This is facilitated by decision-support EHR tools - BPAs - and designed for behavioral health integration with the needs of health care institutions and the benefits of improving the patient experiences, for instance, alcohol use. The system can be used to update the current condition of a patient as input to obtain a corresponding recommendation for medical tests, possible diseases, and treatment plans. Research indicated that the EHR “active choice” significantly increased influenza vaccination rates and ordering of colonoscopy and mammography screening services.

The successes or challenges of voice input application can be used to transcribe doctor’s dictation and facilitate the collection, indexation, storage, and retrieval processes of medical information. According to a study, EHR promotes services but could not favor collaborative team’s culture and professionals.

The shift in the use of EHR by the health builds trusts and presents an opportunity to monitor admission, diagnosis, and outcome to inform public health policy and service provision. The EHR vendors should be encouraged to incorporate social knowledge networking features into the systems.

Authors have also identified two issues demanding the researcher’s attention for more elaborated reasons for uncertainties. First, one national level research reported the adoption level of EHR as it was higher in rural practices than urban counterparts, reversing the earlier trends. Another similar research also reported the necessity of considering the patient’s behavioral aspects while using the tool during patient rendering procedures so as to increase patient’s engagement level. These issues may call for behavioral scientists to address this particular patient concern.

Conclusion

Medical data processing is one of the most basic tasks of the health care professionals. Computerized physician order entry applications having decision-support fields reduce
avoidable medical errors using inbuilt memory aid. These automatic notification alert signals enable appropriate and timely intervention that ensures safer and efficient health care. The design policies of electronic technology must meet pre-stated standards and guidelines to ensure confidentiality. User-friendly technologies ensure the efficient and timely transfer of health care data for quality patient care meeting the needs of the patients and the organization.

Abbreviations
AEs, adverse events; BPAs, best practice alerts; EHR, electronic health record; EMR, electronic medical record; NLM, National Library of Medicine; PBR, paper-based record.

Author contributions
All authors contributed towards data analysis, drafting and critically revising the paper, gave final approval of the version to be published and agree to be accountable for all aspects of the work.

Disclosure
The authors report no conflicts of interest in this work.

References
71. Rangachari P. Implementing a social knowledge networking (SKN) system to enable meaningful use of an EHR medication reconciliation system. Risk Manag Healthc Policy. 2018;11:45–53.
72. Whitacre BE. Rural EMR adoption rates overtake those in urban areas. J Am Med Inform Assoc. 2015;22(2):399–408.