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Abstract: Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are dietary factors involved in 

the prevention of cardiovascular, inflammatory, and neoplastic diseases. A multidisciplinary 

approach – based on recent findings in nutritional science, lipid biochemistry, biotechnology, 

and biology of inflammation and cancer – has been recently employed to develop ω-3 PUFA-

containing nanoformulations with an aim to protect these fatty acids from degradation, increase 

their bioavailability and delivery to target tissues, and, thus, enhance their bioactivity. In some 

cases, these nanoformulations were designed to administer ω-3 PUFAs in combination with 

other nutraceuticals or conventional/innovative drugs. The aim of this strategy was to increase 

the activities of the compounds contained in the nanoformulation and to reduce the adverse 

effects often induced by drugs. We herein analyze the results of papers evaluating the potential 

use of ω-3 PUFA-containing nanomaterials in fighting cardiovascular diseases and cancer. 

Future directions in this field of research are also provided.

Keywords: innovative biotechnologies, cardiovascular diseases, nanoparticles, ω-3 PUFAs, 

cancer

Introduction
There is a large body of evidence supporting a beneficial role of omega-3 polyunsaturated 

fatty acids (ω-3 PUFAs) against several pathologies, including cardiovascular diseases 

(CVDs) and cancer.1–3 The results have been obtained by using either the essential fatty 

acid α-linolenic acid (ALA, 18:3 ω-3), mostly found in vegetables and nuts or, and 

particularly, its metabolic products, the long-chain (LC)-ω-3 eicosapentaenoic acid 

(EPA, 20:5 ω-3) and docosahexaenoic acid (DHA, 22:6 ω-3). However, in mammal 

cells these two highly bioactive compounds are produced endogenously from ALA at 

very low levels; therefore, it is necessary to increase their main dietary sources (fish and 

seafood) to reach sufficient amounts in tissues. However, this requires a frequent intake 

of fish and seafood that appears unsustainable, particularly in the future.4 Moreover, 

wild fish is often contaminated with heavy metals or pesticides,5 whereas farmed fish 

contains much lower levels of LC-ω-3 PUFAs and high levels of antibiotics.6 In order 

to overcome these problems, alternative LC-ω-3 PUFA sources are now being explored, 

such as microalgae grown in controlled environments,7 or genetically modified plants 

and marine protists.8–11 An alternative approach may be the new nanotechnology-based 

strategies that are being developed to effectively deliver purified ω-3 PUFAs to the 

target tissues. These strategies are aimed to overcome the scarce solubility of these 

fatty acids, protect them from degradation, make them specifically active to target the 
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site of injury, and/or distribute them in strict combination 

with other bioactive compounds/drugs. The ultimate goal is 

to enhance their bioavailability, thus reducing the level of 

intake of these fatty acids or of other co-transported drugs.12–14 

For the first time, we have comprehensively and critically 

analyzed in the present review all the reports concerning 

the nanotechnological ω-3 PUFA-containing formulations 

hitherto developed, limiting our investigation to the in vitro 

and in vivo preclinical studies concerning the use of these 

nanoformulations in cellular and animal models of CVDs 

and cancers.

Literature search
A systematic literature search of the PubMed database was 

conducted from July 2017 to July 2018 to identify published 

peer-reviewed original articles regarding in vitro studies, 

in vivo animal studies, and human studies on the delivery 

of ω-3 PUFAs, alone, or in combination with other bioac-

tive compounds, through nanoformulations. The key words 

used for the search of titles and abstracts were: “omega-3” 

or “n-3 PUFA” or “docosahexaenoic acid” or “eicosapen-

taenoic acid” or “α-linolenic acid” or “fish oil;” and “animal 

studies,” or “in vitro studies,” or “in vivo studies” or “human 

studies;” and “nanoparticles” or “nanoformulations” and 

“encapsulation” and “delivery” and “nanomedicine” and 

“cancer” or “tumor” and “cardiovascular diseases” or “heart” 

and “inflammation.” We identified full-text articles written 

in English. The papers were chosen without restriction of 

time. We analyzed only the studies evaluating the biological 

effects of ω-3 PUFA nanoformulations and, in particular, in 

the cardiovascular and cancer conditions.

ω-3 PUFA-containing 
nanoformulations for the 
prevention of CVD and therapy
The prevention of CVDs is considered the main setting for 

ω-3 PUFA clinical application, and the major processes 

involved in the pathogenesis of most CVDs, including 

inflammation, oxidative stress, and abnormal cell 

proliferation,15,16 also represent the main targets of these fatty 

acids. However, the research investigating potential innova-

tive nanomedicine strategies in CVDs is still very scarce, 

and currently restricted only to occlusive vasculopathies and 

atherosclerosis17,18 (Table 1; Figure 1). In the first report on 

this topic, Deshpande et al17 investigated nanotechnology-

based approaches to deliver ω-3 PUFAs in combination 

with other nutraceuticals/drugs to vascular walls in order to 

prevent occlusive vasculopathies following vascular injuries. T
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The study was based on the recent observations demonstrating 

that ω-3 PUFAs and some of their bioactive metabolic deriva-

tives (ie, the specialized proresolving mediators, including 

resolvins, protectins, and maresins) are crucial endogenous 

signals to maintain vascular homeostasis, either by exerting 

anti-inflammatory properties,19 or by modulating the resolving 

phase of vascular injury and accelerating repair.20

In particular, ω-3 PUFAs and their derivatives have been 

considered potential anti-restenosis agents, and Deshpande 

et al17 included an ALA-rich oil (flaxseed oil) in an oil-in-

water nanoemulsion system they engineered for 17β-estradiol 

(17-βE) and C6-ceramide (CER) (Table 1; Figure 1). This 

combination appeared remarkably encouraging, since ALA 

has been largely reported to improve CV health, and both 

17-βE and CER were previously demonstrated to be cardio-

protective and vasoactive.21,22 However, it has been reported 

that their effect in vivo may be markedly reduced by a scarce 

release due to their high hydrophobicity and capability to bind 

with circulating proteins.23,24 In addition to the observation 

that the two cell systems related to restenosis (human aortic 

endothelial cells [ECs] and vascular smooth muscle cells 

[VSMCs]) showed a high in vitro uptake of 17-βE and CER, 

the most remarkable finding was a greater biological activity 

of the nanoemulsion compared to each single component 

administered alone (ie, increased or decreased platelet-derived 

growth factor-induced proliferation in EC and VSMC, respec-

tively).17 The authors explained the results on the basis of the 

more efficient delivery of 17-βE and CER to vascular cells 

when they were encapsulated in ALA-based nanodroplets. 

For the muscular cells, they associated the findings with the 

increased inhibitory effect exerted by encapsulated 17-βE on 

the p38 MAP-kinase activity, known to be involved in VSMC 

proliferation. In a more recent work by the group,18 the same 

flaxseed oil-based nanoemulsion encapsulating 17-βE was 

used with the clot-binding peptide cysteine–arginine–glu-

tamic acid–lysine–alanine, for its ability to selectively bind 

to the atherosclerotic plaque (Table 1; Figure 1). This strategy 

was aimed to specifically target atherosclerotic lesions and, 

thus, better counteract their development and progression. 

The nanoemulsion was administered either to EC cultured 

in vitro or, intravenously, to a mouse model of atheroscle-

rosis (apoE-/- mice fed a high-fat diet). The nanoemulsion 

components 17-βE and ALA were considered responsible for 

the increased production of nitric oxide by the EC cultured 

in vitro. They also minimally reduced the levels of plasma 

cholesterol and decreased the atherosclerotic plaque size, 

as well as the expression of atherosclerosis-related markers 

(intracellular adhesion molecule 1 (ICAM-1), vascular cell 

adhesion molecule 1 (VCAM-1), IL-6, tumor necrosis fac-

tor [TNF], etc.) within the aorta of the nanoemulsion-treated 

apoE-/- mice. The apoE-/- mice showed significantly 

increased levels of both triglycerides and cholesterol after 

a 10-week high-fat diet administration. Interestingly, the 

treatment with 17-βE and ALA containing nanoemulsion 

β

β

Figure 1 Potential use of ALA-containing nanoemulsions against the development of restenosis and atheroma. 
Note: The biological activity of nanoemulsions were evaluated in vitro or in vivo.
Abbreviations: ALA, α-linolenic acid; 17-βe, 17β-estradiol; CeR, C6-ceramide; CReKA, cysteine–arginine–glutamic acid–lysine–alanine.
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was able to slightly decrease, yet significantly, the level of 

plasma cholesterol which, conversely, remained unchanged 

when 17-βE was administered alone as a solution. The 

authors suggested that the marginal change in cholesterol 

induced by 17-βE and ALA nanoemulsion could partially 

contribute to the protective anti-atherosclerotic effects of the 

nanoparticles. However, they were induced to hypothesize 

that it was not responsible for the lesion-size reduction trig-

gered by these 17-βE/ALA nanoformulations, since previous 

observations in the same mouse model of atherosclerosis 

had shown that the levels of circulating cholesterol were not 

related to the size and area of the atherosclerotic lesion.25 

Probably, the endothelial modifications induced by the 

nanoemulsion could be responsible for the size reductions 

of the atherosclerotic lesions.

It is worth pointing out that a recent meta-analysis did 

not detect any result of increased dietary intake of ALA in 

the blood concentrations of the same inflammation markers 

(soluble ICAM and VCAM, IL-6, and TNF).26 This suggests 

that a more efficient delivery of ALA – such as the one 

demonstrated in the apoE-/- mouse model – could allow 

this fatty acid to reach vascular walls at adequate amounts to 

induce CV health effects, particularly if the delivery occurs 

in combination with other cardioprotective compounds 

(such as 17-βE).

ω-3 PUFA-containing 
nanoformulations for cancer 
prevention and therapy
Developed ω-3 PUFA-containing 
nanoformulations for liver cancer 
prevention and therapy
Most of the studies on new nanotechnology-based strategies 

for a more efficient delivery of ω-3 PUFAs to cancer cells 

in vitro and in vivo have been conducted on liver cells. A rel-

evant approach was used by the Corbin group.12,27–29 They 

created low-density lipoprotein (LDL)-based nanoparticles 

with DHA as bioactive cargo (Table 2; Figure 2A), and tested 

them on a normal mouse liver cell line, as well as on mice,12,28 

rats,29 or human liver cancer cell lines.27 Interestingly, this 

DHA nanoformulation was successfully employed by the 

same group of authors also for the delivery of DHA to the 

brain.30 In this case, they used the systemic administration 

of DHA-LDL nanoparticles combined with pulsed focused 

ultrasound exposures. In the LDL nanoparticles, DHA was 

placed inside the hydrophobic core, where its stability and 

biological activity can be preserved. The strategy of using 

LDLs as ω-3 PUFA transporters to liver cells has several 

advantages, since LDLs have a great capacity of carrying 

active substances, and they are naturally present in circu-

lation, so that they are not recognized and internalized by 

mononuclear circulating phagocytes.31 Moreover, LDLs carry 

and supply cells with lipids also in physiological conditions 

via LDL receptor-mediated endocytosis and seem particu-

larly suitable to deliver bioactive lipid factors to cancer cells, 

which show higher avidity for lipids than normal cells, due to 

their sustained membrane turnover.32–34 Indeed, one particu-

larly interesting feature of these engineered nanoparticles was 

their ability to be selectively cytotoxic to hepatocarcinoma 

cells, over the nonmalignant counterparts.12,28 This specific-

ity for cancer cells is highly advantageous for antineoplas-

tic agents, and, presumably, it was related to the fact that 

high concentrations of the cell growth inhibitor DHA were 

achieved only inside the cancer cells. Particularly, the selec-

tive growth-inhibitory effect of the LDL-DHA nanoparticles 

in liver cancer cells was explained on the basis of the specific 

and powerful anti-inflammatory and pro-resolving properties 

of the ω-3 PUFAs and their bioactive derivatives. Moreover, 

it was also related to increased levels of reactive oxygen spe-

cies (ROS) and iron found in cancer cells, as well as to the 

reported reduced glutathione (GSH) cellular depletion.35,36 

This pro-oxidative condition of cancer cells may easily induce 

peroxidation of a highly unsaturated compound, such as 

DHA.37 In turn, the peroxidation of intracellular membranes 

is triggered, and that may lead to lysosomal, mitochondrial, 

and nuclear disruption, and, lastly, cell death.28 Of great 

significance, a single intra-arterial injection of LDL-DHA 

in rats bearing transplanted orthotopic hepatocarcinoma 

markedly reduced tumor growth by altering redox balance 

and inducing tumor cell death.29 The most recent application 

of LDL-DHA particles by these authors convinced them to 

formulate the stimulating hypothesis that DHA enclosed in 

these particles could induce a recently described regulated 

type of necrotic cell death called ferroptosis in liver cancer 

cells.27 This non-apoptotic iron-dependent form of cell death38 

is characterized by the simultaneous intracellular occurrence 

of increased lipid peroxidation, high levels of intracellular 

ROS originating from iron metabolism, and glutathione 

depletion. Moreover, it is critically and negatively regulated 

by the lipid antioxidant enzyme glutathione peroxidase-4 

(GPX-4).27 In line with this, LDL-DHA also substantially 

reduced the expression and activity of GPX-4 in liver cancer 

cells, along with causing all the pro-oxidative changes typi-

cal of ferroptosis.27 Since it is usually reported that DHA – 

given as a free fatty acid – mainly causes apoptotic death 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2813

Serini et al

T
ab

le
 2

 A
pp

lic
at

io
n 

of
 ω

-3
 P

U
FA

 n
an

of
or

m
ul

at
io

ns
 in

 li
ve

r 
ca

nc
er

N
an

op
ar

ti
cl

e 
(N

P
) 

ty
pe

C
he

m
ic

al
 fo

rm
 o

f  
ω

-3
 P

U
FA

 u
se

d
N

P
 s

iz
e 

(n
m

)
E

E
 

(%
)

C
ar

go
 

m
ol

ec
ul

e
Z

et
a 

po
te

nt
ia

l 
(-

m
V

)

Fu
nc

ti
on

 o
f t

he
  

N
P

E
xp

er
im

en
ta

l m
od

el
M

ec
ha

ni
sm

s 
in

vo
lv

ed
 in

 t
he

 
N

P
 e

ffe
ct

s
R

ef
er

en
ce

LD
L-

ba
se

d 
na

no
pa

rt
ic

le
s

U
ne

st
er

ifi
ed

 D
H

A
 

in
co

rp
or

at
ed

 in
 L

D
L

18
.3

13
D

H
A

22
T

o 
en

ha
nc

e 
ph

ys
ic

al
, 

ox
id

at
iv

e 
st

ab
ili

ty
, a

nd
 

de
liv

er
y 

of
 D

H
A

 t
o 

ta
rg

et
 c

el
ls

N
or

m
al

 T
IB

-7
3 

an
d 

ne
op

la
st

ic
 T

IB
-7

5 
m

ur
in

e 
he

pa
to

cy
te

s 
in

 v
itr

o

en
ha

nc
ed

 o
xi

da
tiv

e 
an

d 
ph

ys
ic

al
 s

ta
bi

lit
y 

of
 L

D
L-

ba
se

d 
na

no
pa

rt
ic

le
s 

ov
er

 fr
ee

 D
H

A
; 

se
le

ct
iv

e 
cy

to
to

xi
ci

ty
 t

ow
ar

d 
ca

nc
er

 c
el

ls

12

LD
L-

ba
se

d 
na

no
pa

rt
ic

le
s

U
ne

st
er

ifi
ed

 D
H

A
 

in
co

rp
or

at
ed

 in
 L

D
L

18
.3

13
D

H
A

N
ot

 
re

po
rt

ed
T

o 
en

ha
nc

e 
ph

ys
ic

al
, 

ox
id

at
iv

e 
st

ab
ili

ty
, a

nd
 

de
liv

er
y 

of
 D

H
A

 t
o 

ta
rg

et
 c

el
ls

R
at

 a
nd

 h
um

an
 H

C
C

 
ce

ll 
lin

es
 in

 v
itr

o;
 m

ic
e 

tr
an

sp
la

nt
ed

 w
ith

 h
um

an
 

H
C

C
 c

el
ls

en
ha

nc
ed

 t
um

or
 c

el
l d

ea
th

 t
hr

ou
gh

 
fe

rr
op

to
si

s; 
re

du
ce

d 
tu

m
or

 
vo

lu
m

es
 in

 t
ra

ns
pl

an
te

d 
m

ic
e

27

LD
L-

ba
se

d 
na

no
pa

rt
ic

le
s

U
ne

st
er

ifi
ed

 D
H

A
 

in
co

rp
or

at
ed

 in
 L

D
L

18
.3

13
D

H
A

24
±2

.6
T

o 
en

ha
nc

e 
ph

ys
ic

al
, 

ox
id

at
iv

e 
st

ab
ili

ty
, a

nd
 

de
liv

er
y 

of
 D

H
A

 t
o 

ta
rg

et
 c

el
ls

N
or

m
al

 T
IB

-7
3 

an
d 

ne
op

la
st

ic
 T

IB
-7

5 
m

ur
in

e 
he

pa
to

cy
te

s 
in

 v
itr

o

Se
le

ct
iv

e 
cy

to
to

xi
ci

ty
 t

ow
ar

d 
ca

nc
er

 c
el

ls
 t

hr
ou

gh
 a

n 
im

pa
ir

m
en

t 
of

 ly
so

so
m

al
, m

ito
ch

on
dr

ia
l, 

an
d 

nu
cl

ea
r 

fu
nc

tio
n 

28

LD
L-

ba
se

d 
na

no
pa

rt
ic

le
s

U
ne

st
er

ifi
ed

 D
H

A
 

in
co

rp
or

at
ed

 in
 L

D
L

18
.3

13
D

H
A

25
T

o 
en

ha
nc

e 
ph

ys
ic

al
, 

ox
id

at
iv

e 
st

ab
ili

ty
, a

nd
 

de
liv

er
y 

of
 D

H
A

 t
o 

ta
rg

et
 c

el
ls

H
4I

Ie
 r

at
 h

ep
at

om
a 

ce
lls

 
Iv

 in
je

ct
ed

 in
 r

at
s

R
ed

uc
ed

 t
um

or
 v

ol
um

es
; t

um
or

-
sp

ec
ifi

c 
ne

cr
os

is
 in

du
ce

d 
by

 
se

le
ct

iv
e 

re
do

x 
ba

la
nc

e 
al

te
ra

tio
n 

w
ith

in
 c

an
ce

r 
ce

lls

29

T
uf

ts
in

-t
ag

ge
d 

lip
os

om
es

A
LA

 e
st

er
ifi

ed
 t

o 
2,

6-
di

-is
op

ro
py

lp
he

no
l 

(p
ro

po
fo

l)

10
0–

13
0

74
2,

6-
pr

op
of

ol
 

A
LA

 
co

nj
ug

at
e 

43
.2

3±
1.

4
T

o 
en

ha
nc

e 
th

e 
de

liv
er

y 
an

d 
an

tic
an

ce
r 

ac
tiv

ity
 o

f 
A

LA
 in

 t
ar

ge
t 

ce
lls

M
ic

e 
su

bj
ec

t 
to

 D
eN

-
in

du
ce

d 
he

pa
to

ca
rc

in
om

a
In

cr
ea

se
d 

m
ic

e 
su

rv
iv

al
; r

ed
uc

ed
 

ex
pr

es
si

on
 o

f C
O

X
-2

 a
nd

 B
cl

-2
; 

in
cr

ea
se

d 
ex

pr
es

si
on

 o
f B

ax
 in

 
he

pa
to

ca
rc

in
om

as

41

A
bb

re
vi

at
io

ns
: A

LA
, α

-li
no

le
ni

c 
ac

id
; D

EN
, d

ie
th

yl
ni

tr
os

am
in

e;
 D

H
A

, d
oc

os
ah

ex
ae

no
ic

 a
ci

d;
 E

E,
 e

nc
ap

su
la

tio
n 

ef
fic

ie
nc

y;
 H

C
C

, h
ep

at
oc

el
lu

la
r 

ca
rc

in
om

a;
 IV

, i
nt

ra
ve

no
us

; L
D

L,
 lo

w
-d

en
si

ty
 li

po
pr

ot
ei

ns
; P

U
FA

, p
ol

yu
ns

at
ur

at
ed

 fa
tt

y 
ac

id
.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2019:14submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2814

Serini et al

in cancer cells,39 the finding that LDL-DHA, on the other 

hand, triggers ferroptosis would imply that, depending on 

the delivery system used, ω-3 PUFAs may induce different 

death pathway inside the cells (ie, apoptosis or ferroptosis). 

The authors associated this effect to the fact that – while free 

DHA enters the cells by diffusion or facilitated transport40 – 

LDL-DHA nanoparticles are endocytosed in large amounts. 

This different entrance pathway into the cells could enable 

DHA to easily reach more internal subcellular structures and, 

thus, exert considerable effects on them, thus contributing to 

the ferroptotic pathway of cytotoxicity.27

Another interesting approach for the nanodelivery 

of ω-3 PUFAs was recently used to deliver ALA to 

diethylnitrosamine-induced hepatocarcinomas in mice.41 In 

this case, ALA was conjugated with 2,6-di-isopropylphenol, 

an anesthetic agent being structurally similar to vitamin E. 

The chemical structure of this conjugate was reported in 

Khan et al.42 This compound, conjugated with DHA, was 

previously shown to possess antioxidant properties and the 

ability to induce apoptosis and decrease the metastatic poten-

tial of human cancer cells.43 For an efficient delivery, the 

2,6-di-isopropylphenol-linolenic acid conjugate was enclosed 

in nanoliposomes tagged with the tetrapeptide tuftsin (Thr-

Lys-Pro-Arg),44 a fraction of the immunoglobulin G molecule 

(Table 2; Figure 2A). The use of tuftsin-tagged liposomes was 

previously and successfully used to deliver antibiotics in the 

area of infections,45 due to the immunomodulatory properties 

of tuftsin.44 It is worth highlighting that tuftsin was also previ-

ously administered in combination with antineoplastic drugs 

and shown to enhance their antitumor activity.46,47 The treat-

ment with tuftsin-tagged liposomes containing the ω-3 PUFA 

conjugate41 increased the survival of the hepatocarcinoma-

bearing mice, and this effect was partly related to the mark-

edly reduced expression of COX-2 and Bcl-2, as well as the 

upregulation of Bax observed in hepatocellular carcinomas. In 

our opinion, the co-presence of tuftsin and ω-3 PUFAs inside 

the same nanoliposomes is significant, since ω-3 PUFAs also 

show both immunomodulatory and antineoplastic activities 

ε

Figure 2 Omega-3 PUFA-containing nanomaterials developed and evaluated in vitro or/and in vivo for their potential use against liver (A), breast (B) and lung (C) cancer.
Abbreviations: DHA, docosahexaenoic acid; LDL, low-density lipoprotein; LNA, linolenic acid; PeG, polyethylene glycol; PL, phospholipids; PεCL, poly-ε-caprolactone; 
PUFA, polyunsaturated fatty acid; SLN, solid lipid nanoparticle.
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at the same time, and their possible applications in the field 

of cancer immunotherapy have been recently suggested.48,49 

Moreover, due to the safe and non-toxic nature of both ω-3 

PUFAs and tuftsin and their common immunomodulating 

properties, the application of this liposomal delivery could 

be potentially useful, not only for the treatment of hepatocar-

cinoma, but also for its prevention in populations at high risk 

(such as hepatitis C virus (HCV)-positive patients, alcohol-

ics, or patients with inborn errors of metabolism, including 

type I glycogenosis or type I tyrosinemia).

Developed ω-3 PUFA-containing 
nanoformulations for breast cancer 
prevention and therapy
Roy et al50 developed polymeric nanoparticles (150–200 nm) 

encapsulating DHA (Table 3; Figure 2B) with the aim of 

using them in breast cancer. The polymeric wall of the nano-

capsules (NCs) consisted of poly-ε-caprolactone, a polyester 

able to protect the small liquid droplets of DHA included 

in the internal part (core) from chemical and enzymatic 

degradation, protecting DHA against the adverse conditions 

present in the gastrointestinal tract. This nanoencapsulation 

approach was previously used for the delivery of different 

drugs achieving positive results, such as enhanced drug 

efficacy and decreased drug toxicity.51 Roy et al50 observed 

a clear cytotoxic effect (measured by the MTT assay) when 

they administered 50–100 µM DHA in the form of free fatty 

acid for 4 days to MDA-MB-231 cultured in vitro, whereas 

lower concentrations showed no effect. This finding was 

in line with the results of several papers52–56 analyzed by us 

in a recent review,57 showing that treatments of the triple-

negative MDA-MB-231 or MDA-MB-453 breast cancer 

cells with EPA or/and DHA in the 30–100 µM range for 

1–5 days were necessary to inhibit cell growth and pro-

liferation, and to enhance apoptosis or breast cancer cell 

sensitivity to docetaxel (DTX). Unexpectedly, however, 

Roy et al50 found that, when lower concentrations of DHA 

(1–10 µM) were enclosed in NCs, they induced the prolif-

eration of MDA-MB-231 cancer cells. On the other hand, 

higher concentrations (30–50 µM) of encapsulated DHA 

reduced breast cancer cell proliferation, similarly to what 

was obtained with free DHA. The simultaneous presence 

of vitamin E inside the NCs eliminated the growth inhibit-

ing effect of DHA. Moreover, encapsulated DHA became 

more toxic than free DHA if H
2
O

2
 was added inside the 

NCs. Based on these results, the authors hypothesized that 

DHA should be oxidized and, thus, release secondary toxic 

products of lipid peroxidation which may be responsible for T
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its antiproliferative effects. However, the authors suggested 

that H
2
O

2
 could have also acted by disrupting the nanoparticle 

wall, releasing DHA outside the nanoparticles and, there-

fore, increasing its biological activity. Otherwise, due to its 

hydrophobic nature, this fatty acid tends to remain bound to 

the oily core of these nanoparticles and lose its bioactivity. 

Overall, however, the delivery of DHA to scarcely differ-

entiated breast cancer cells through this kind of polymeric 

nanoparticles does not appear promising for breast cancer 

therapy, as the antineoplastic activity of this fatty acid appears 

to decrease when it is encapsulated at high concentrations. 

Moreover, when it is encapsulated at lower concentrations, 

it seems to even promote breast cancer cell growth.50

On the other hand, Alaarg et al58 enclosed DHA 

into liposomes by using 1,2-dipalmitoyl-sn-glycero-

3-phosphocholine, cholesterol, and distearoyl phospha-

tidylethanolamine (PE); and polyethylene glycol (PEG) 

and these liposomes were used for the delivery of DHA to 

murine breast cancer cells in vitro (Table 3; Figure 2B). 

PEGylated liposomes were chosen for their acknowledged 

ability to stay in the circulation for a longer period (about 

1 day half-life) compared to non-PEGylated particles that are 

cleared from the circulation in #1 hour.59 This implies that 

a bioactive compound (in this case, DHA) enclosed in these 

nanoparticles can have more chances to be taken up by cells 

and tissues. DHA-loaded liposomes were able to inhibit the 

proliferation of murine 4T1 breast cancer cells, and other 

kinds of epithelial cells. However, it is worth underlining 

that, in this study, the effects induced by the DHA-loaded 

liposomes were compared only to those induced by the 

unloaded liposomes. For a clearer understanding, however, 

it would have been essential also to evaluate the effects of 

DHA administered in its free fatty acid form.

Skibinski et al60 evaluated the improvement in the 

bioactivity of DHA included in a different kind of lipo-

somes administered to MCF-7 and MDA-MB-231 breast 

cancer cells in vitro. Their DHA-loaded liposomes con-

tained 1,2-dihexadecyl-sn-glycero-3-phosphocholine 

and 1,2-diphytanyl-sn-glycero-3-phosphoethanolamine 

(Table 3; Figure 2B), phytanyl lipids similar to those present 

in Archaea prokaryotes and known to be highly resistant 

to pH and temperature changes. The authors observed that 

DHA loaded into the liposomes reduced more the viability 

of breast cancer cells and induced apoptosis more efficiently 

in both the cell lines. Inside the liposomes, only DHA was 

responsible for these effects, since the empty phytanyl lipid 

liposome did not significantly alter cell viability and apop-

tosis. Moreover, the authors found that DHA enclosed in the 

liposomes could more effectively decrease the expression of 

the activated form of Akt (p-AkT). They hypothesized that 

this effect could explain the increased antineoplastic activity 

showed by DHA loaded in the liposomes. This hypothesis is 

particularly interesting, since p-Akt represents a biomarker 

associated with poor prognosis in breast cancer, and used to 

evaluate the activity of the tyrosine kinase receptor signal-

ing, often deregulated in breast cancer carcinogenesis.57,61

A possible future ω-3 PUFA-containing nano-based 

approach for breast cancer may be suggested on the basis 

of the above analyzed remarkable results, obtained by both 

Alaarg et al58 and Skibinski et al60 with DHA-loaded nanoli-

posomes. Since ω-3 PUFAs are known to potentially act as 

an adjuvant therapy to strengthen the activity of conventional 

chemotherapeutics or targeted drugs in the therapy of breast 

cancer,57,62 it would be remarkable to develop nanoliposomal 

structures that are able to deliver simultaneously both ω-3 

PUFAs and drugs with previously acknowledged activity 

in breast cancer. This liposomal combined approach could 

also be experimented in the clinical setting, since some 

liposomes are known to be safe and have already been clini-

cally approved. Moreover, liposomes are able to encapsulate 

both hydrophobic and hydrophilic compounds and show a 

high capacity, making them particularly suitable to transport 

combinations of antineoplastic agents with different activities 

(conventional, targeted, or immunoactive agents),63 including 

also safe nutritional factors with multiple anticancer func-

tions, such as ω-3 PUFAs.

Developed ω-3 PUFA-containing 
nanoformulations for lung cancer 
prevention and therapy
To date, only two studies64,65 have evaluated the anticancer 

properties of ω-3 PUFA-containing nanoformulations on 

lung cancer cells (Table 4; Figure 2C), and their main 

aim was to improve the delivery and antitumor efficacy 

of doxorubicin (DOX) and DTX, two chemotherapeutic 

agents widely used in the therapy of solid tumors. A variety 

of nanotechnological approaches have been investigated 

so far to improve the limited uptake and distribution of 

DOX in solid tumors.66,67 Indeed, DOX is a weakly basic 

compound that becomes protonated when exposed to the 

slightly acidic pH of the microenvironment surrounding 

cancer cells, making its cellular uptake difficult.66 Liposomes, 

solid lipid nanoparticles (SLNs), and polymeric micelles are 

among the different types of DOX nanocarriers designed to 

overcome this problem. A PEGylated liposomal formulation 

containing DOX (Doxil) has also been approved for the 
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treatment of some cancers (ovarian cancer, AIDS-related 

Kaposi sarcoma, and multiple myeloma).68 Mussi et al64 

designed DOX-loaded SLN for lung cancer, where the oily 

phase included DHA and surfactants, such as Compritol, 

Tween 80, and triethanolamine (Table 4; Figure 2C). The 

SLN formulation allows a site-specific release of DOX in 

a slightly acidic environment, such as tumor tissues.66,69 

Moreover, the SLN solid matrix allows a more controlled 

release, and the lipophilicity of these nanoparticles improves 

the interaction with the cellular membranes. Furthermore, 

the SLNs obtained by encapsulating 0.4% DHA (w/v) were 

of smaller size (94±1 nm), which is advantageous, being 

the nanoparticles in the range of 100–200 nm taken up 

and retained at a higher concentration inside cancer cells 

compared to particles with a higher size.70–72 The simulta-

neous encapsulation of DOX with a lipophilic anion, such 

as DHA in the SLN, was aimed to overcome the low level 

of incorporation in lipidic nanostructures that DOX usually 

exhibits, due to its cationic amphiphilic nature. Moreover, 

the SLN exhibited negative charges due to the presence of 

DHA, and, inside the SLN, DOX formed an ion-pairing with 

DHA that could explain the high DOX encapsulation effi-

ciency (almost 100%), as well as the enhanced cytotoxicity 

shown by the DHA-DOX-loaded SLN against A549 lung 

adenocarcinoma cells, as compared to free DOX and DHA 

administered in combination.

The second study was performed by Zu et al,65 who 

evaluated the anticancer activity of ω-3 PUFA-containing 

polymeric nanoparticles on lung cancer cells. The nanopar-

ticle surface contained DHA covalently bound to BSA, 

a natural biodegradable polymer often used to prepare 

polymeric nanoformulations73 (Table 4; Figure 2C). Also 

in this case, the size of the newly developed nanoparticle 

(141.7±7.9 nm) was within the range of sizes allowing a 

more efficient uptake by cancer cells.70–72 The DHA-BSA 

nanoparticles were designed to enclose DTX, an approved 

semisynthetic antineoplastic drug belonging to the taxane 

family and, at present, largely used for the treatment of a 

variety of solid cancers, including lung and breast cancer.74,75 

Its inclusion in the nanoparticle was aimed to overcome the 

scarce aqueous solubility of the drug. Numerous formula-

tions of taxanes have been developed over the last decades in 

order to increase the aqueous solubility of the hydrophobic 

taxanes, such as cyclodextrin, liposomes, and albumin-bound 

nanoparticles (Abraxane) formulation.73,76 In the nanofor-

mulation analyzed,65 the addition of DHA to the albumin 

on the surface of the DTX-BSA nanoparticle was aimed 

to specifically target cancer cells, since it was previously 

observed that DHA preferentially accumulates in tumor cells 

and is considered a target ligand for cancer cells.77–79 This 

tumor targeting ability of DHA has been typically associated 

with the increased fluidity shown by cancer cell membranes 

which contain high levels of this fatty acid.77–79 In turn, the 

enhanced fluidity was related to their higher content in 

phospholipids, and, particularly, in PE, which was found 

to have a specific affinity for DHA.77 Above all, targeting 

lung cancer cells with these nanoparticles seems mainly 

appropriate since PE has been found to be overexpressed 

not only in the cancer cells used in this study (murine Lewis 

Lung Carcinoma [LLC] cells)77 but also, more in general, in 

the human non-small-cell lung cancers.80 Furthermore, the 

addition of an antineoplastic natural agent, such as DHA, 

to polymeric DTX-BSA nanoparticle65 was also related to 

the results of several human studies demonstrating that the 

therapeutic efficacy of this taxane can be increased after its 

conjugation to DHA, which is also able to decrease the side 

effects usually induced by taxane therapy, and improve the 

taxane delivery to the tumor tissues.81–86 Only the choice of 

BSA to prepare these polymeric nanoformulations could 

be controversial, since BSA was reported to antagonize the 

effect of DHA.13 The new DTX-DHA-BSA nanoparticles 

were administered to lung cancer cells cultured in vitro and 

to mice injected with syngeneic LLC cells in the tibia of 

the right limb, which mimicked lung cancer metastasis in 

the bone.65 The finding demonstrated that the simultaneous 

presence of DHA in the nanoparticles enhanced the anti-

cancer activity of taxanes both in vitro and in vivo, and also 

increased the mean survival time of the mouse.

Developed ω-3 PUFA-containing 
nanoformulations for prostate cancer 
prevention and therapy
Similarly to the results of the work by Zu et al,65 where nano-

formulations containing DHA bound to a taxane were tested 

in lung cancer, two studies performed on prostate cancer 

used an oil-in-water nanoemulsion formulation,87,88 where 

the starting oil phase consisted of fish oil with a novel DHA-

taxoid conjugate (DHA-SBT-1214) (Table 4; Figure 3A). 

The oil phase was mixed with the water phase formed by 

egg phosphatidylcholine (Lipoid E80®), polysorbate 80 

(Tween80®), and 1,2-distearoyl-sn-glycero-3-phosphoeth-

anolamine-N-(amino[polyethylene glycol]-2000) (DSPE-

PEG2000). Both the empty nanoemulsion (not containing 

drugs) and the nanoemulsion containing DHA-SBT-1214 

showed spherical shape and a very similar particle size 

(225±7 and 228±7 nm, respectively). The surface charge of 

the oil droplets in the two formulations did not change even 

using the maximum encapsulation of DHA-SBT-1214 within 
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the oil droplets. The two studies are remarkable, since they 

benefit from a new-generation taxoid (SBT-1214), bound 

to DHA, and avoid the use of albumin, which can reduce 

the anticancer effect of DHA.13 In particular, the use of 

SBT-1214 was aimed to overcome the mechanism through 

which placlitaxel89 or DTX90 was observed to induce drug 

resistance in prostate cancer (by mechanisms related to the 

induced expression of either P-glycoprotein or transform-

ing growth factor-β superfamily components, respectively). 

On the other hand, the rationale of SBT-1214 binding to DHA 

was related to the above-mentioned ω-3 PUFA ability to exert 

cancer-specific toxicity, to the synergistic antineoplastic 

effects that these fatty acids exert when bound to anticancer 

drugs, and to their ability to protect non-transformed prostate 

cells from cytotoxicity and reduce the secondary systemic 

harmful effects of conventional anticancer drugs, including 

taxanes. Moreover, the use of the non-ionic emulsifying 

agent Tween 80 in the preparation of this nanoemulsion 

is relevant, as it allows to obtain optimal oil droplet size 

and charge by inhibiting aggregation through competitive 

absorption to interfaces. This surfactant was also used for the 

preparation of other nanoemulsions containing ω-3 PUFAs 

and herein analyzed.64,91,92 The newly designed nanoemul-

sion of DHA-SBT-1214 (NE-DHA-SBT-1214) was tested 

for its antineoplastic activity against human prostatic cancer 

PPT2 cells cultured in vitro, or transplanted subcutaneously 

in NOD/SCID mice.87,88 These prostate cancer cells have the 

features of stem-like cells and are considered a good model 

for testing new drugs for prostate cancer. This is a highly 

recurrent tumor, which has been related to the presence of 

high levels of cancer stem cells with the potential of self-

renewing the tumor.93–95 The NE-DHA-SBT-1214 exerted 

higher cytotoxicity toward the PPT2 cells cultured in vitro, 

compared with DHA-SBT-1214 in solution. In addition, 

intravenous administrations of this nanoemulsion carrier 

system containing DHA-SBT-1214 in fish oil droplets to 

the transplanted mice markedly suppressed prostate cancer 

cell growth in vivo compared to a placebo nanoemulsion 

formulation previously approved for the treatment of 

metastastic human breast cancer (Abraxane™, ie, paclitaxel 

α

Figure 3 Omega-3 PUFA-containing nanomaterials developed and evaluated in vitro or/and in vivo for their potential use against prostate (A), melanoma (B), and colorectal 
cancer (C).
Abbreviations: PUFA, polyunsaturated fatty acid; DHA, docosahexaenoic acid; SLN, solid lipid nanoparticle; ALA, α-linolenic acid.
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albumin-bound particles). Moreover, the prostate cancer 

cells that still remained viable after the in vivo treatment 

with NE-DHA-SBT-1214 had reduced neoplastic potential, 

which was shown by their decreased ability to give rise to 

colonies and spheres when analyzed ex vivo for clonogenic 

and sphere-forming capacities. These results suggest that 

the use of NE-DHA-SBT-1214 for the treatment of prostate 

cancer could be a promising strategy.

Developed ω-3 PUFA-containing 
nanoformulations for melanoma and 
colorectal cancer (CRC) prevention and 
therapy
We have studied the antineoplastic potential of ω-3 PUFAs 

in CRC and melanoma for many years96–101 and investigated 

the possible mechanisms underlying the beneficial action 

of these fatty acids. We have recently developed new SLNs 

for the delivery of ω-3 PUFAs to C32 melanoma cells91 and 

HT-29 and HCT116 CRC cells,92 to reduce possible ω-3 

PUFA oxidative degradation of these compounds, and, thus, 

prolong their shelf-life, enhance their bioavailability, and 

improve their antineoplastic activity (Table 5; Figure 3B 

and C). In particular, the matrix of the SLN tested in mela-

noma cells contained ALA esterified to α-tocopherol and 

encapsulated ALA itself. ALA carried in these nanoformula-

tions was always more cytotoxic than ALA or α-tocopherol 

administered alone to melanoma cells.91 On the other hand, 

the lipid matrix of the SLN formulation tested in CRC cells 

contained stearic acid esterified to the natural dietary anti-

oxidant resveratrol (RV). Furthermore, these RV-based SLN 

(RV-SLN) carried either ALA or DHA inside.92 Compared 

with the other SLN tested on melanoma cells, the substitution 

of ALA in the matrix with stearic acid was aimed to further 

increase the hydrophobicity of the encapsulated ω-3 PUFAs, 

thus potentially improving the efficiency of their delivery. 

Even though stearic acid is a saturated fatty acid, it has been 

shown that it may lower serum LDL cholesterol levels,102 and 

also protect from the development of prostate cancer.103,104 

In particular, this protective action appears remarkable, 

since it has been recently hypothesized that the incidence 

of prostate cancer may be associated with a high intake of 

ω-3 PUFAs. Thus, the combination stearic acid/ω-3 PUFAs 

inside the SLN could neutralize possible prostate-specific 

adverse effects of these fatty acids.105 Moreover, the encap-

sulation of both ALA and DHA makes them more efficient 

in inhibiting CRC cell growth, by enhancing their inhibitory 

effect on cell proliferation rather than further increasing their 

already high ability to induce apoptosis.92 These increased T
ab
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antineoplastic effects were strictly related to the enhanced 

cellular incorporation observed when DHA and ALA were 

enclosed in the RV-SLN to CRC cells. It was remarkable 

to find that, only after the encapsulation, ALA induced an 

evident cellular increase in both EPA and DHA and that 

encapsulated DHA was more efficiently retroconverted to 

EPA. This implies that the encapsulation of either DHA or 

ALA into RV-based SLN could also markedly increase the 

CRC content of EPA, which, according to several recent 

reports, seems to protect against CRC risk better than all the 

other main ω-3 PUFAs.106–108 The more efficient conversion 

of SLN-encapsulated ALA is particularly interesting when 

considering that ALA is present at high levels in a variety 

of seeds and vegetables, and its increased intake could be 

achieved more easily and in a more sustainable way com-

pared to an increased consumption of EPA itself.

In conclusion, it is important to underline that the pos-

sibility to further enhance the protective activity of these 

dietary compounds against CRC is appealing, since the 

possible prevention and treatment of CRC with PUFA has 

involved many researchers in the past two decades.96,109–112 

In particular, possible successful future investigations in the 

field of CRC nanomedicine-based therapy could be related 

to the powerful modulator effect recently demonstrated for 

ω-3 PUFAs on the intestinal microbiota.107,113 Indeed, since 

the microbiome may deeply affect the individual response to 

cancer immunotherapy, it would be worth investigating the 

approach of combined nanodelivery of immunomodulating 

innovative drugs, already used for CRC114,115 with ω-3 PUFAs 

against CRC in vivo. Moreover, co-delivering powerful anti-

inflammatory agents, such as ω-3 PUFAs, and these drugs in 

nanoparticles could also have the potential to overcome the 

severe colon immune-related adverse inflammatory events 

induced by these innovative treatments in CRC patients.116

Mixed and contrasting outcomes 
of recent human studies and the 
well-known benefits of ω-3 PUFAs 
in CVD and cancer
We cannot avoid focusing hereinafter on the topic outlined 

by the following question: are the contrasting outcomes of 

recent large human trials weakening the accepted dogma of 

ω-3 PUFA healthy effects? In our opinion, this topic deserves 

particular attention, particularly by the researchers who 

have been studying for decades the beneficial effects of ω-3 

PUFAs in the prevention of CVD and cancer.1,39,57,62,96,98,117 

Even though this issue cannot be tackled exhaustively in just 

one paragraph, it is essential to outline some considerations.

As far as the ω-3 PUFA cardioprotective role is con-

cerned, the beneficial outcomes of early human studies 

(epidemiological studies, prospective cohort studies, and 

randomized controlled trials) appear in contrast with the 

mixed or less positive results of some recent prospective 

trials, and meta-analysis of clinical trials.117 Indeed, they 

provided scarce or no evidence that ω-3 PUFA may reduce 

CV events or mortality (for a review see Bowen et al118). 

It has been hypothesized117 that these discrepancies may be 

attributed to the difficulty of ω-3 PUFA to induce healthy 

effects in a completely changed scenario. In fact, in recent 

years, the enrolled patients have often been simultaneously 

subject to the administration of statins and/or other pharmaco-

logic agents widely used to prevent CVD. Moreover, higher 

levels of ω-3 PUFA containing foods have been generally 

added to the diet following the numerous recommendations 

formulated over the last two decades. The results of the 

recently published VITAL study119 also obtained mixed and 

less promising results. It had the novelty of being a large, 

5-year randomized, double-blind, placebo-controlled trial of 

a daily fish oil supplementation (1 g, Omacor® fish oil) for 

primary prevention in healthy subjects at baseline. On the 

contrary, the earlier trials mostly evaluated whether a supple-

mentation with fish oil or purified ω-3 PUFAs could prevent 

CV adverse events in patients with a history of CVD or at 

high risk for CVD. Interestingly, the primary outcomes of 

the VITAL study indicated only a small but non-significant 

decrease in the rate of a major adverse CV event (ie, myo-

cardial infarction [MI] or stroke) in the ω-3 PUFA group 

with respect to the placebo group. However, a secondary 

analysis in those patients that were specifically affected 

by stroke or MI revealed that the intervention was able to 

significantly reduce the risk of MI (by 28%) and the death 

rate of MI (by 50%). Interestingly, a much higher reduction 

in MI risk (by 77%) was observed in the African subpopula-

tion, thus enforcing the notion that the ω-3 PUFA beneficial 

effects may be modified depending on the individual genetic 

background.120 Remarkably, the need for angioplasty was also 

significantly reduced (by 22%) by the fish oil supplementa-

tion. The accuracy of this trial was also demonstrated by the 

evaluation of the basal plasma ω-3 index (EPA + DHA as 

a percentage of total fatty acids) of the subjects, which was 

evaluated also after 1-year treatment to show its increase 

(by about 50%). The outcomes of another recently pub-

lished randomized double-blind, placebo-controlled trial 

(REDUCE-IT) reported more positive results. However, it 

evaluated the effects of simultaneous treatment with a very 

high dose (4 g/day) of purified EPA and statin therapy for 
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almost 5 years in patients with CVD or at high risk for CVD 

and high fasting triglyceride levels.121 The study showed 

that the EPA treatment reduced the levels of serum triglyc-

erides, CV events, and CV death. In particular, the rates of 

emergency or urgent revascularizations or MI were reduced 

by the EPA supplementation, even though the high dose 

used slightly increased the rate of bleeding events (see next 

paragraph), as well as the onset of atrial arrhythmias. It can 

be underlined that many differences do exist between these 

two most recent and largest trials, which can however help 

us to better understand the actual potential of ω-3 PUFAs in 

preventing CVD. For instance, the use of fish oil at a quite 

low dose may lack in showing the induction of health CV 

effects. On the contrary, EPA administered alone at a very 

high dose, even though in the presence of a statin therapy, 

may elicit beneficial effects, increasing, however, also the 

risk of some detrimental properties. Overall, the debate on 

the ω-3 PUFA-induced CV benefits is ongoing, also con-

sidering the manifold data from in vitro studies and in vivo 

animal studies supporting a variety of different biological 

and molecular mechanisms whereby ω-3 PUFA may confer 

coronary protection and reduce the risk of CVD.122 There-

fore, further large interventional trials comparing different 

doses and types of fatty acid (EPA and DHA) are needed 

for a better knowledge of this topic. Moreover, it would be 

more advantageous that the subjects/patients would be strati-

fied according to the ω-3 index expressed as the content of 

EPA and DHA in red cell membranes, which is considered 

a more reliable and stable indicator of the real ω-3 PUFA 

intake than their plasma level.123,124 Moreover, it would be 

important to evaluate the ω-3 index several times along the 

long-term studies.

With regard to cancer, plenty of evidence obtained 

from in vitro and in vivo preclinical studies has clearly 

indicated the anticancer activity of omega-3 PUFA.120 On 

the contrary, as we have widely discussed in a recent critical 

review of the literature,120 the results of the human studies 

are more controversial. In particular, most of the recent 

results confirmed the beneficial effects of the preclinical 

studies. However, there are studies where no effect was 

observed, or the antineoplastic effects were confined only 

to specific subpopulations (obese subjects, with specific 

dietary habits or with a particular fatty acid pattern, or 

having a specific T-cell infiltration in the tumor microen-

vironment). Only a few reports found positive associations 

between the development/progression of cancer (mainly 

for prostate cancer), and the high level of ω-3 PUFA 

introduced with the diet, present in blood, or accumulated 

in tissues. In our opinion, to clarify the issue, it would be 

essential to know the actual levels of ω-3 PUFA intake 

and the efficiency of their incorporation in the tissues of 

each subject along the study period. To this end, we rec-

ommended repeated evaluations of biomarkers reflecting 

the intake of ω-3 PUFAs, and in particular, the ω-3 index 

expressed as the content of EPA and DHA in red cell 

membranes.120 Moreover, we suggested, whenever pos-

sible, not to overlook some characteristics of the subjects 

being studied, such as the race/genetic background, and 

the metabolic/nutritional status.

Interestingly, the outcomes of the more recent interven-

tional VITAL study119 indicated that the daily supplementa-

tion with 0.8 g/day ω-3 EPA + DHA was unable to lower the 

incidence of different kinds of invasive cancer of any type, 

as well as that of colorectal, breast, and prostate cancer, or 

the incidence of death from cancer. These findings were 

consistent with the results of two recent meta-analyses of 

ω-3 PUFA trials of CVD that had shown either no asso-

ciation between the supplementations with ω-3 PUFA and 

the risk of cancer in general125 or a slightly increased but 

not significant risk.126 Again, however, attention should 

be focused on the doses supplemented and the consequent 

ω-3 PUFA tissue enrichment, that is, in our experience, the 

most related parameter to the antineoplastic activity of these 

fatty acids.124 It is possible that the daily dose of about 1.0 g 

(generally recommended for the secondary prevention of 

CVD) may not be sufficient to induce any anticancer effect. 

In a recently published review,124 we critically analyzed the 

doses of ω-3 PUFA that had been able to induce anticancer 

effects both in the animal studies and in the few available 

interventional human studies. We found that supplementa-

tion to humans with safe doses of EPA + DHA of ~2.0 g/day 

produced a plasma and tissue enrichment in these fatty acids 

of about 2–5 folds, which was associated with significant 

anticancer effects.127–129 Higher doses were not able to fur-

ther increase the amount of EPA and DHA incorporated in 

tissues. In mice or rats the dietary doses of EPA + DHA that 

have clear antineoplastic effects were variable in relation to 

their body mass and surface. However, these doses always 

produced an increase of ~2–5 folds of these fatty acids in 

the plasma, as well as in the normal and neoplastic tissues. 

Altogether, these observations prompted us to suggest that 

a daily dose of about 2 g could be the most appropriate for 

future human studies evaluating the anticancer effects of 

ω-3 PUFAs.
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Possible adverse effects of ω-3 
PUFAs: are they real obstacles 
to their use?
Increased bleeding risk
It is not possible to completely overlook here the controver-

sies regarding the possible adverse effects of high doses of 

ω-3 PUFAs. In particular, high intakes of ω-3 PUFAs have 

been suggested to exert adverse effects on bleeding risk, 

since, in an earlier study, the diet with high levels of ω-3 

PUFAs of the Greenland Inuit population was associated 

with an increased bleeding time.130 The finding that these fatty 

acids were able to displace the ω-6 PUFA arachidonic acid 

from cell membranes and decrease its metabolic conversion 

to the powerful pro-thrombotic platelet-aggregating factor 

thromboxane A2, further substantiated this hypothesis.96 

Moreover, increased intakes of ω-3 PUFAs were also 

reported to be associated with reduced blood levels of 

several clotting factors such as factor V, prothrombin, and 

von Willebrand factor.131 However, a recent review of the 

literature132 examining this issue supported the safe con-

sumption of EPA and DHA even in highly vulnerable and 

sensitive populations, such as patients having gastrointestinal 

cancer or hospitalized in Intensive Care Units and consum-

ing fish oil–enriched medical nutrition. No increased risk 

of bleeding-related event was identified in the analyzed 

reports, even if the patients were simultaneously treated with 

platelet aggregation inhibitors. On the contrary, the results 

concurred to support the safety of either very high daily doses 

of EPA + DHA given for a short period (up to 10 g/day) or 

much lower doses consumed for 1 year. Results obtained 

more recently by the large VITAL study having a 5-year 

median follow-up confirmed these findings.119 In this study, 

healthy subjects supplemented with 1 g/day fish oil (provid-

ing 460 mg EPA + 380 mg DHA) did not show increased 

major bleeding episodes as compared to the subjects of the 

placebo group. The other recent large REDUCE-IT study121 

was performed on patients already receiving statin therapy 

and showing high levels of serum triglycerides, patients with 

a previously diagnosed CVD or at high risk of developing 

CVD. They were supplemented for almost 5 years with a 

high daily dose (4 g) of purified EPA. This study reported 

a modestly but significantly higher overall rate of adverse 

events, but not fatal bleeding events in the EPA group (2.7% 

vs 2.1% in the placebo group). However, it was observed that 

there were no significant differences between the placebo end 

EPA groups in severe bleeding events, such as hemorrhagic 

stroke, serious central nervous system bleeding and gastro-

intestinal bleeding. Moreover, CV patients are often subject 

to chronic antithrombotic therapies, and this factor was not 

considered in the study. In any case, the inclusion of ω-3 

PUFA in nanoformulation and the consequent increased 

efficiency of their delivery and absorbance at specific sites 

may prevent the induction of adverse bleeding effects at the 

circulatory level.

Immunosuppression
Concern has also been expressed/raised over the possibility 

that ω-3 PUFAs could have the potential to suppress any pos-

sible basal immunoreactivity against cancer, and decrease the 

impact of cancer immunotherapy.133 This alarming possibility 

is related to the widely acknowledged anti-inflammatory and 

immunosuppressive activities of ω-3 PUFAs, and it is clear 

that their inclusion in nanoformulations to increase their 

bioactivity could also intensify these effects. However, in 

the last decades, a great deal of information has been gath-

ered supporting the anti-cancer activities of ω-3 PUFAs, 

which oppose the preconceived alarm of a possible ω-3 

PUFA cancer-promoting activity.120 Moreover, it should be 

underlined that, whereas acute inflammation is a response 

to antagonize infections, repair, and resolve tissue damage, 

chronic inflammation has been involved in the promo-

tion of cancer, by inducing immunosuppression in tumor 

microenvironment.134,135 Per se, it is considered a hallmark of 

cancer. To this respect, ω-3 PUFAs reveal their multifaceted 

nature, on one hand, by inhibiting persistent inflammation, 

thus preventing the promotion of cancer, and by also exerting 

pro-inflammatory actions to inhibit the immunosuppression 

existing in the tumor environment.136 In fact, recent findings 

have shown that one of the mechanisms through which ω-3 

PUFAs may inhibit tumor development in vivo is the induc-

tion of a local antitumor immune response.137,138 In particular, 

Liang et al137 demonstrated a decreased expression of markers 

of tumor-associated macrophages in the tumor microenviron-

ment of immunocompetent mice bearing prostate cancer and 

fed a fish oil–enriched diet. They also observed a decreased 

expression of a chemokine (CCL-2) that specifically recruits 

monocytes and macrophages to inflammatory sites.137 It was 

also hypothesized that more than the dietary intake of ω-3 

PUFAs by themselves, an increased dietary ω-3 PUFA/ω-6 

PUFA ratio could maximally and beneficially influence 

the immune characteristics of the tumor microenvironment 

and reduce the risk of developing some forms of cancer.139 

This was demonstrated by Gevariya et al138 that used mice 
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transplanted with syngeneic prostate transgenic cell line and 

supplemented with a high ω-3 PUFA/ω-6 PUFA ratio diet 

(3.3). They found increased levels of cytokines associated 

with Th1 and Th2 immune response in the tumors growing 

in these mice compared to those of mice fed a diet with 

a much lower ω-3 PUFA/ω-6 PUFA ratio (0.002). These 

findings are in line with recent in vitro studies showing 

that ω-3 PUFAs are able to stimulate the innate and the 

adaptive immune response, both in the humoral and in the 

cellular branch.140–142

Finally, considering the immunosuppressive activity of 

ω-3 PUFAs, it could be argued that they may have the poten-

tial to inhibit the immune response to infections. Again, this 

detrimental effect could be augmented by their inclusion in 

nanoformulations aimed to increase their efficacy. On the 

contrary, however, according to recent relevant results com-

prehensively analyzed by Costantini et al,143 dietary ω-3 PUFA 

can positively modulate the immune response to microbe 

infections. In particular, evidence has been provided that the 

strict relationship between ω-3 PUFAs, gut microbiota, and 

immune system may influence the activity of the host immune 

cells.143 In particular, plenty of animal studies and some evi-

dence in humans have demonstrated that dietary supplementa-

tions with ω-3 PUFAs are able to normalize the gut microbial 

imbalance.143 This appears interesting, since the intestinal 

microbiota has been reported to exert a crucial role in the 

development of the systemic and gut immune response.144,145

Conclusion
To date, only a limited number of recent studies performed  

in vitro or in animals have directly investigated the 

biological effects of newly developed ω-3 PUFA-containing 

nanomaterials in CVDs and cancer. To date, none of these 

nanoformulations have been tested in the clinical setting. The 

studies have almost univocally demonstrated that a more effi-

cient delivery of ω-3 PUFAs through these newly developed 

nanosystems may markedly enhance the therapeutic poten-

tial of nutraceuticals and other co-delivered drugs toward 

inflammatory lesions and cancer. Different strategies have 

been used, and these fatty acids have generally been included 

in the newly developed systems because of their ability to 

induce healthy effects. However, in some cases, they were 

also used just as a component of the lipidic phase to obtain 

nanoparticles carrying different bioactive products. More-

over, their position in the external part of some nanoparticles 

was also thought to specifically target cancer cells, which are 

avid of lipids necessary for their high-level metabolism and 

high proliferative turnover rate. Thus, through this expedient, 

such ω-3 PUFA-coated nanoparticles could be preferentially 

taken up by cancer cells.

Notably, the inclusion of these fatty acids – showing 

both anti-inflammatory and anti-neoplastic activities – in 

nanoformulations could be significant in making them more 

bioavailable and to better deliver them to cancer tissues. 

Therefore, ω-3 PUFAs could better inhibit cancer cell 

growth, but simultaneously decrease the adverse inflam-

matory effects induced by the currently used conventional 

and innovative antineoplastic agents and, also, reduce the 

cachexia associated with the advanced cancer stages.

It is worth observing that ALA becomes more bioactive 

when enclosed in some of the nanoformulations analyzed in 

this review. This happened since ALA in this form was more 

efficiently delivered to the target cells and converted into 

its more bioactive products (EPA and DHA). This implies 

that these ALA-containing nanoformulations could allow to 

easily enrich our tissues with EPA and DHA, which, unlike 

ALA, largely found in vegetables and nuts, are mainly 

obtained from fish that indeed are not considered a sustain-

able food source for the entire world population.

Altogether, the reports analyzed univocally suggest that 

multiple potential advantages could be obtained with the 

administration of nanoformulations containing ω-3 PUFAs 

for the prevention and cure of both CVDs and cancer. In par-

ticular, the inclusion in nanoparticles has been often designed 

to offer protection to these quite unstable compounds from 

oxidative insults and to increase and enhance their delivery to 

the sites of the pathological lesions, resulting in an increased 

efficacy. Moreover, the safety of ω-3 PUFAs at the doses 

generally used in human studies,124 their inexpensiveness, 

and the results so far obtained made them optimal candidates 

to be enclosed in nanoparticles in combination with other 

pharmacological agents already used in the clinical setting. 

The potential of these therapeutic combinations is to deliver 

all the agents enclosed successfully, increase their activity, 

and make the therapy more effective.
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