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Abstract: The prominence of the PI3K-Akt signaling pathway in several tumors indicates a 

relationship with tumor grade and proliferation. Critical cellular processes are driven through 

this pathway. More detailed knowledge of the pathogenesis of tumors would enable us to 

design targeted drugs to block both membrane tyrosine kinase receptors and the intracellular 

kinases involved in the transmission of the signal. The newly approved molecular inhibitors 

sunitinib (an inhibitor of vascular endothelial growth factor receptor, platelet-derived growth 

factor receptor, and other tyrosine kinase receptors), sorafenib (a serine–threonine kinase inhibi-

tor that acts against B-Raf) and temsirolimus (an mTOR inhibitor) shown clinical activity in 

advanced kidney cancer. Chronic myeloid leukemia has changed its natural history thanks to 

imatinib and dasatinib, both of which inhibit the intracellular bcr/abl protein derived from the 

alteration in the Philadelphia chromosome. Intracellular pathways are still important in cancer 

development and their blockade directly affects outcome. Cross-talk has been observed but 

is not well understood. Vertical and horizontal pathway blockade are promising anticancer 

strategies. Indeed, preclinical and early clinical data suggest that combining superficial and 

intracellular blocking agents can synergize and leverage single-agent activity. The implication 

of the Akt signaling pathway in cancer is well established and has led to the development of 

new anticancer agents that block its activation.
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Introduction
The phosphatidylinositol 3-kinase (PI3K)-Akt pathway is situated in downstream 

tyrosine kinase receptors (TKRs) and regulates essential cellular functions such as 

proliferation, growth, and survival.1 Akt is a serine/threonine kinase that belongs to 

the AGC (protein kinase A/protein kinase G/protein kinase C-like) family of protein 

kinases. Because it shows high homology with protein kinases A and C, Akt is also 

referred to as protein kinase B (PKB).

PI3K-Akt signaling is frequently altered in human cancers.1 We describe the main 

downstream effectors of PI3K-Akt pathway involved in its proliferative and survival 

responses. We also examine PI3K-Akt signaling pathway alterations associated with 

human cancers and their implications in the development of target-based anticancer 

drugs.

Structure and activation of Akt kinase
In mammals, three Akt genes encode for the isoforms Akt1 (PKBα), Akt2 (PKBβ), 

and Akt3 (PKBγ), and they all have a similar structure and size.1 Akt isoforms contain 
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a pleckstrin homology (PH) domain in the N-terminus, a 

central catalytic domain with kinase activity, and a C-terminal 

regulatory domain (Figure 1A). The PH domain binds phos-

phatidylinositol-3,4,5-trisphosphate (PIP3). Akt also contains 

two main phosphorylation sites: Threonine308 (Thr308) in 

the kinase domain and Serine473 (Ser473) in the regulatory 

domain.1

After binding their growth factors, TKRs can directly or 

indirectly, via an adaptor molecule such as IRS1, activate 

PI3K, a molecular complex composed of a p85 regulatory 

subunit and a p110 catalytic subunit.1 Phosphotyrosine 

residues on the cytoplasmic tail of the activated TKRs or on 

their associated adaptor proteins recruit PI3K complex to the 

membrane by binding its p85 regulatory subunit and remov-

ing the inhibitory effect of p85 (Figure 1B). The GTPase 

RAS can also directly activate PI3K through the binding to 

its p110 catalytic subunit. Once on the cell membrane, PI3K 

phosphorylates phosphatidylinositol and converts inositol 

4,5 biphosphate (PIP2) into PIP3. Subsequently, Akt and the 

serine/threonine kinase PDK1 translocate to the membrane 

where they interact with PIP3 through their PH domain. This 

interaction promotes conformational changes in Akt, resulting 

in exposure of Thr308 and Ser473. Thr308 is phosphorylated 

by PDK1, leading to the stabilization of Akt.1 The second 

phosphorylation event associated with Akt activation occurs 

at Ser473, and is required for full activation (Figure 1B). 

Recently, a second protein complex with kinase activity, the 

mammalian target of rapamycin (mTOR)-rictor complex has 

been shown necessary for this Ser473 phosphorylation of 

Akt.2 Therefore, Akt activation implies a dual mechanism: 

translocation to the plasma membrane after PI3K activation 

followed by two phosphorylation events mediated by PDK1 

and mTOR-rictor complex. This pathway is also negatively 

regulated at the level of PIP3 by phospholipid phosphatases, 

such as the phosphatase and tensin homologue PTEN.3

Biological functions of Akt signaling
Although, differences in the signaling capabilities of Akt 

isoforms have been established, as we review below, the 

biological consequences of Akt activation relevant for cancer 

progression are survival, proliferation, growth, angiogenesis, 

and metastasis (Figure 2).3–5

Akt activation and cell survival
Promotion of cell survival is the most studied function of the 

Akt pathway. Akt develops its anti-apoptotic role through 

phosphorylation of downstream substrates that control the 

apoptotic machinery.

Akt indirectly downregulates activation of the pro-apoptotic 

protein p53 by activating Mdm2 (murine double minute-2), 

which promotes p53 degradation.5 In response to genetic dam-

age, p53 stimulates the expression of pro-apoptotic proteins 

to ensure that damaged genetic information is not passed to 

descending cells. Thus, tumor cells develop the ability to sur-

vive after not repairing DNA damage through activation of the 

PI3K-Akt pathway (Figure 2).

Additionally, Akt signaling leads to transcription of 

NF-κB (nuclear factor κB) anti-apoptotic target genes. Akt 

activates IKK (IκB kinase), which induces degradation of 

IκB (the NF-κB inhibitor). The unmasked NF-κB can then 

enter the nucleus and activate the expression of pro-survival 

target genes (Figure 2).3,5

Akt also restores the anti-apoptotic function of BCL-XL 

through inactivation of its inhibitor, BAD (Figure 2).3,5

The inactivation of the Forkhead family of transcription 

factors by Akt inhibits the transcription of their death target 

genes (Fas-ligand, Bim, and immunoglobulin-binding protein-1 

[IGBP-1]; Figure 2).3,5

Akt also phosphorylates p21/WAF, which increases p21 

stability. Elevated p21 protein levels have been observed 

in various aggressive tumors linked to chemoresistance. 

Glioblastoma cell lines with active Akt showed higher p21 

stability and were more resistant to paclitaxel.6

Akt activation and proliferation
Akt signaling can also affect proliferation by regulating 

proteins of the cell-cycle machinery.

Akt blocks transcription of the cell cycle inhibitor p27/

KIP1 by inactivating Forkhead transcription factors.3 It also 

inhibits the anti-proliferative effects of p21 and p27, thus 

impairing their entry into the nucleus.3

Furthermore, Akt inhibits glycogen synthase kinase-3 

(GSK3), thus Akt directly prevents β-catenin degradation. 

Once inside the nucleus, stabilized β-catenin activates expres-

sion of pro-proliferative target genes such as cyclin D1 and 

c-Myc (Figure 2).3,5

Akt-mTOr activation and cell growth, 
angiogenesis, and metastasis
The target of rapamycin (TOR) is an evolutionary conserved 

Ser/Thr kinase that represents the catalytic subunit of two 

distinct signaling complex: the mTOR-ractor complex 

(mTOR complex 1) and mTOR-rictor and SIN1 complex 

(mTOR complex 2).7 In the presence of growth-promoting 

signals such as nutrients and growth factors, mTOR complex 1 

promotes growth by upregulation of the protein synthesis8 
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and it also induces the biogenesis of the machinery for the 

protein synthesis, the ribosome.9 The function of mTOR 

complex 2 is less well defined, it is known that is required for 

phosphorilation of Akt2 (Figure 3) and it is also involved in 

actin cytoskeleton reorganization and cell survival.10 mTOR 

complex 1 is inhibited by rapamycin and its derivates everoli-

mus and tenserolimus.7 Therefore, rapamycin analogs are not 

able to block mTOR complex 2 effects. In fact, in response to 

these drugs, an increase in Akt phosphorylation is detected in 

tumor byopsies and tumor samples from animal models as a 

result of a feedback activation loop of Akt signaling through 

an IGF-1R-dependent mechanism.11–13

The TSC1/TSC2 (tuberous sclerosis complex) protein 

complex is involved in the negative regulation of the mTOR 

kinase (Figures 2 and 3). mTOR is activated by the GTPase 

Rheb which in turn is controlled by the TSC1/TSC2 complex. 

As a result of growth-stimulating signals, Akt phosphorylates 

TSC2 and causes the dissociation of the TSC1/TSC2 complex. 

This dissociation reduces the inhibitory function of the TSC1/

TSC2 complex on GTPase Rheb thus enabling the activation of 

the mTOR complex 1. mTOR complex 1 controls cell growth 

in part by phosphorylating of the kinase 70 S6K1 (S61) and the 

protein 4EBP-1 (4E-binding protein 1), both of them known 

regulators of protein synthesis (Figures 2 and 3). p70 S6K1 

is activated by two phosphorylation events: phosphorylation 

on Ser473 by mTOR complex 2 and on Thr308 by PDK1.7,14 

Subsequently, phosphorylated p70 S6K1 activates the ribo-

somal protein S6 that stimulates the translation of 5´-TOP 

messenger ribonucleic acids (mRNAs). These mRNAs encode 

for proteins of the translation machinery, resulting in a high 

protein translation rate (Figures 2 and 3).

Besides activating p70 S6K1, mTOR controls the 

association of the translation initiation factor eIF-4E with 

its inhibitor 4EBP-1. mTOR phosphorylates the 4EBP-1 

inhibitor. Thus, eIF-4E can be released from 4EBP-1 and 

stimulate the translation of the CAP-dependent mRNAs 

(Figure 3) that encode for proteins with key cellular functions 

such as hypoxia-inducible factor-α (HIF-α), a transcrip-

tion factor that controls the expression of approximately 

30 hypoxia-regulated genes.7 These target genes include 

pro-angiogenic genes, such as VEGF (vascular endothelial 

growth factor), PDGF (platelet-derived growth factor), and 

genes that encode proteases associated with local invasion 

such as matrix metalloproteinase 9 (MMP9). In fact, active 

p70 S6K1 promotes invasion in ovarian cancer cell lines by 

stimulating metalloproteinase MMP9 expression.15

VEGF is considered the most potent stimulator of angio-

genesis within tumors. HIF-α protein levels are controlled by 

the von Hippel–Lindau (pVHL) protein complex.16 Absence 

and/or inactivation of pVHL has been documented in many 

tumors, thus leading to HIF-α accumulation. Subsequent 

high VEGF expression promotes angiogenesis.15 PDGF is 

considered at least as important as VEGF in the stabiliza-

tion and maturation of newly formed vessels. In fact, PDGF 

over-function may also cause tumors.

Akt isoforms and specific biological 
functions
It has been suggested that different Akt isoforms show differ-

ent signaling capabilities.17 Different roles for Akt isoforms in 

the physiological response to insulin (the storage of nutrients 

in muscle and adipose tissues) has been already suggested. In 

fact, Akt2 levels increase during the differentiation of cells 

into insulin-responsive adipocytes, whereas the expression 

of Akt1 decreases in these cells.18,19 In addition, Akt2 is 

placed in the plasmatic membrane near the insulin-responsive 

GLUT4 glucose transporter whereas Akt1 is placed mainly 

in the cytosolic compartment. Phosphorylation of GLUT4 

transporter by Akt2 has been also reported.20,21 These data 

suggest that Akt2 might be involved in insulin-induced 

GLUT4 translocation and glucose uptake.

Additional data supporting a different role for Akt iso-

forms came from transgenic mice. An impairment in insulin 

ability to maintain normal glucose homeostasis is known 

as insulin resistance and predisposes to the development of 

type 2 diabetes, hypertension, and cardiovascular disease.22 

Accordingly, mice lacking Akt2 displayed insulin resistance 

and a diabetes-like syndrome.23 Mice lacking Akt1 showed 

normal glucose homeostasis but were small throughout 

life,24,25 which suggests that Akt1 may be mainly involved 

in control of growth and proliferation.

The knowledge of the biological functions mediated 

by each Akt isoform may be useful to predict the toxici-

ties that may be associated with those inhibitors that target 

a specific Akt isoform or with pan-Akt inhibitors. As we 

review below, high grade hyperglycemia has been already 

observed in animal models and clinical trials with novel 

Akt inhibitors.

Akt activation in cancer
The PI3K-Akt pathway is often aberrantly activated in 

cancer (see Table 1) due to genetic and epigenetic altera-

tions. It is also associated with poor prognosis in a variety 

of tumor types (pancreas, gastric, breast, tongue, glioma, 

non-small cell lung cancer [NSCLC], and others) and resis-

tance to chemotherapy, radiotherapy, and/or target-based 
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anticancer agents.26,27 Alterations in signaling proteins 

placed upstream PI3K and genetic alterations in genes 

that encode for proteins belonging to the pathway such as 

PTEN deletions and “hot-spot” mutations in PI3K28 lead to 

an aberrant activation of this pathway and are associated 

with the development and progression of human cancers.

Alterations upstream of Pi3K-Akt
The most common alterations upstream of PI3K-Akt include 

amplification/activating mutations, an increase in the expres-

sion of genes that encode for TKRs, and higher expression of 

genes that encode for growth factors. Activating mutations 

in intracellular signaling proteins placed upstream of Akt 

(eg, Ras) also promote the aberrant activation of Akt signal-

ing in cancer cells, thus leading to inappropriate survival and 

proliferation (Figure 3).

The PI3K/Akt/mTOR and the Ras/Raf/MAPK pathways 

are commonly activated by TKRs, and there is a large 

amount of cross-talk between them (Figure 1D).29 Indeed, 

defects in the signaling molecules belonging to one pathway 

may also alter the other pathway through these interconnec-

tions. Due to this cross-talk, gain of function mutations in 

Ras that occur in many tumors (90% of pancreas, 50% of 

colon, 50% of thyroid, 30% of lung cancers) could also be 

associated with an increase in Akt signalling.29 The Bcr-Abl 

fusion protein, generated after chromosomal translocation 

associated with chronic myeloid leukaemia, is also able 

to constitutively activate PI3K-Akt and Ras/Raf/MAPK 

pathways (Figure 3).30

Alteration in Pi3K or Akt
Several isoforms of the PI3K family are implicated in disease. 

In particular, members of the class 1A PI3Ks (heterodimers 

with a p85 regulatory and a p110 catalytic subunit). Many 

tumors show activating mutations in the genes that encode 

for the catalytic and regulatory subunits of PI3K.3,27

Akt amplification or overexpression occur at the mRNA 

level in various tumor cell lines and in a number of human 

cancers (see Table 1). Amplification in the Akt gene has been 

associated with poor prognosis and resistance to radiotherapy 

and/or chemotherapy.3 Nevertheless, activation of Akt 

isoforms by phosphorylation appears to be more clinically 

significant than Akt amplification or overexpression.31

Alteration in phosphatases belonging 
to the pathway
Two protein phosphatases, PTEN and SHIP (SH2 contain-

ing inositol phosphatase), negatively regulate Akt activation 

by blocking Akt translocation to the plasma membrane 

(Figure 1C).

PTEN prevents elevated levels of PIP3 by dephosphory-

lating its 3´ position. Thus, PTEN leads to the blockade of Akt 

translocation to the plasma membrane (Figure 1C).3 PTEN 

is one of the most frequently mutated or deleted genes in 

human cancer (see Table 1),32 and its absence in tumors cor-

relates strongly with activation of Akt.3 Pre-clinical models 

showed that mice with conditional tissue disruption of PTEN 

develop tumors in the affected tissue.3 Furthermore, PTEN 

loss also predicts for resistance to anticancer drugs such as 

the anti-HER2 (human epidermal growth factor receptor-2) 

agent trastuzumab.33

SHIP is another negative regulator of Akt that dephos-

phorylates PIP3 at the 5´ position (Figure 1C). Loss of SHIP 

can also occur in cancer cells. Peripheral T cells isolated 

from acute and chronic T cell leukemia/lymphoma patients 

showed lower levels of PTEN and SHIP, which correlates 

with upregulation of Akt signaling.34

In addition, Akt phosphorylation is negatively controlled 

by carboxyl-terminal modulating protein (CTMP), which acts 

downstream of PTEN and SHIP, at the plasma membrane 

level, and binds specifically to the carboxyl-terminal regulatory 

domain of Akt. CTMP reduces the activity of Akt by inhibiting 

its phosphorylation at Ser473 and Thr308 (Figure 1C). Loss 

of CTMP by hypermethylation of its promoter has also been 

detected in glioblastoma and glioma cell lines.35

Akt pathway deregulation 
in selected cancers
As reviewed above, isolated or combined defects in PI3K/Akt 

pathway components and/or molecules in interconnected 

signaling cascades are associated with many cancers and 

lead to an increase in Akt signaling. Aberrant Akt activation 

mediates the signals for survival, proliferation, angiogenesis, 

and/or metastasis in tumor cells. Furthermore, resistance to 

cancer therapies is often associated with abnormal activation 

of this pathway.

Here, we focus on the PI3K-Akt alterations associated 

with specific tumors (Table 1).

renal cell carcinoma
The most frequent histopathologic variant of renal cell car-

cinoma (RCC) is the clear-cell type (75% of cases).36

In familial and in most sporadic (40%–60%) clear-cell 

RCC tumors, pVHL is disrupted.36 and the PI3K-Akt-mTOR 

pathway plays a critical role in survival, proliferation, and 

angiogenesis.16
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Figure 1 Akt structure and regulation. A) Akt structure. There are three Akt isoforms (Akt1/2/3), all of which share a similar structure and size. These isoforms contain a 
PH (pleckstrin homology) domain in the N-terminus, a central catalytic domain with kinase activity, and a regulatory domain in the C-terminus. The PH domain binds inositol 
triphosphate (PiP3). Akt also contains two main phosphorylation sites: one threonine in the kinase domain (Thr308) and one serine the regulatory domain (Ser473). B) Dual 
regulatory mechanism of Akt activation: translocation to the plasma membrane followed by phosphorylation. After their activation by specific growth factors (GF), tyrosine 
kinase receptors (TKrs) can promote the activation of the Pi3K complex (p85 plus p110 subunits) directly or by means of the small GTPase monomeric protein ras. Active 
Pi3K converts inositol biphosphate (PiP2) into PiP3, which triggers the translocation of Akt and PDK1 to the plasma membrane, where they interact with PiP3 through their 
PH domain. Subsequently, Akt is phosphorylated by PDK1 in its Thr308 residue and by other kinases such as mTOr in its Ser473 residue. C) Negative regulation of Akt activa-
tion. The phosphatases PTeN and SHiP (in grey) promote the blockade of Akt translocation to the plasma membrane by dephosphorylation of PiP3 (in red) in PiP2 (in green). 
Additionally, CTMP (in blue) negatively regulates Akt activation preventing its phosphorylation in Ser473 and Thr308.
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The transcription factor, HIF, which controls the expression 

of hypoxia-inducible genes, is a heterodimer of two subunits 

(HIF-α and HIF-β). In each cell, HIF-β is constitutively 

expressed, whereas the intracellular amount of HIF-α is highly 

controlled at two levels: PI3k/Akt signaling through mTOR 

at the translational level and pVHL at the post-translational 

level.36,37

pVHL is a component of a ubiquitin ligase complex that 

promotes the destruction of specific cellular proteins through 

proteosome degradation. In normal tissue, under normoxic 

conditions, pVHL recognizes and binds hydroxylated 

HIF-α, which, once bound by pVHL, will be ubiquitinated 

to be degraded by the proteosome. However, under hypoxic 

conditions, HIF-α, is not hydroxylated, pVHL is not able 

to recognize HIF-α and, consequently, is not degraded. 

Stabilized HIF-α is translocated to the nucleus, binds with 

HIF-β, and forms a heterodimer that promotes expression of 

hypoxia-response target genes.37

pVHL is lost or inactivated in most clear-cell RCC, and 

HIF-α, although hydroxylated, is not degraded. Accumulated 

HIF-α, leads to increased expression of hypoxia-response 

genes.37,38 HIF-inducible genes are associated with tumoro-

genesis because they are involved mainly in angiogenesis 

(VEGF, PDGF, others), proliferation and survival (transform-

ing growth factor alpha [TGF-α], insulin-like growth factor 2 

[IGF2], and others), metabolism, and pH regulation.37,38

The characterization of PI3K-Akt-mTOR in metastatic 

RCC patients using the UCLA RCC tissue array showed that 

loss of PTEN increased in all RCC patients with a greater loss 

in clear-cell tumors and sarcomatoid tumors. The presence of 

active Akt (pAkt) was greatest in collecting duct carcinoma 

followed by clear-cell carcinoma and loss of PTEN correlated 

with pAkt (p = 0.028) and HIF-α expression (p  0.0001). 

Active p70 S6K (pS6K) was also highly expressed by sarco-

matoid and clear-cell tumors (higher expression in high-grade 

and in high-stage).36 The mTOR inhibitor temsirolimus has 
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Figure 2 Biological functions of Akt signaling. Most of the cellular responses controlled by Akt are related to cancer. Once active,  Akt regulates the activity of other intracellular 
signaling proteins that will trigger changes in the expression of specific genes that encode for proteins involved in cell survival (in grey) or proliferation/cell cycle (in yellow). 
Additionally, by activation of the mTOR protein, Akt will enhance the translation of specific mRNAs. TOP-dependent mRNAs that encode for proteins involved in ribosome 
biogenesis and also the translation of CAP-dependent mrNAs that encode for proteins with key cellular functions such as angiogenesis and metastasis (in red-blue).
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recently shown efficacy in non-clear–cell RCC histologic 

subtypes.39 One proposed resistance mechanism for mTOR 

inhibition is the compensatory upregulation of Akt through 

the activation of the IGF receptor (IGF-1R) pathway as we 

will explain in the last section of this review. Accordingly, 

preclinical data showed by Holland and colleagues estab-

lished a rationale for the combination of therapies that target 

Akt and mTOR in RCC patients.40

Additionally, immunohistochemical analyses have also 

revealed that no patient who had low expression of pS6K or 

pAkt was a responder to this mTOR inhibitor.41 Pre-clinical 

assays with RCC cell lines have also shown that a loss of 

pVHL sensitized cells to temsirolimus, both in vitro and in 

mouse xenograft models, suggesting that loss of pVHL could 

be a predictive marker of the response to mTOR blockade.42 

Furthermore, PTEN-deficient tumor cell lines with high levels 

of pAkt were also more sensitive to the effects of temsirolimus 

in vitro.43 In this molecular scenario, the Akt pathway is a 

promising target in the treatment of metastatic RCC. In fact, 

the mTOR inhibitor temsirolimus has been already approved 

for the first line treatment of poor risk advanced RCC patients44 

and clinical trials with the mTOR inhibitor everolimus are cur-

rently underway to show its efficacy in RCC patients.45

Breast cancer
Hormone receptor- and HER2-positive breast cancer cur-

rently account for 75%–80% and 15%–20% of breast cancer 

cases, respectively, with about half of HER2-positive cases 

co-expressing hormone receptors. The remaining 10%–15% of 

breast cancer cases do not express HER2 and hormone recep-

tors and are called triple-negative breast cancers.46 Evidence 

shows PI3K pathway aberrations in breast tumors and suggests 

that this pathway may play a distinct role in the pathogenesis 

of different breast cancer molecular subtypes.

The analysis of 64 hormone receptor-positive-Her2-

negative breast cancer samples from patients with stage I to 

III tumors managed with hormonotherapy ± chemotherapy 

showed that the activation of the PI3K/Akt pathway was 

higher in those tumors with less hormone receptor levels and 

was also associated with adverse outcome.47

Recently, a genomic analysis of PIK3CA, PTEN, and 

Akt mutations in a collection of 547 breast cancer samples 

showed that PIK3CA mutations were more common in hor-

mone receptor-positive (34.5%) and HER2-positive (22.7%) 

than in triple-negative tumors (8.3%). Akt1 (1.4%) and 

PTEN (2.3%) mutations were restricted to hormone recep-

tor-positive cancers. However, PIK3CA mutations did not 

have a significant effect on outcome after adjuvant tamoxifen 

therapy in a population of 157 hormone receptor-positive 

breast cancer patients.48

HER2 overexpression in breast cancer is associated with a 

high recurrence rate, poor survival, and resistance to chemo-

therapy and endocrine therapy.49,50 PI3K/Akt and Ras/MAPK 

pathways are the major mediators of HER2 signaling.51 

Accordingly, tumor cells in which HER2 is overexpressed 

exhibit constitutive Akt activity.52 Furthermore, immunohisto-

chemical analysis of breast cancer samples indicated a possible 

role of PI3K/Akt/mTOR signaling in HER2-mediated breast 

cancer progression and has suggested its association with poor 

disease-free survival. Additionally, it has been suggested that 

the anti-HER2 agent trastuzumab depends on the intact PTEN 

for its action in HER2 overexpressing breast cancer cell lines 

and that the loss of PTEN predicts for trastuzumab resistance.33 

Therefore, Akt blockade could represent a promising strategy 

to treat breast cancer patients who are trastuzumab resistant.53,54 

Moreover, an oral dual tyrosine kinase inhibitor (TKi) of epi-

dermal growth factor receptor (EGFR) and HER2, as a single 

agent, promotes, apoptosis in trastuzumab-resistant breast 

cancer cell lines. In these cells, its cytotoxic effect is corre-

lated with the blockade of the activation of Akt, p70 S6K, and 

MAPK.53 Furthermore, lapatinib also sensitizes HER2-positive 

breast cancer cells to other therapies such as radiation and also 

restores tamoxifen sensitivity in tamoxifen-resistant breast 

cancer models suggesting that this ability of lapatinib may 

be due to the inhibition of the PI3K-Akt signaling pathway. 

Accordingly, pre-clinical models also show that failure to 

inhibit Akt activation leads to resistance to therapies with 

TKIs against HER-family.26,55–58

Akt activity also promotes resistance to chemotherapy in 

breast cancer cell lines,54 and recent findings correlate pAkt 

levels and HER2 status with resistance to endocrine therapy 

in metastatic breast cancer.59 A retrospective study with tumor 

samples from 36 metastatic breast cancer patients treated with 

endocrine therapy showed 12 cases (33.4%) with pAkt. In the 

pAkt-positive patients, endocrine therapy proved less effica-

cious than in pAkt-negative patients (p  0.01)54 and pAkt was 

associated with a poor objective response (p  0.05). Clinical 

benefit was also lower in HER2-positive patients (P0.05) 

and was the lowest in the HER2 and pAkt-positive patients 

(p  0.01). Therefore, evidence suggests that pAkt may be a 

useful predictor of resistance to chemotherapy and endocrine 

therapy for breast cancer. These data suggest that inhibition 

of Akt activation in breast cancer patients may increase the 

efficacy of endocrine therapy and chemotherapy.

Based on the above evidence, clinical trials that explore the 

efficacy of the mTOR inhibitors temsirolimus and everolimus 
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alone or in combination with aromatase inhibitors in hormone 

receptor positive breast cancer patients are underway.60–62

Regarding triple-negative breast cancer, one of its 

molecular features is the overexpression of genes that encode 

for the TKRs EGFR and c-KIT that lead to abundant MAPK 

and Akt signaling activation downstream. Therefore, Akt 

could be also a promising target for the treatment of triple-

negative breast cancer.46

In conclusion, these findings suggest that Akt activa-

tion should be used as a molecular marker in breast cancer 

patients to predict treatment response. The blockade of Akt 

activation in combination with current therapies may be 

also considered a novel therapeutic approach in most breast 

cancer molecular subtypes.

Non-small cell lung cancer
Pre-clinical data have shown that pAkt is also active in most 

NSCLC cell lines and that the modulation of Akt activity (by 

pharmacological or genetic approaches) sensitizes cells to 

chemotherapy and radiation.58 A correlation between pAkt 

and poor prognosis has been also established for all stages of 

NSCLC.63,64 Tang and colleagues reported that loss of PTEN 

and the presence of pAkt is correlated with poor differentia-

tion, lymph node involvement, distant metastasis, and late 

stages in NSCLC patients.65 Therefore, the combinations 

of drugs that modulate Akt activation with the therapeutic 

modalities typically used in NSCLC are thought to improve 

treatment response.

Additionally, while some authors have reported the possible 

role of pAkt as a predictive marker of response to gefitinib, 

an oral small molecule that blocks EGFR, in NSCLC patients 

with specific EGFR mutations, others have failed to find any 

association. Sordella and colleagues showed that these EGFR 

mutants selectively activate the Akt survival pathway.66 

Cappuzo and colleagues reported that gefitinib was more 

effective in patients with pAkt-positive tumors. These patients 

showed better response rates, disease control rates, and times to 

progression than patients with pAkt-negative tumors.67 Other 

authors have indicated that although no significant correlation 

between EGFR mutations and expression of pAkt was detected 

in gefitinib-treated patients, pAkt overexpression was associ-

ated with prolonged time to progression.68 Consistent with 

these findings, pre-clinical studies have shown that those EGFR 

mutations that sensitize to gefitinib selectively activated the Akt 

pathway. High sensitivity to EGFR TKIs in NSCLC seemed 

to be closely correlated with dependence on Akt activation in 

response to EGFR signaling.65,69 Therefore, further studies are 

necessary to confirm whether the assessment of pAkt status 

could be a useful complementary test for the identification of 

EGFR-positive NSCLC patients with the highest possibility 

of profiting from TKIs.

Exposure to cigarette smoke (active or passive) is the main 

cause of lung cancer.70 The presence of nicotinic acetylcholine 

receptors in NSCLC cell lines and primary tissues has been 

documented.71,72 After exposure to nicotine, Akt is phosphory-

lated in NSCLC cells. The Akt activation induced by nicotine 

leads to an increase in its downstream effectors and confers 

resistance to NSCLC cells treated with chemotherapeutic 

agents.69,71 Furthermore, it has been shown that nicotine in 

NSCLC cells promotes resistance to TKIs such as gefitinib.69

Pancreatic cancer
High levels of pAkt have been detected in 40%–70% of pan-

creatic cancers and 60% of tumors show EGFR amplification. 

Therefore, these proteins and their downstream effectors could 

be new therapeutic targets for treatment, as well as useful 

molecules for diagnosis and prognosis.73 In fact, erlotinib, 

an oral small-molecule anti-EGFR, has been approved by the 

US Food and Drug Administration (FDA) for the treatment 

of locally advanced or metastatic pancreatic cancer. EGF 

receptor-related protein (ERRP), a novel EGFR-negative 

modulator has also shown anti-tumor activity in pre-clinical 

studies through its ability to downregulate molecular markers 

such as Akt, NF-κB, and MAPK.74,75 Buck and colleagues 

also showed that the combination of the mTOR inhibitor 

rapamycin with erlotinib has anti-tumor activity in human 

pancreatic cancer cell lines that do not respond to erlotinib in 

monotherapy. These authors suggest that although erlotinib 

could not downregulate baseline Akt activity in pancreatic 

cancer-resistant cell lines, it could synergize with rapamycin 

by inhibiting the stimulated Akt activity induced by rapamy-

cin.76 Indeed, strategies aimed at blocking Akt activation could 

be promising for the treatment of pancreatic cancer.

Hormone-refractory prostate cancer
Metastatic hormone-refractory prostate cancer (HRPC) 

patients show enhanced Akt activity. Some also show loss 

of PTEN, which leads to the activation of downstream 

Akt anti-apoptotic effectors such as Bcl-xl, Bcl-2 (B-cell 

lymphoma 2), and NF-κB, and other Akt effectors such as 

mTOR/p70 S6K.77,78

The current reference treatment for HRPC consists mainly 

of chemotherapy with docetaxel. However, interference with 

cell survival, through pro-apoptotic drugs, combined with 

docetaxel is a new approach.78 Clinical trials with agents 

that reduce the expression of anti-apoptotic Bcl-2 proteins 
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are ongoing (a phase II study with oblimersen sodium plus 

docetaxel), studies with anti-NF-κB therapies have been 

reported (phase I/II studies with thalidomide, arsenic trioxide, 

and bortezomib), and also the mTOR inhibitors (rapamycin, 

temsirolimus, and everolimus) have also produced good results 

in pre-clinical models. Nevertheless, a phase II clinical study 

with the Akt inhibitor perifosine showed poor results.76,78

Gastric cancer
In the last American Society of Clinical Oncology (ASCO) 

annual meeting, Xu and colleagues showed that 148 (78.7%) 

were positive for p-Akt among 188 gastric adenocarcinoma 

samples. High expressions of p-Akt were significantly 

correlated with pTNM stage (p = 0.031), depth of invasion 

(p  0.001), lymph node metastasis (p  0.001) and dif-

ferentiated levels (p  0.012).79

Additionally, Oki and colleagues have shown a direct 

correlation between Akt activation and chemoresistance in 

gastric cancer. Analysis of primary gastric carcinoma tis-

sue and corresponding normal mucosa from gastric cancer 

patients who underwent surgery showed that Akt activation 

and loss of PTEN were associated with increased resistance 

to several chemotherapeutic agents.80,81 A pre-clinical study 

also showed that those chemotherapeutic agents that induced 

apoptosis in human gastric cancer cell lines downregulated 

the PI3K-Akt pathway.80

Additionally, pAkt levels were associated with the effi-

cacy of some adjuvant chemotherapy regimens and indicated 

the association between pAkt levels with poor prognosis for 

T3/T4 gastric cancer patients.82

Although further studies are necessary to establish the 

predictive value of Akt signaling in sensitivity/resistance to 

gastric cancer therapies, these data suggest that drug com-

binations including Akt inhibitors may improve response in 

patients with gastric cancer.

Hepatocellular carcinoma
Alterations in the TKR c-Met have been involved in HCC 

(hepatocellular carcinoma) progression.83 In human HCC 

cell lines, hepatocyte growth factor (HGF) uses its associa-

tion with c-Met to promote the activation of the PI3K-Akt 

pro-survival pathway, which led to suppression of the pro-

apoptotic signals mediated by Fas.84 Fas is a membrane 

receptor that induces apoptosis after binding its ligand FasL 

onto the surface of T-cells. Fas/FasL signaling seems to 

mediate chemosensitivity in pre-clinical models of HCC.85 

Those HCC cell lines that respond to chemotherapy show 

increased Fas/FasL-mediated apoptosis. c-Met, through its 

ability to activate Akt, may be involved in resistance to those 

chemotherapeutic agents that mediate its cytotoxic effect by 

stimulating the Fas-FasL apoptotic pathway.

EGFR, IGF2, and its receptor IGF-1R are also detected in 

HCC cell lines and cross-talks between EGFR and IGF-1R 

have been reported in different tumor types. IGF2-IGF-1R 

activates proliferation through Ras/MAPK pathway and 

survival by means of PI3K/Akt.86,87 In fact, gefitinib alone 

was not able to completely prevent the development of HCC 

in pre-clinical models86 and IGF2-IGF-1R may contribute 

to gefitinib resistance in HCC cells through the activation 

of PI3K/Akt pathway. Treatment of HCC cell lines with 

gefitinib blocked Akt activation induced by EGFR itself, 

although gefitinib had no effects on the Akt activation 

induced by IGF2-IGF1R; therefore, it could not cause the 

death of the tumor cells by itself.

Additionally, a selective IGF-1R inhibitor was able to 

induce apoptosis in these HCC cells and its cytotoxic effect 

was boosted by gefitinib.88 Therefore, the IGF2/IGF-1R sur-

vival signal promoted by the activation of Akt may contribute 

to gefitinib resistance in HCC. In this setting, the pharmaco-

logical combination of gefitinib with anti-IGF-1R antibody 

or inhibition downstream in the pI3K-Akt pathway could 

enhance the anti-tumor effects reached by gefinitib as a single 

agent in HCC.

Brain tumors
The PI3K-Akt pathway is relevant in glioma initiation and 

progression.89 PTEN is frequently lost or mutated in high-

grade gliomas and most of these tumors have elevated Akt 

activity. Gliomas also seem to be good targets for therapies 

based on inhibitory compounds of the PI3K-Akt-p70 S6K 

pathway.

Recently, activation of the Akt pathway in 101 neuro-

blastoma samples was also tested: 60% of the tumor samples 

expressed PI3K, 80% Akt, and 73% pAkt. In addition, p70 S6K 

was expressed in 95% of tumors. Akt and pAkt also showed 

higher expression in metastases than in primary tumors.90

Akt inhibitors
As we described above, PI3K-Akt-mTOR pathway plays a 

critical role in proliferation and survival in tumor cells and 

is also linked with resistance to radiotherapy, chemotherapy, 

endocrine therapy and novel anticancer therapies.91–94 In 

this setting, this pathway seems to bring together all the 

characteristics of a good target for the treatment of cancer. 

Currently, clinical trials with inhibitors of the PI3K-Akt 

pathway in monotherapy or in combination with other anti-
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cancer drugs are underway in cancer patients. In addition, 

these novel inhibitors are being also tested in chemo- and 

hormonal therapy refractory patients.95,96

Although in this review we will focus on inhibitors of Akt, 

currently PI3K and mTOR inhibitors are more advanced in 

their development than Akt inhibitors. In fact, a new genera-

tion of PI3K inhibitors is emerging. Some of them, such as 

NVP-BEZ235, a synthetic low molecular weight compound 

belonging to the class of imidazoquinolins, which potently 

and reversively inhibits class I PI3K catalytic activity by 

competing with the ATP is in early phase clinical trials.97 

And as we mentioned above, the rapamycin-derivated tem-

sirolimus and everolimus, as mTOR inhibitors, have been 

already approved for the treatment of same cancer patients 

and clinical trials to explore their efficacy in new tumor types 

are currently underway.16,41,98 Furthermore, rapamycin ana-

logs lead to an increase in PI3K and Akt activation, through 

a feedback mechanism mediated by IGF-1R. Therefore, 

this Akt activation may counteract the inhibition of mTOR. 

Combined treatment with mTOR inhibitors and anti-IGF-1R 

monoclonal antibodies (MAbs) are currently being tested in 

caner patients.99 In addition, due to the cross-talk between ER 

and PI3K/Akt/mTOR pathways, clinical trials with mTOR 

inhibitors and endocrine therapy are also underway.60

In this context, the use of anti-target agents that block 

selectively each Akt isoforms or the use of dual inhibitors 

that block this pathway in two levels (pg, dual Akt-S6K small 

inhibitors, dual mTOR complex 1 and 2 inhibitors, etc) may 

improve the results reached with the current mTOR inhibi-

tors. During recent years, intense efforts made in the search 

for Akt inhibitors have yielded several promising candidates, 

such as lipid-based inhibitors that compete with PIP3 to bind 

the PH domain of Akt, ATP-competitive inhibitors, small-

molecule inhibitors, and peptide-based inhibitors reviewed 

elsewhere.100,101

The lipid-based inhibitors include perifosine (KRX-0401), 

an orally active membrane-permeable ether lipid with a 

single long alkyl chain that inhibits the translocation of all 

Akt isoforms to the membrane. In vitro, perifosine has anti-

proliferative effects in many tumor cell lines and sensitizes 

tumor cells to radiation and chemotherapy. Perifosine has 

also shown efficacy and tolerability in phase I clinical tri-

als.102 However, the lack of objective responses as a single 

agent has been observed in several recent phase II trials in 

patients with malignant melanoma, prostate cancer, head 

and neck cancer, and pancreatic adenocarcinoma.101 Phase 

II trials with perifosine combined with radiotherapy, chemo-

therapy or other anticancer agents, such as imatinib mesylate 

and trastuzumab, are ongoing.100 In the last ASCO annual 

meeting, preliminary results from a phase I study from a 

multicenter trial of perifosine plus in patients with advanced 

solid tumors were reported. Accrual is in the last cohort. To 

Table I Akt signaling deregulation in tumors.  Association with resistance to treatment

Alteration Tumor

increase in Akt protein/activity, 23%–50%114

PTeN mutation/loss, 37%115

Pi3K alteration, 4%116

Lung

increase in Akt protein/activity, 38%117

PTeN mutation/loss, 31%118

TSC1/TSC2 alteration119

Kidney

increase in Akt1 protein/activity, 24%–40%120 
increase in Akt2 protein/activity 90% erbB-2hi121 
PTeN mutation/loss, 15%–41%122

Pi3K alteration, 24–42%123

Breast

TSC1/TSC2 alteration124 Neuroendocrine tumors

increase in Akt1 protein/activity, 34%–50%125 
PTeN mutation/loss, 30%–63%126

Prostate

increase in Akt2 expression, 46%127 
PTeN mutation/loss, 35%128 
Pi3K alteration, 20%–32%128,129

Colon

High Akt activity130 Pancreas

High Akt activity131 

Loss of PTeN132,133

Gastric Cancer

High Akt activity134 
PTeN mutation/loss135

Brain Tumors

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2009:2146

Calvo et al Dovepress

submit your manuscript | www.dovepress.com

Dovepress 

date no unexpected toxicities and clinical activity has been 

noted within the first three cohorts with four of six (67%) 

evaluable patients with advanced cancer achieving at least 

stable disease for more than six months. One partial response 

has been also seen.103

Triciribine phosphate monohydrate (TCN-P; VQD-002, 

VioQuest Pharmaceuticals, Basking Ridge, NJ, USA) is an 

old anticancer agent discovered more than 35 years ago that 

was discontinued due to severe side effects at high doses. 

The discovery of triciribine as a potent and selective inhibi-

tor of Akt has led to renewed interest in its further develop-

ment. VQD-002 works as a pan-Akt inhibitor that targets 

the PH domain of Akt. It inhibits the growth of human 

tumors that overexpress Akt in mice at low doses without 

visible side effects. VQD-002 has demonstrated compelling 

preclinical activity in combination with other targeted 

therapies (trastuzumab and TKIs) in many tumor types, such 

as glioblastoma, lymphomas, refractory leukemia, breast, 

colon, NSCLC, and prostate.104 VQD-002 is in Phase I/IIa 

clinical trials in solid and hematological tumors.101

GSK690693 is an Akt ATP-pocket binder developed by 

GSK with IC
50

 values of 2 nM, 13 nM, and 9 nM against 

Akt1, Akt2, and Akt3, respectively.101 In vitro, GSK690693 

showed a strong additive effect in a variety of tumor cells 

when combined with other anti-target drugs such as lapatinib. 

It also showed significant efficacy in xenograft models from 

ovarian (SK-OV-3), prostate (LNCaP), and breast (BR474, 

HCC-1954) carcinoma cell lines. Phase I clinical trials in 

patients with solid tumors and lymphomas treated with 

intravenous GSK690693 are underway.105,106

XL418 is an orally active and low-nanomolar dual Akt and 

p70 S6K inhibitor developed by Exelisis Inc. (San Francisco, 

CA, USA) that also acts as an ATP-pocket binder.101 It has 

already demonstrated good in vivo efficacy in several xenograft 

models, including lung (A549) and breast adenocarcinoma 

(MCF7) tumor cell lines as a single agent or in combination 

with chemotherapeutic drugs such as paclitaxel. It has also 

been shown to enhance apoptosis in combination with TKIs 

that target EGFR, HER2, and VEGFR. A phase I clinical trial 

with this drug is ongoing.

Therefore, we can see that perifosine and VQD-002 

block Akt activation through their interaction with the PH 

domain of Akt,101 whereas GSK690693 and XL418 inhibit 

the kinase activity of the active Akt through binding to its 

ATP pocket.

Treatment with pan-Akt inhibitors has shown unexpected 

toxicity. One of these side effects includes hyperglycemia. 

GSK690693 leads to increased blood glucose and insulin 

levels, although these return to baseline levels as the 

circulating drug concentration decreases. This side effect was 

also observed in clinical trials with perifosine and triciribine 

phosphate.101 The hyperglycemia induced by these inhibitors 

is consistent with the phenotype of the Akt2 knockout mice.107 

Another pan-Akt inhibitor developed by Abbott, a series of 

3,5-disubstituted pyridines (A-443654 and A-6745639), was 

reported to cause severe hypotension in rats and dogs that 

could be partly due to inhibition of other kinases.100

Regarding the feedback mechanism mediated by IGF1-R, 

the inhibition of Akt or mTOR complex 1 leads to subse-

quent suppression of phosphorylation of p70 S6K, which 

inhibits the phosphorylation and subsequent inactivation of 

insulin receptor substrate 1 (IRS-1) by p70 S6K. Activation 

of IRS-1 promotes the insulin-stimulated activation of Akt 

via PI3K.12,101,108–110 Therefore, this Akt activation might 

attenuate the therapeutic effects reached with the mTOR 

complex 1 inhibitors, although the combination rapamycin 

analogs with therapies that simultaneously prevent subsequent 

Akt activation (pg, MAbs against IGF1-R, and others) might 

be more effective. In this sense, significant synergy between 

mTOR inhibitors and anti-TKR drugs has also been observed.101 

In fact, dual inhibition with the mTOR inhibitor everolimus 

combined with a monoclonal antibody against IGF-1R results 

in a supra-additive growth inhibitory effect both in vitro and 

in vivo in breast cancer models.13 Clinical studies with this 

combination in breast cancer patients are planned.

The search for small molecule inhibitors that interact with 

the allosteric site of Akt represents a new frontier in drug 

discovery. In this regard, Merck and Co, Inc. (Whitehouse 

Station, NJ, USA) has synthesized allosteric isoform-selective 

Akt inhibitors that are able to inhibit Akt kinase activity (like 

the ATP pocked binders) and in addition the activation of Akt 

by phosphorylation.101 In this setting, the activation of Akt 

via the feedback mechanism would be abolished. Therefore, 

these allosteric Akt inhibitors should be more efficient than 

the ATP-pocket binders in attenuating Akt activity. However, 

preliminary studies have revealed that the effect of single 

isoform inhibition is not superior to the simultaneous inhibi-

tion of Akt1 and Akt2 with pan-Akt inhibitors.101

Another trend in this area is the search for novel Akt 

inhibitors that bind to other sites of Akt, based on the fact 

that activity and function of Akt are also regulated by many 

interacting proteins.101 Akt-in is a peptide composed of 

15 amino acids designed to mimic the interaction between 

Akt and a physiological coactivator, T-cell leukemia/

lymphoma 1 (TCL1). The Akt-in sequence encompasses a 

portion of the TCL1 protein that binds Akt in its PH domain 
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and inhibits Akt kinase activity and membrane translocation 

in cell lines. It also inhibits tumor cell proliferation in 

preclinical models but has poor oral bioavailability and 

cellular penetration. Other approaches use the consensus 

protein sequence preferred by Akt to develop pseudopeptide 

substrates that have been shown to inhibit Akt and the growth 

of cancer cells in vitro.111,112

Akt antisense inhibitors that block Akt translation are 

also being developed. RX-0201 is a 20-mer oligonucleotide 

with a sequence complementary to that of Akt-1 mRNA that 

inhibits the expression of Akt-1 in tumor cell lines and bears 

significant in vitro and in vivo anticancer activity with good 

safety. A phase I trial with RX-0201 that aimed to determine 

the maximum tolerated dose and pharmacokinetic and safety 

profile of RX-0201 was reported at the last ASCO meeting 

and phase II clinical trials are being planned.113

Summary
A more in-depth knowledge of the molecular pathogenesis 

of cancer has led to the discovery of new tumor targets. 

These are aimed at targets located on the cell membrane and 

inside the cell. The newly approved target-based anticancer 

agents (erlotinib, gefitinib, lapatinib, trastuzumab, cetuximab, 

sunitinib, sorafenib, imatinib, dasatinib, and temsirolimus) 

have not only shown efficacy in terms of response rate and 

progression-free survival, but also a good safety profile.

The PI3K/Akt pathway emerges as one of the most 

promising targets in the immediate future. Pharmaceutical 

companies are developing new agents against this pathway. 

Hopefully, these new agents will become part of the anti-

tumor armamentarium.
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