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Background: M2 macrophages are crucial components of tumor microenvironment that

frequently associated with the resistance of therapeutic treatments in human cancers, but their

role in the chemosensitivity of colorectal cancer (CRC) to 5-fluorouracil (5-FU) is still obscure.

Methods: In our study, we clarified the biological functions of M2 macrophages and their

mechanism on the chemosensitivity of CRC cells to 5-FU. Then, we analyzed the correlation

between CCL22 and CD68+ and CD163+ tumor-associated macrophages (TAMs), and

further elucidated the prognostic value of CCL22 and CD163+ M2 macrophages in clinical

CRC samples.

Results: M2 macrophages decreased the inhibitory effect of 5-FU on CRC cells migration

and invasion by secreting CCL22, and declined the apoptosis induced by 5-FU. Treated with

a neutralizing anti-CCL22 antibody destroyed these effects. We further illuminated that M2

macrophages regulated 5-FU resistance of CRC cells through epithelial-mesenchymal transi-

tion (EMT) program, PI3K/AKT pathway, and caspase-mediated apoptosis. Clinically,

CCL22 was found to have elevated expression in CRC tissue samples, and was positively

associated with CD163+ TAMs. Furthermore, the patients with higher CD163+ M2 macro-

phages and higher expression of CCL22 in CRC tissues had a lower overall survival (OS)

rate compared with lower ones.

Conclusion: Our findings indicate that M2 macrophage regulated 5-FU-mediated CRC

chemoresistance via the EMT program, PI3K/AKT pathway, and caspase-mediated apoptosis

by releasing CCL22.

Keywords: M2 macrophages, colorectal cancer, 5-fluorouracil, chemotherapy resistance,

CCL22

Introduction
Colorectal cancer (CRC) is one of the most prevalent malignancies and the second

leading cause of cancer-related deaths worldwide.1 This highly invasive disease is

characterized by hepatic or pulmonary metastasis, and poor prognosis.2 The stan-

dard treatment for CRC is based on 5-fluorouracil (5-FU) regimen (oxaliplatin,

irinotecan, and cetuximab).3 Although adjuvant chemotherapy before and after

operation has been proved to increase patients’ survival, however, 5-FU resistance

is still the most important problem to affect the efficiency of chemotherapy in CRC.

So far, the specific mechanism of 5-FU resistance has not yet been elucidated.

Therefore, getting a better understanding of the molecular mechanisms to 5-FU

resistance is rather critical for improving the prognosis of CRC patients.
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Tumor microenvironment consists of a variety of tumor

cells and stromal cells like endothelial cells, mesenchymal

stem cells, as well as tumor-associated macrophages

(TAMs), which provides support for tumor progression.4

As the most important components of the tumor microenvir-

onment, TAMs has been shown to play a pivotal role in

tumor progression and chemoresistance.5–7 Macrophages

are plastic cells that undergo different functional reprogram-

ming depending on various environmental cues.8 Generally,

TAMs can be divided into two distinct polarized types: the

classically activated (M1 macrophages) and the alternative

activated (M2macrophages) phenotypes.9 Rather than acting

anti-tumor effect, M2 macrophages express high level of

hemoglobin scavenger receptor (CD163) and anti-

inflammatory cytokines (IL-10) to favor tumor cell

progression.10 The M2 macrophages promote multiple

tumors progression by enhancing proliferation, invasion,

metastasis, angiogenesis, and immunosuppression.11,12

There is increasing evidence that M2 macrophages can med-

iate tumor chemoresistance, and immunotherapy against M2

macrophages might be a novel combination for cancer

treatment.13 However, the detailed interaction and molecular

mechanisms between chemoresistance and M2 macrophages

remain unclear.

Based on the above research status, we speculated that

cytokines or chemokines released from M2 macrophages

might affect the efficiency of 5-FU treatment on CRC cells.

In the present study, we investigated the mechanisms of M2

macrophages in the development of resistance to 5-FU

chemotherapy, and the results revealed a significant role of

CCL22 derived from M2 macrophages in these processes.

Materials and methods
Patients and tissue samples
Primary CRC tissue samples were obtained from 68

patients who underwent curative resection at Zhongnan

Hospital of Wuhan University (Wuhan, China). All

included patients were identified as adenocarcinoma of

colorectal by histopathology and had available survival

data. Moreover, all patients were devoid of neoadjuvant

chemotherapy or radiotherapy before surgical resection

and did not be diagnosed with autoimmune diseases.

Formalin-fixed, paraffin-embedded (FFPE) cancer tissue

specimens were obtained from these patients after surgery.

This study was conducted in accordance with the

Declaration of Helsinki, and all related procedures were

approved by the ethics committee of Zhongnan Hospital of

Wuhan University. All included patients provided written

informed consent.

Immunohistochemistry
To examine the level of heterogeneous macrophages and

CCL22 in CRC tissue, paraffin-embedded cancer samples

were serially sectioned at 4 μm thickness. Antigen retrieval

was performed by a pressure cooker for 30 mins in

0.01 M citrate buffer (pH 6.0), followed by treatment with

3% hydrogen peroxide for 5 mins. Specimens were incu-

bated with monoclonal antibodies against human CD68

(1:500; Abcam, USA), CD163 (1:50; Abcam, USA), and

CCL22 (1:200; CST, USA) overnight at 4 degree, followed

by an incubation with secondary antibody (HRP-labeled

anti-mouse antibody, DAKO). For negative control, isotype-

matched antibodies were applied. After washing with PBS,

the sections were visualized using diaminobenzidine (DAB)

system and hematoxylin re-dying, observed and analyzed

with microscope. Three high-magnification fields were cho-

sen randomly under optical microscope and more than

3×100 cells were analyzed. Sections were scored and

grouped with positive staining rate and intensity. The posi-

tive staining rate was defined according to the proportion of

positively stained cancer cells: “negative” was 0, “1–25%”

for 1, “26–50%” for 2, “51–75%” for 3, “76–100%” for 4.

The score of staining intensity: “negative” was 0, “1+” for

1, “2+” for 2, “3+” for 3. Patients were divided into two

groups according to the scores “positive staining rate

score” × “staining intensity score”. Equal or less than 3

were classified into low expression, more than 3 were

classified into high expression group.

Cell culture
The human monocyte cell line THP-1 and CRC cell lines,

DLD1 and HT29 cells were purchased from the Chinese of

Sciences in Shanghai. Cells were cultured in RPMI 1640

medium (Gibco) with 10% fetal bovine serum (FBS)

(Gibco) at 37°C in a humidified atmosphere with 5%

CO2. Macrophages and CRC cell lines co-cultivation

were conducted using the non-contact co-culture transwell

system (Corning). For cell growth, 3×105 THP-1 cells

were seeded in 0.4 μm sized pore inserts and polarized

into M2 macrophages. Inserts containing M2 polarized

THP-1 macrophages were transferred to 6-well plate

seeded with DLD1 or HT29 cells (1×105 cells per well)

in advance and co-cultured. After 48 hrs of co-culture,

CRC cells were harvested for further analyses.
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Macrophage generation and

differentiation
The protocols of M2 macrophages polarization from THP-1

were performed according to previously established

method. Briefly, to obtain M2 phenotype, THP-1 cells

were first treated with 100 nM PMA (Sigma-Aldrich) for

24 hrs, followed by cultured by the addition of IL-4

(Invitrogen) and IL-13 (R&D) (20 ng/ml) for another

24 hrs.

RNA isolation and quantitative real-time

PCR (RT-PCR)
The total RNA was isolated using the Trizol Reagent

(Invitrogen) according to the manufacturer’s instructions.

After detection of RNA concentration, 1 μg of total RNA

was reversely transcribed with random primers, using the

PrimeScript™ RT reagent kit (Toyobo, Osaka). RT-PCR was

performed using the SYBR-Green PCRMaster Mix (Takara).

Relative expression was calculated using the 2−ΔΔCt method.

Quantification of chemokine by

enzyme-linked immunosorbent assay

(ELISA)
The concentrations of chemokine were estimated for each

experimental condition by ELISA, using commercial kits

purchased from R&D Systems (Minneapolis, USA),

according to the manufacturer’s instructions.

Cell counting kit-8 (CCK-8) assay
CCK-8 assays were performed to determine the viability of

cells. Briefly, CRC cells, after corresponding treatment in

the study, were seeded into 96 well plates, cultured over-

night. Subsequently, 10 μL CCK-8 solution was added into

100 μL culture medium in each well and the mixture was

incubated according to the manufacturer’s instructions.

Colony formation
For colony formation detection, 500 cells were planted in

6-well plates and cultured for 2 weeks. Cells were then

fixed with 4% paraformaldehyde and stained with 0.5%

crystal violet. The assay was performed three times for

each treatment.

Wound healing assay
A wound-healing assay was applied to assess the migration

ability of CRC cells following co-cultured with M2

macrophages. Cells were grown to 90–100% confluence in

6-well plates, and a wound was scratched by a plastic

pipette tip. In order to remove cellular debris, the remaining

cells of the 6-well plates were washed away in PBS and

incubated with serum-free medium at 37°C. After 24 hrs,

migrating cells at the wound front were photographed. The

area of the wound was measured with Image J software.

Invasion assay
Cell invasion assays were performed using 24-well

Transwells (8 µm pore size; Corning) pre-coated with

Matrigel (Falcon 354480; BD Biosciences). In total,

1×105 cells were suspended in 500 µl RPMI 1640 contain-

ing 1% FBS and added to the upper chamber, while 750 µl

RPMI 1640 containing 10% FBS was placed in the lower

chamber. After 48 hrs of incubation, Matrigel and the cells

remaining in the upper chamber were removed using cot-

ton swabs. Cells on the lower surface of the membrane

were fixed in 4% paraformaldehyde and stained with 0.5%

crystal violet. Cells in 5 microscopic fields (at ×200 mag-

nification) were counted and photographed. All experi-

ments were performed in triplicate.

Western blot
Cells were lysed using a RIPA buffer, including a protease

inhibitor cocktail (Thermo Scientific, USA). The proteins

were separated by SDS-PAGE gels and transferred to

PVDF membranes (Millipore, USA). After blocking with

5% non-fat milk, the membranes were incubated with

primary antibodies at 4°C overnight. The membranes

were washed three times and incubated for 2 hrs at room

temperature with HRP-conjugated secondary antibodies.

The antibodies used were the anti-E-cadherin (1:1,000,

Cell Signaling), the anti-Vimentin (1:1,000, Cell

Signaling), the anti-snail (1:1,000, Cell Signaling), the

anti-PI3K p85 (1:1,000, Abacm), the anti-phospho-PI3K

p85 (1:1,000, Cell Signaling), the anti-cleaved caspase-3

(1:1,000, Cell Signaling), the anti-cleaved caspase-8

(1:1,000, Cell Signaling), the anti-PARP (1:1,000,

Abacm), the anti-total-AKT (1:1,000, Abacm), the anti-

phospho-AKT (1:1,000, Cell Signaling), and anti-β-actin
antibody (1:5,000, Santa cruz). Proteins were detected

using a Bio-Rad ChemiDoc XRS+ System. Bio-Rad

Image Lab software was used for densitometric analysis.

Cell apoptosis assay
Apoptosis cells were stained using Annexin V-FITC apop-

tosis detection kit (Caltag laboratories, USA). The cells
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were incubated with 5 mL of Annexin V and 5 mL of PI

for 15 min at room temperature as recommended by the

manufacturer, and the cells were analyzed with the FACS

flow cytometer.

Statistical analysis
Patient characteristics were shown as count and percentages

for categorical data, and median with ranges (minimum,

maximum) or mean ± standard deviation (mean ± SD) for

continuous data. Comparisons among groups were analyzed

using Kruskal–Wallis tests with pair-wise comparisons or

Mann–Whitney U test if the data were not normally dis-

tributed. The Pearson χ2 test or Fisher’s exact test was used

to compare qualitative variables. Correlations were ana-

lyzed by Spearman correlation. Kaplan–Meier method was

used for survival analysis and drawing the survival curves,

and difference among patients’ subgroups was calculated by

log-rank test. All statistical analyses were performed with

SPSS statistical software (version 21.0, IBM SPSS) and

GraphPad Prism software (version 6.0, GraphPad

Software) for Windows. Two-sided P<0.05 was considered

as statistically significant.

Results
M2 macrophages induce the resistance of

CRC cells to 5-FU
Previous research revealed that M2 macrophages are mainly

TAMs subtypes infiltrated in CRC microenvironment. We

first generated M2 macrophages from human monocyte cell

line THP-1 treated with IL-4 and IL-13. The M2 macro-

phages were validated on the basis of M2 macrophage

surface antigens, including CD206, CD163, arginase-1

(Figure 1A). In addition, M2 macrophages related-gene

expression was detected using RT-PCR (Figure 1B). The

expression of classic M2 markers (CD163, CD206, IL-10,

TGF-β, CD204, Arg1) was increased compared with unac-

tivated macrophages (PMA-treated THP-1), indicating that

we successfully generated M2 macrophages from human

monocyte cell line THP-1.

In order to clarify the optimal dose for 5-FU applica-

tions, the CRC cell lines DLD1 and HT-29 were treated

with various concentrations of 5-FU for different time

points (12, 24, and 48 hrs). CCK8 assay showed the cell

viability decreased with increasing concentration and con-

tinued time (Figure 1C). In the subsequent drug resistance

experiments, we applied the following dosage of 5-FU:

DLD1 (10 µg/ml, 48 hrs), HT-29 (10 µg/ml, 48 hrs). Then,

we co-cultured M2 macrophages with CRC cells in a non-

contact transwell system, which allowed the exchange of

soluble factors, but prevented direct cell-cell contact. After

co-culture, these CRC cells were treated with 5-FU for 48

hrs. Inhibition rate assays demonstrated that M2 macro-

phages enhanced DLD1 and HT-29 cells resistance to

5-FU (Figure 1D), together with an enhanced colony

forming ability (Figure 1E). These results demonstrate

that M2 macrophages mediated the resistance of CRC

cells to 5-FU.

CCL22 secreted from M2 macrophages

induces the resistance of CRC cells to

5-FU
Previous studies have demonstrated that chemokine secre-

tion represents the major functional response of macro-

phages; it was speculated that a signaling mechanism

between M2 macrophages and CRC cells exists that

accounts for the previously described chemo-

resistance.14,15 We then applied RT-PCR-based chemokine

array analysis to globally identify inflammatory mediators,

and found that the most abundant chemokine was CCL22

in M2 macrophages compared with control (Figure 2A).

ELISA assay further showed that CCL22 levels were sig-

nificantly increased in the media from M2 macrophages

compared to those from PMA-treated THP-1 macrophages

(Figure 2B). As previous study has identified CCL22 as an

independent marker affecting the prognosis of gastric can-

cer patients with 5-FU-based adjuvant chemotherapy,12

therefore, we focused on CCL22 in the further studies.

To demonstrate the role of CCL22 in the resistance of

CRC cells to 5-FU, CRC cells were treated with an exo-

genous recombinant CCL22 for 48 hrs, and then treated

with 5-FU for another 48 hrs. CCK8 and colony formation

assay demonstrated that CCL22 significantly decreased the

5-FU sensitivity of CRC cells, and increased relative sur-

vival rate (Figure 2C and D). Furthermore, a CCL22 neu-

tralizing antibody was used to confirm M2 macrophages

induced the resistance to 5-FU in CRC cells through

CCL22. After applying CCL22 neutralizing antibody in

M2 macrophages co-culture medium, the CRC cells were

treated with 5-FU for 48 hrs. The cell viability assays

demonstrated that CCL22 neutralizing antibody decreased

M2 macrophages-meditated CRC cells resistance to 5-FU

(Figure 2C), together with a reduced colony formation

(Figure 2D). These results demonstrate that M2 macro-

phages-derived CCL22 is one of the major chemokines
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that may mediate the interplay between M2 macrophages

and CRC cells.

M2 macrophages inhibit apoptosis in CRC

cells by affecting expression of

apoptosis-associated proteins
Various genetic, functional, and biochemical researches

revealed that CRC cells are resistant to 5-FU by utilizing

intrinsic and acquired resistance to apoptosis that is a critical

process of reprogrammed cell proliferation and death. 5-FU

exerts anti-tumor function mainly to mediate apoptosis of

tumor cells. Therefore, we supposed that M2 macrophages

reduced the effect of 5-FU through the regulation of apoptosis

signaling pathway. Annexin V/PI double staining showed that

M2 macrophages reduced 5-FU-induced apoptosis compared

to 5-FU treatment group (Figure 3A). CCL22 neutralizing

antibody increased the number of apoptotic cells induced by

5-FU compared to M2 macrophages coculture to the contrary

(Figure 3A). Considering the biochemical features of
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apoptosis including the activation of caspase, western blot was

used to detect key pro-apoptotic proteins such as cleaved

caspase-3, cleaved caspase-8, and cleaved PARP, which were

the downstream of caspase-dependent apoptosis signaling

pathway. Coculture of CRC cells with M2 macrophages pro-

tected CRC cells from 5-FU-induced apoptosis by inhibiting

the activation of cleavage of caspase-3, cleaved caspase-8, and

cleaved PARP, and a contrary effect was exhibited in applied

CCL22 neutralizing antibody cells (Figure 3B).

M2 macrophages regulate the CCL22/

PI3K/AKT signaling pathway to enhance

the anti-apoptotic ability of CRC cells
The ATP-binding cassette transporters (ABC transpor-

ters) proteins play a key role in chemotherapy resistance

for tumor therapy. Eight ABC transporter genes, includ-

ing ABCG1, ABCC1, ABCG2, and so on, were applied

for RT-PCR detection to determine whether M2 macro-

phages affected chemoresistance by regulation of ABC
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transporter genes expression. However, none of the

genes was differently expressed in DLD1 cells co-

cultured with M2 macrophages compared with DLD1

cells alone (Figure 4A), suggesting that M2 macro-

phages have no regulation on the expression of ABC

transporter genes in CRC cells.

Previous studies revealed that the PI3K/AKT pathway

plays a critical role in regulation of cell proliferation,

progression, apoptosis, angiogenesis, and

chemoresistance.16,17 Therefore, we further investigated

the potential role of PI3K/AKT pathway in M2 macro-

phages-derived CCL22-mediated 5-FU resistance in CRC

cells. The results found that CRC cells co-cultured with

M2 macrophages increased the expressions of p-PI3K and

p-AKT, whereas treatment of CCL22 neutralizing antibody

inhibited co-cultured-induced expressions of p-PI3K and

p-AKT ( Figure 4B). Furthermore, treatment of

LY294002, an AKT inhibitor, markedly blocked M2

macrophages-regulated sensitivity of CRC cells toward

5-FU and strikingly increased apoptosis (Figure 4C).

M2 macrophages regulate 5-FU-mediated

inhibition of cell migration and invasion

through epithelial-mesenchymal transition

(EMT) in CRC cells

Tumor metastasis is commonly responsible for CRC-related

mortality, and potential functions of anticancer drugs such

as 5-FU include inhibition of tumor invasion and metastasis.

To investigate whether M2 macrophages coculture contri-

butes to 5-FU resistance by mediating EMT to enhance cell

migration and invasion, wound healing assay and transwell

invasion assay were performed. As shown in Figure 5A, M2

macrophages coculture reversed the inhibition of migration

induced by 5-FU, which was also confirmed by transwell

assay (Figure 5B). As EMT is the basis of tumor metastasis,

we then detected the expression level of EMT-related pro-

teins (vimentin, snail, and E-cadherin) in CRC cells treated

with different conditions. The results showed that 5-FU

significantly increased the expression of E-cadherin and

reduced the expression of snail and vimentin after applying
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5-FU in CRC cells culture medium, and these effects could

be reversed by M2 macrophages (Figure 5C). Collectively,

these results indicate that M2 macrophages induce EMT to

offset 5-FU-mediated inhibition of cell migration and inva-

sion in CRC cells.

Relationship between CCL22 expression

and M2 macrophages in CRC tissues
Firstly, we analyzed the expression of CCL22 in CRC

tissues and adjacent non-tumor tissues by RT-PCR; the

result found that the expression of CCL22 was signifi-

cantly increased in CRC tissues compared to that in para-

cancer tissues (P<0.001, Figure 6A). Then, the expression

of CCL22, CD68+ TAMs, and CD163+ TAMs in CRC

tissues was also examined by IHC (Figure 6B) and further

analyzed the association of CCL22 with TAMs in CRC

tissues. Interestingly, we found that CCL22 expression

was more abundant in areas with a high CD163+ TAMs

count than in areas with a low CD163+ TAMs count

(r=0.536, P<0.001, Figure 6D). There was no correlation

between the expression of CCL22 and CD68+ TAMs in

CRC tissues (r=0.231, P=0.058, Figure 6C). Furthermore,

we found that patients with higher CD163+ M2 macro-

phages and higher expression of CCL22 in CRC tissues

had a lower overall survival (OS) rate compared with

lower expression ones (P=0.006, Figure 6E; P<0.001,

Figure 6F). These data indicate CCL22 could be used as

an effective biomarker for predicting 5-FU resistance and

prognosis in CRC.

Discussion
In the past decade, the incidence of CRC has

increased year by year.1 Although some progress with

the clinical application of molecule-targeted drugs has

been made in the treatment of CRC, more efforts are

needed to reduce the chemoresistance and improve the
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treatment effect.18 5-FU is widely used for the clinical

treatment of various malignant tumors, such as

colorectal,19 breast,20 and gastric cancers.21 However, dur-

ing chemotherapy in CRC patients, 5-FU resistance often

occurs.22 Therefore, it is necessary to thoroughly investi-

gate the specific molecular mechanisms of CRC 5-FU

resistance, which is important for reversing the treatment

of chemoresistance.

Recently, accumulating evidence have suggested that the

tumor microenvironment plays an important role in the devel-

opment of tumor chemoresistance.23,24 M2 macrophages are

prominent component in the CRC microenvironment

associated with tumor progression and poor prognosis.25

However, the molecular mechanism for intercellular commu-

nication between M2 macrophages and CRC cells response to

5-FU treatment is poorly understood. In our study, we found

that there was a positive correlation between CCL22 expres-

sion and CD163+M2macrophages distribution in CRC tissue.

Therefore, we speculated this chemokine CCL22, generating

by M2 macrophages, could play a critical role in tumor pro-

gression and chemoresistance. Furthermore, in vitro experi-

ments demonstrated our clinical hypothesis that M2

macrophages could mediate CRC cells resistance to 5-FU by

secreting CCL22. In contrast, Malesci et al. demonstrated that
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CD68+ macrophages could increase the combinatorial treat-

ment response of 5-FU in stage III CRC.26 CD68 was a pan-

macrophage marker which did not represent the different

TAMs subpopulations. The sub-classification of TAMs is

variably represented in distinct tumor microenvironments,

and expression of M1 and M2 polarization markers are con-

siderably heterogeneous in CRC.27 We therefore considered

that these conflicting conclusions could be the result of
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macrophages heterogeneity, meant that the way to evaluate the

effect of CD68+ TAMs on chemoresistance was lack of vari-

ety. Currently, the phenotypic changes of macrophages after

phagocytosis of tumor cells, especially antibody-dependent

cellular phagocytosis (ADCP), and the effects of such changes

on immune effector cells are still poorly understood. Recently,

Song et al. reported that ADCP could induce immunosuppres-

sion ofmacrophages, and immune checkpoint inhibitors (ICIs)

against this immunosuppression could promote the therapeutic

effect of anti-tumor antibodies.28 Especially, trastuzumab acts

as a neoadjuvant therapy to up-regulate PD-L1 and IDO

expression in TAMs in HER2-expressing breast cancer

patients and is associated with poor response to

trastuzumab.28 These findings provide supporting evidence

for the synergistic therapeutic effect of ICIs and anti-tumor

targeted therapy in preclinical level, which might provide new

ideas for exploring the effects of targeted therapeutic drugs

(such as cetuximab, panitumumab) for tumor immune micro-

environment and immunotherapy in CRC.

Previously, various studies have shown that CCL22

plays an important role in the regulation of tumor micro-

environment. Wu et al. observed that CCL22 expression in

gastric cancer tissues was closely associated with high

infiltration of Foxp3+ Tregs, which formed the immuno-

suppression of tumor microenvironment.29 Takumi et al.

reported similar results that tumor-secreted CCL22 plays

a critical role in immunosuppression by binding to Foxp3+

Tregs, the surface of which was highly expressed CC

chemokine receptor 4 (CCR4).30 Collectively, most of

these researches on CCL22 in tumor microenvironment

had focused on the regulation of Foxp3+ Treg recruitment.

Herein, we demonstrated that M2 macrophages trans-

mitted CCL22 to cancer cells that prompted the develop-

ment of 5-FU resistance and EMT program in CRC cells.

Similar to our findings, recent studies showed that CCL22

and its receptor CCR4 could mediate tumor migration and

invasion in breast and gastric cancer cells.31,32

A consistent finding was also reported in a study where

M2 macrophage-derived CCL22 was proven to enhance

tumor migration capacities and correlated with venous

infiltration in hepatocellular carcinoma patients.33 Our

study also defined that CCL22, as an adverse prognostic

biomarker, could be applied to stratify CRC patients. Of

special interests, CCL22 could be used as a new molecular

biological factor to evaluate tumor chemotherapy and pro-

gression. Thus, we advocated the application of CCL22

expression to better regulate the adjuvant chemotherapy

management in pre-operational and post-operational

evaluation.

The PI3K/AKT pathway, downstream of cytokine

receptor, EGFR, and receptor tyrosine kinase, is the most

commonly activated signaling pathway in various solid

tumors, which is involved in tumor progression and

chemoresistance.16,17 The PI3K/Akt pathway contributes

to chemoresistance in different types of cancers by regu-

lating proliferation, apoptosis, autophagy, angiogenesis,

and EMT.34 Cell survival pathways such as EGFR or

PI3K/AKT have been reported to be activated by che-

motherapy drugs like docetaxel, paclitaxel, and 5-FU.35,36

Similar to the results from esophageal squamous cell car-

cinoma cells (SCCs),35 our results showed that 5-FU

inhibited CRC cell growth with decreased phosphorylation

of PI3K and AKT. Because the activated PI3K/AKT path-

way could partly counteract the inhibition of cell growth,

combinatorial cocultured with M2 macrophages and treat-

ment with 5-FU that activates the PI3K/AKT pathway will

impair the inhibition effect of 5-FU. Our results also

demonstrated that CCL22 secreted from M2 macrophages

offset with the anti-tumor effect of 5-FU by activating the

PI3K/AKT pathway. Thus, studying the interaction

between tumor cells and TAMs in tumor microenviron-

ment might offer novel clues to immunological therapy.

With the research continuing to deepen, we believe that

the use of anti-CCR4 monoclonal antibodies or blocking

of the CCL22/PI3K/AKT pathway may be a potential

treatment for CRC therapy in the future.

Conclusion
Taken together, our findings indicate that M2 macro-

phages regulate 5-FU-mediated chemoresistance via the

EMT program, PI3K/AKT pathway, and caspase-

mediated apoptosis with the release of CCL22 in

CRC. Our study introduces M2 macrophages as impor-

tant components to the field of chemoresistance and

indicates that the CCL22/PI3K/AKT pathway may be

a potential therapeutic target for combating 5-FU-

induced chemoresistance in CRC.
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