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Abstract: Identification of genes involved in the aging process is critical for understanding 

the mechanisms of age-dependent diseases such as cancer and diabetes. Measuring the mutant 

gene lifespan, each missing one gene, is traditionally employed to identify longevity genes. 

While such screening is impractical for the whole genome due to the time-consuming nature 

of lifespan assays, it can be achieved by in silico genetic manipulations with systems biology 

approaches. In this review, we will introduce pilot explorations applying two approaches of 

systems biology in aging studies. One approach is to predict the role of a specific gene in the 

aging process by comparing its expression profile and protein–protein interaction pattern with 

those of known longevity genes (top-down systems biology). The other approach is to construct 

mathematical models from previous kinetics data and predict how a specific protein contributes to 

aging and antiaging processes (bottom-up systems biology). These approaches allow researchers 

to simulate the effect of each gene’s product in aging by in silico genetic manipulations such 

as deletion or over-expression. Since simulation-based approaches are not as widely used as 

the other approaches, we will focus our review on this effort in more detail. A combination of 

hypothesis from data-mining, in silico experimentation from simulations, and wet laboratory 

validation will make the systematic identification of all longevity genes possible.
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Introduction
Aging is the age-dependent decline of cellular and organismal functions. While this 

decline is not selected by evolution and there are no genes dedicated to longevity, 

alterations of some genes with pleiotropic phenotypes shorten or extend the life span 

and led to the proposal of multiple aging pathways. SIR2 is one example of such 

longevity gene. Deletion of SIR2 shortens the life span and elevated expression of 

SIR2 extends the life span of yeast,1,2 nematodes,3 and flies.4 While the deacetylase 

function of SIRT1 (a mammalian homolog of yeast SIR2) protects heart cells from 

reactive oxygen species (ROS) damage,5 improves insulin sensitivity and decreases 

plasma glucose,6 suppresses colon tumor growth7 and exerts multiple other beneficial 

effects for cells, feeding midlife mice with resveratrol, which upregulates the expres-

sion of SIRT1, does not extend the life span.8 Therefore, identification of more genes 

involved in aging is an emergent task for aging researchers since the onset of most 

life-threatening disease are age-dependent.

At the post-genome era, completion of the genome-wide knock-out strains in yeast 

or knock-down strains in nematodes makes it possible to screen the whole genome 

for genes involved in the aging process. Multiple screens have been performed for 
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Caenorhabditis elegans, yielding non-SIR2 aging-related 

genes.9–11 Kaeberlein and Kennedy’s12 team screened a sub-

set of the yeast knock-out collection and discovered other 

longevity genes including TOR1, whose product negatively 

controls autophagy, a vacuole-/lysosome-dependent degrada-

tion of damaged or obsolete materials. Our group conducted 

a partial screen of autophagy mutants and discovered that 

intra-vacuolar degradation of lipids is a key step in the anti-

aging process.13 Intriguingly, these different screens identified 

different aging genes, indicating the need for a more exhaus-

tive screen. However, the labor intensity of the life span 

assays and the interactions of multiple proteins during aging 

make it difficult to exhaustively identify longevity genes by 

traditional screening of single or double knock-out or knock-

down mutants. A revolutionary strategy for identification of 

longevity genes is thus in demand.

The vast amount of ‘-omics’ data allowed us to establish 

mathematical models to simulate genuine intracellular net-

works and to estimate the effect of each gene on longevity 

with in silico approaches and then test their effect with real 

experiments. Genome-wide studies revealed networks of 

various types including regulatory networks, physical interac-

tion networks, metabolic networks, etc. These networks can 

impact aging studies at multiple levels. First, these networks 

themselves provide ample information about the relationship 

between aging genes and other genes. Second, partitioning 

proteins in networks into clusters based on graph theories can 

predict functions of proteins since proteins with similar func-

tions tend to form clusters. Third, integration of the networks 

with kinetics data into mathematical models can simulate the 

age-dependent variation of the function of aging proteins. 

Therefore, analyses of the ‘-omics’ data from multiple levels 

will guide the search for longevity genes.

Expression profiling
Comparisons of the genome-wide expression between young 

organisms and old individuals were achieved in multiple 

organisms.14 While this approach revealed which genes are 

up- or downregulated in old individuals, several constraints 

limit the application of this approach in identifying longevity 

genes. Most studies compared tissues from young animals 

and old animals.14 Since tissues from old animals are a combi-

nation of young and old cells, these comparisons likely miss 

some longevity-associated genes. The uni-cellular organism 

budding yeast thus leads the studies on expression profiling. 

Gordon’s group15 compared the expression pattern of repli-

cative aged cells from a long life span mutant (snf4∆) and a 

short life span mutant (sip2∆) of the Snf1p glucose-sensing 

pathway and inferred that aged cells have elevated gluco-

neogenesis. With microanalytic biochemical methods, they 

confirmed that aged cells indeed shift away from glycolysis 

toward gluconeogenesis and energy storage. These results put 

Snf1p in a key position in the process of aging (Figure 1).

A variation of sampling is to compare the expres-

sion of normal and long-lived strains. In budding yeast 

Saccharomyces cerevisiae, Longo’s group identified that sev-

eral stress-responsible transcription factors (Msn2p, Msn4p, 

Gis1p) are highly active in strains (sch9∆, ras2∆, sch9∆) 
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Figure 1 Network linkage of ergosterol metabolism to aging proteins in yeast.  Aging proteins are in green circles; ergosterol synthesizing proteins are in yellow circles; proteins 
linking aging proteins are in grey circles. Solid line: physical interactions; (two lines mean that these two proteins are linked by a third protein); dotted lines: genetic interactions. 
Data were extracted from the Saccharomyces Genome Database (http://www.yeastgenome.org/).  The interaction data was plotted with Cytoscape (http://www.cytoscape.org/). 
The figure shows a diagram re-drawn from the cytoscape image. According to Gene Ontology, there are 31 genes involved in the replicative aging. Pex6p and rad27p are not 
shown in this figure since there is no direct or in-direct links between these two proteins and the network in the figure.
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that had longevity phenotype.16 However, the chronological 

longevity of sch9∆ is not halted by deletion of MSN2 and/or 

MSN4 genes.17 Msn2p and Msn4p are transcription factors 

activated in stress conditions. The combination of micro-

array data, proteomics data, protein-protein interaction data, 

and other -omics data, in another word, studying the inter-

relationship of all the components that comprise a system is a 

trend in identifying genes involved in the aging process.18

Construction and analysis 
of aging networks
Contrary to the reduction biology approaches, systems 

biology provides approaches from the top-down view. 

These approaches can be further divided into data-driven 

(from-omics to model) and hypothesis-driven (from kinetics 

data to mathematical model to predictions) approaches. A cell 

is composed of multiple structural and functional networks. 

The physical interactions of the cytoskeletal network, mem-

brane trafficking network, and protein–protein interaction 

network provide the structural basis of a cell. The logic 

interactions of signal transduction network, gene regula-

tory network, and metabolic network provide the functional 

basis for a cell. Searching for an interesting gene by start-

ing out using the network view is emerging as a profitable 

approach. A group of yeast cell biologists19 constructed a 

protein–protein interaction map for the development of yeast 

cell polarity and predicted the involvement of novel genes in 

this process. They predicted 20 new proteins in cell polarity 

development and confirmed that 13 proteins indeed involves 

in cell polarity by fluorescence microscopy. This pioneering 

work revealed that the systems approach can be a productive 

one in the search for longevity-related genes.

Among different types of networks, the protein–protein 

interaction (PPI) network is the most straightforward one in 

terms of construction and application. By combing the known 

PPIs with the known longevity-related proteins, Budovsky 

and colleagues20 constructed a longevity PPI network. Their 

network predicts many aging-related proteins. For budding 

yeast, several sets of genome-wide protein-protein interac-

tion data are available. Through the years, scientists also 

accumulated vast amount of PPI data for yeast cells (These 

data can be downloaded from the website of Saccharomyces 

Genome Database, http://www.yeastgenome.org/). Analysis 

of the PPI network has multiple potential applications for 

aging studies for the following reasons. First, functions of 

genes are exerted by their protein products. Second, proteins 

in the same functional group tend to form clusters in the PPI 

network.21,22 Third, the PPI network provides a global view 

of the cell and can display the effect of cross-talks among 

different pathways. Fourth, the PPI network of yeast is the 

best-studied system compared with similar studies in other 

organisms.

Cell senescence is the accumulation of molecular 

damages.23 A cell will die when these damages attack to proteins 

that occupy hub positions in network. Thus, in a PPI network, 

most longevity genes are hubs. For example, Sir2p has about 

70 interacting partner proteins. By simply extracting proteins 

interacting with the known longevity genes, we can construct 

an ‘aging network’ (Figure 1). Consistent with Gordon’s 

prediction,15 Snf1p functions as one hub in this aging network 

(Figure 1). Moreover, this network revealed some novel 

features of known aging proteins (genes). This figure shows 

that some longevity proteins are connected through common 

proteins such as Dbf2p and Pmr1p. While Dbf2p is involved 

in mitosis and stress responses,24 Pmr1p is involved in intracel-

lular calcium and manganese homeostasis.25 Since these two 

proteins link several known longevity proteins, it is predictable 

that these two are also involved in aging. Intriguingly, one of 

our mathematical modeling approaches also predicted that 

Pmr1p is involved in longevity (see below).

The constructed aging network could be used to predict 

longevity genes from different angles. One application is to 

integrate one’s interested metabolic pathway into the aging 

network (Figure 1). The synthesis of ergosterol, the yeast 

counterpart of mammalian cholesterol, requires more than 

20 enzymes. These enzymes interact with each other and 

form complexes (Figure 1). As shown in Figure 1, some 

Erg proteins (Erg6p) has more connections than other Erg 

proteins to predicted aging proteins. These connections 

suggest that Erg6p may be more important than other Erg 

enzymes in life span extension. Indeed, we found that dele-

tion of ERG6 produces a strain that has a shorter life span than 

strains missing either ERG3 or ERG5 genes grown on calorie-

restricted medium, a known longevity manipulation.13

A more productive application of the PPI network is the 

prediction of functional protein clusters. One can partition 

proteins in the PPI network into multiple clusters based on 

the connectivity. If the connectivity density of a group of 

proteins is higher than certain threshold or than the connec-

tivity between this group and other proteins, one can assign 

this group into a cluster of functional related proteins.26 

Multiple algorithms can achieve such clustering.27 We 

invented a new algorithm and divided the yeast PPI net-

work into about 200 clusters. Most of these clusters contain 

proteins sharing at least one common function according to 

gene ontology.28 These algorithms allowed us to do in silico 
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genetic manipulations such as gene deletion. Deletion of a 

node from the network corresponds to the knock-out of a 

gene from the genome of an organism. After the in silico 

manipulation, one can use the clustering algorithms to 

analyze the mutated network. If a gene negatively controls 

longevity, deletion of that gene may result in clusters similar 

to clusters caused by SIR2-overexpression, fob1∆ or other 

longevity manipulations. While this perspective is very 

attractive, the static nature of most current PPI networks lim-

its the application. The current PPI networks only represent 

the occurrence of protein-protein interactions; it does not 

include constraints such as where the proteins are located, 

when the proteins are synthesized and activated, etc. Thus, 

several groups are constructing dynamic networks, which 

include locations, time, and intensities of protein-protein 

interactions.29 Other groups are trying to incorporate the 

genome-wide expression data with the PPI network.30 In 

addition to temporal and spatial control of protein activities, 

the molecular heterogeneity during aging is another con-

straint. For example, aged (56-day-old) female rabbits have 

three-fold higher enzyme activities and different isoforms 

of NADP-dependent 17β-hydroxysteroid dehydrogenase 

than young (28-day-old) rabbits.31 The molecular heteroge-

neity should also be considered in constructing the dynamic 

PPI networks. In silico manipulation of the dynamic PPI 

network will allow a researcher to systematically knock-out 

each gene, or combinations of genes from the genome and 

to predict the outcome. Efforts in this direction will be very 

insightful for aging studies.

Aging pathway
Cells respond to environmental and intracellular stresses by 

re-programming the expression of related genes. In addition 

to data-driven approaches (genomics, proteomics, etc), these 

genes can also be identified by mathematical simulation 

and prediction, another aspect of systems biology. Control 

theories can successfully predict the effect of upregulation or 

downregulation of proteins involved in one function.32 At the 

cellular level, when a cell receives a stimulus, it will repro-

gram its metabolic pathways to maintain the steady state. 

Inability to antagonize the stimuli will result in cell death. 

Aging is the process of losing such antagonizing capacities. 

The cytosol of a cell maintains cellular homeostasis including 

redox potential, ionic levels, etc. Disruptions of such home-

ostasis (biomarkers of aging) will initiate damage to cells.

Multiple biomarkers of  cell senescence have been con-

nected with aging to date. These biomarkers include increases 

in cytosolic calcium and ROS levels, which may in turn cause 

mutations in mitochondrial DNA or loss of heterozygosity in 

chromosomal DNA and lead to cell death. Although the cause–

effect relationships for some of these markers are still issues of 

debate, an outline of progression of aging is emerging (Figure 2).

ROS as a marker for cell senescence are generated by mito-

chondria and several other intracellular sources. The electron 
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Figure 2 Cytosolic redox homeostasis and aging. Dotted arrow: potential causing agents.  Arrow: stimulation. ⊥: inhibition. Cell senescence is caused by elevated calcium and/or 
rOS, which are in turn caused by a malfunction in the intracellular redox homeostasis.
Abbreviations: er, endoplasmic reticulum; Gpx, glutathione peroxidase; SOD, superoxide dismutase.
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transport chain of  mitochondria is the main source. Other sources 

include a wide range of extramitochondrial enzymes,33 such as 

NADPH-oxidase and myeloperoxidase, and the endoplasmic 

reticulum, where the superoxide is generated by a leakage of 

electrons from NADPH-cytochrome-P450 reductase.33 In addi-

tion, elevated ROS was caused by elevated redox potentials 

including elevated GSSG levels and NADP+ levels.34

ROS generation has been shown to be modulated by 

calcium. A rise of calcium can increase ROS. On the other 

hand, an elevated ROS may result in an increase in calcium.33 

In mitochondria, it appears that calcium diminishes ROS from 

complexes I and III under normal conditions, but enhances 

ROS when the complex formations are inhibited.35 Deletion 

of yeast cytosolic thioredoxin peroxidase I greatly decreases 

the reduced glutathione (GSH)/the oxidized glutathione 

(GSSG) ratio in mitochondria upon calcium treatment.34 

A low ratio of GSH/GSSG indicates a high oxidative poten-

tial within a cell. These previous observations suggest the 

contribution of cytosolic homeostasis to organelle functions 

and overall cellular redox homeostasis.

Another cell senescence marker is mutations in chromo-

somal DNA or mitochondrial DNA, which has been induced 

by ROS directly or by elevated cytosolic calcium.36 While 

the cytosolic calcium homeostasis is maintained by multiple 

mechanisms, attacks from ROS will decrease the calcium 

buffering capacities of cells.37 The steady state levels of each 

of the markers are balances between forces or metabolites 

that generate and that remove these markers. Therefore, 

fitting the proteins that produce these forces into the aging 

pathway (Figure 2) will shed lights on the aging mechanisms 

and likely provides new routes for aging studies.

Although the ROS theory of aging was proposed by 

Denham Harman in 1950s38 without any knowledge about 

the contributing molecules, recent studies at the molecular 

level revealed a tight association between ROS and aging 

genes.39,40 Deletion of the insulin-like growth factor receptor 

daf-2 extends the life span of C. elegans by two-fold. This 

enhanced longevity depends on a forkhead transcription 

factor (FoxO) daf-16.41 Adult worms with an increased 

daf-16 activity live longer than control worms and appear 

to possess augmented stress resistance, including resistance 

to ROS.42 Indeed, deletion of FoxO transcription factors 

(FoxO1, FoxO3, FoxO4) decreases the expression of ROS-

removing enzymes such as superoxide dismutase 2 and 

accumulates ROS.43 Sir2p, a well-established longevity 

protein, is an NAD+-dependent histone deacetylase.44 

A mammalian homolog of Sir2p, SIRT1, deacetylates the 

acetylated p53.45 Active p53 arrests cell cycle and induces 

apoptosis after detecting DNA damage. Acetylation alters 

p53’s activity depending on the acetylation site.46 Jung and 

colleagues47 found that ROS is increased during p53-induced 

senescence. Conversely, treating cells with hydrogen perox-

ide (H
2
O

2
) decreases the level of NAD+, decreases the activity 

of SIRT1, and lead to the accumulation of acetylated p53.48 

While longevity genetic manipulations decrease the ROS 

level, short-lived mutants such as activated Ras2 increased 

the intracellular ROS level.49,50 Therefore, mathematically 

modeling the intracellular homeostasis of NAD/NADH, 

NADP/NADPH, GSH/GSSG, ROS, and calcium will high-

light the contribution of involved proteins.

Feedback control models
The mitochondrial aging theory suggests that an accumulation 

of defective mitochondria is a major contributor to the aging 

process.51,52 The mathematical model for the dynamics of the 

mitochondrial population was developed by Kowald and 

colleagues.53 The model divides the mitochondrial population 

into two major classes, intact mitochondria with no damage 

to their DNA and defective ones with some form of mtDNA 

damage. Radicals attack mitochondrial membranes and DNA, 

converting intact mitochondria into defective ones. The defec-

tive mitochondria further generate more superoxides. This 

positive feedback loop was modeled by a system of ordinary 

differential equations. With the model, mitochondrial turno-

ver rate, cell division rate, and frequent fusion scenario were 

simulated by varying these parameters. While their model 

simulated the contribution of mitochondria in life span exten-

sion, they did not specify which proteins are responsible for 

the maintenance of the mitochondrial integrity.

Another strong candidate for the senescence factor in 

S. cerevisiae is the accumulation of extrachromosomal 

ribosomal DNA circles (ERCs) in old cells.54 Yeast rDNA is 

located on chromosome XII and consists of 100–200 copies 

of a 9.1 kb repeat sequence. ERCs are formed by the exci-

sion of one of the repeat sequences of the rDNA, followed 

by homologous recombination. Gillespie and colleagues55 

established a probability model to simulate the ERCs accumu-

lation. The model assumed that a cell acquires an ERC either 

through excision from the chromosome or by inheritance from 

its mother; ERCs replicate during successive generations of 

individual mother cells; ERCs are distributed asymmetrically 

between mother and daughter cells at division. Assuming that 

once a cell reaches 1000 ERCs the cell ceases to divide, the 

model is able to simulate survival curves of yeast cells, which 

fitted in experimental data if the probability of ERC exci-

sion increases quadratically with increasing cell generation 
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number. This quadratical increase strongly indicates that ERC 

formation is not governed by a constant probability but by one 

that increases with the age of the mother. This suggests that 

some intrinsic aging process, other than ERC accumulation 

alone, must contribute to the aging of yeast cells.

To explore the intrinsic aging process, we developed a 

feedback control model for the dynamics of calcium in aging 

yeast cells. Malfunction of the calcium homeostasis may be 

a cause of intracellular senescence and aging.56,57 Indeed, the 

calcium hypothesis of brain aging is widely accepted.58 The 

transition from a robust control to malfunction of calcium 

homeostasis may signal or be the cause of aging. The cytosolic 

calcium concentration is the net results of pump proteins 

(Mid1p, Cch1p, Yvc1p, etc) that increase the concentration 

and pump proteins (Pmc1p, Pmr1p, Vcx1p, etc) that decrease 

the concentration. The functions of these two categories of 

proteins are coordinated by calmodulin and calcineurin. 

Yeast cells uptake calcium from the environment via Mid1p, 

Cch1p, and possibly other unidentified transporters.59 The 

rise of cytosolic calcium activates calmodulin which in turn 

activates the serine/threonine phosphatase calcineurin. The 

activated calcineurin de-phosphorylates Crz1p and sup-

presses the activity of Vcx1p. Activated Crz1p enters the 

nucleus and upregulates the expression of PMR1 and PMC1.60 

Pmr1p pumps calcium ions into the organelle Golgi and 

possibly endoplasmic reticulum (ER). The calcium in ER 

and Golgi will be secreted along with the canonical secre-

tory pathways. Pmc1p pumps calcium ions into vacuole, an 

organelle that stores excess ions and nutrients. While most 

calcium ions inside vacuoles form polyphosphate salts and 

are not re-usable, a small fraction of calcium ions can be 

channeled to the cytosol by Yvc1p. Yvc1p channels calcium 

to the cytosol and also contributes to the rise of cytosolic 

calcium concentration.61 In this intricate system, damage of 

one protein such as Pmc1p or Vcx1p may not affect cell’s 

ability to adjust to small variations of calcium burst. On the 

contrary, a decline of the whole system will ruin the robust-

ness. Based on Cui and Kaandorp’s62 calcium model for log 

phase cells, we established a feedback control system to 

simulate cell cycle-dependent cytosolic calcium oscillations. 

Our model can reproduce calcium shocks and calcium 

accumulations observed in experiments. Since our model 

contains an aging factor, it can be used to quatitatively predict 

the calcium dynamics in aging cells. Under the assumption 

that a cell will die when the cytosolic calcium concentra-

tion exceeds a threshold, our model can be used to pre-

dict the life span (Figure 3). The theoretical and experimental 

analyses indicate that Pmr1p is a major contributor for calcium 

homeostasis during aging. Furthermore, our model predicts 

that the upregulation of Pmr1p by a constitutively highly 

1

0.8

0.6

0.4

0.2

0
0 20 30

Generation
40 5010

S
ur

vi
va

l r
at

e WT experiment

Upregulated
PMR1 simulation

WT simulation

Figure 3 Upregulation of Pmr1p extends life span. The feedback control model of calcium dynamics developed by Tang and Liu predicts that the upregulation of Pmr1p by a 
calcium-independent promoter (Pvac8) can extend life span.  The promoter of VAC8 (Pvac8) is likely constitutive, since aged mother cells and their daughter (young) cells did 
not show obvious different levels of vac8p-GFP signals.13
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expressed promoter, independent of calcium, can extend life 

span, as shown in Figure 3.

Conclusion
As stated above, searching for genes involved in aging can be 

achieved by both approaches of systems biology: data integra-

tion (from -omics to model) and mathematical modeling (from 

kinetics to model). Recently, Petranovic and Nielsen63 termed 

these two approaches as top-down and bottom-up systems 

biology. Unlike top-down systems biology, mathematical 

modeling can reveal genes involved in aging and predict how 

they involve in aging as well. The simulation of the accumula-

tion of ERC molecules indicates that factors other than ERC 

are more important in the aging process. Studies revealed that 

disruption of cytosolic calcium homeostasis induces mito-

chondrial DNA mutations. When we simulate the intracellular 

calcium, we introduced a factor that damages calmodulin and 

calcineurin. This factor is most likely reactive oxygen species 

(ROS). One of our models predicts that Pmr1p is a key calcium 

pump in longevity. Pmr1p also pumps calcium into the lumen 

of endoplasmic reticulum, an organelle that generates ROS. 

These simulations formed testable hypotheses for wet lab 

experiments. Although most applications of systems biology 

are conducted in the model organism yeast, the conserva-

tion of intracellular functions make it suitable to reconstruct 

silicon mammalian cells and to conduct in silico manipula-

tions. A combination of the top-down systems biology and 

the bottom-up systems biology will predict genes involved in 

aging, guide the experimental design, and greatly relieve labor 

in systematic identification of longevity genes.
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