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Objective: Shikonin has inhibitory effects against nasopharyngeal carcinoma that are

mediated through the apoptotic pathway. However, necroptosis signaling pathways may

enable the elimination of apoptosis-resistant cancers when induced with targeted therapeutic

agents. Thus, there is a need to clarify whether shikonin can cause necroptosis in nasophar-

yngeal carcinoma and to elucidate the underlying mechanisms.

Methods: In this study, we used the nasopharyngeal carcinoma cell line 5-8F and a 5-8F

xenograft mouse model to evaluate the anticancer effects of shikonin. The viability and

morphology of cells treated with shikonin were evaluated using CCK-8 assay and transmis-

sion electron microscopy, respectively. In addition, the expression levels of RIPK1, RIPK3,

and MLKL were analyzed by western blotting, and the activities of caspase-3 and caspase-8

and levels of reactive oxygen species (ROS) were assessed.

Results: Shikonin exhibited a strong inhibitory effect on 5-8F cells in vitro and in vivo. The

shikonin-treated 5-8F cells presented an electron-lucent cytoplasm, loss of plasma membrane

integrity, and an intact nuclear membrane, indicating that shikonin induced necroptosis.

Shikonin-induced cell death was inhibited by necrostatin-1. Moreover, RIPK1, RIPK3, and

MLKL were upregulated by shikonin in a dose-dependent manner. Furthermore, shikonin

significantly inhibited tumor growth in the 5-8F xenograft mouse model.

Conclusion: Shikonin induced 5-8F cell death via increased ROS production and the

upregulation of RIPK1/RIPK3/MLKL expression, resulting in necroptosis. Thus, shikonin

may represent a novel agent to treat nasopharyngeal carcinoma.
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Introduction
Nasopharyngeal carcinoma (NPC) is a common head and neck cancer with high

morbidity among patients in Southeast Asia.1 Chemotherapy is used as an effective

method to treat advanced-stage disease. Nonetheless, treatment failure largely due to

local recurrence and distant metastasis remains a challenge.2,3 In addition, drug resistance

is a prominent problem that can compromise the efficacy of chemotherapy.4

Cell death can occur through several pathways, including apoptosis, necroptosis,

and autophagy. Necroptosis, a relatively newly discovered type of cell death, is

morphologically similar to necrosis.5 With respect to morphology, necroptosis is

characterized by a ruptured plasma membrane, gain in cell volume, swelling of

organelles, and subsequent loss of intracellular contents. Necroptosis is a form of

regulated necrosis that depends on receptor-interacting protein kinase 1 (RIPK1)
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and can be specifically inhibited by necrostatin-1 (Nec-1).6

Accumulating evidence has demonstrated that activated

RIPK1 interacts with RIPK3 to facilitate RIPK1/RIPK3

necrosome formation.7,8 The necrosome recruits its down-

stream substrate, mixed lineage kinase domain-like protein

(MLKL), which forms an oligomer, resulting in cellular

membrane leakage and cell death.9 Necroptosis signaling

pathways can be targeted by therapeutic agents to elim-

inate apoptosis/drug-resistant cancer cells, which is critical

for the success of cancer chemotherapy.10

Shikonin (5,8-dihydroxy-2-[(1S)-1-hydroxy-4-methyl-

pent-3-en-1-yl]naphthalene-1,4-dione) is a predominant

type of naphthoquinone pigment that is extracted from

the Chinese plant Lithospermum erythrorhizon, with

a molecular weight of 288 kDa (Figure S1).

L. erythrorhizon has been widely used for thousands of

years in traditional Chinese medicine to treat burns,

measles, carbuncles, and macular eruptions.11 In addition,

shikonin has been reported to induce necroptosis in var-

ious tumors such as breast cancer, hepatocellular carci-

noma, and osteosarcoma, which is accompanied by

overproduction of reactive oxygen species (ROS) and

mitochondrial injury.12–14 However, it remains unclear

whether ROS participate in necroptosis by promoting

RIPK1/RIPK3 necrosome formation.

Furthermore, previous research has shown that shiko-

nin causes necroptosis in the CNE2Z cell line.15

Nonetheless, the underlying molecular mechanisms of shi-

konin-induced necroptosis are not fully understood.

Herein, we extended this investigation to another type of

NPC cell line, 5-8F cells, and a 5-8F xenograft mouse

model. Clarifying the mechanisms of necroptosis by shi-

konin treatment may provide novel insight into the

mechanism underlying the anticancer effects of shikonin.

Materials and methods
Reagents
Roswell Park Memorial Institute (RPMI)-1640 medium and

fetal bovine serum (FBS) were obtained from Gibco (Grand

Island, NY, USA). Shikonin, N-acetyl-L-cysteine (NAC),

and necrostatin-1 (Nec-1) were procured from Sigma

(St. Louis, MO, USA). Pan-caspase inhibitor z-VAD-fmk

was obtained from Tocris (Bristol, UK). The Caspase-8

Fluorescence Metric Assay and Caspase-3 Fluorescence

Metric Assay Kits were bought from KeyGEN BioTECH

(Nanjing, China). The Reactive Oxygen Species Detection

Kit and Protein Concentration Assay Kit were obtained from

Beyotime Institute of Biotechnology (Wuhan, China).

Annexin V Apoptosis Detection Kit I was purchased from

BD Pharmingen (San Jose, CA, USA). Dimethyl sulfoxide

(DMSO) was procured from Biosharp (Hefei, China).

Radioimmunoprecipitation assay (RIPA) buffer, containing

protease and phosphatase inhibitors, was obtained from

Sigma (St. Louis,MO, USA). Anti-RIPK1, anti-RIPK3, anti-

MLKL, anti-β-actin, and anti-GAPDH antibodies were

obtained from Cell Signaling (Danvers, MA, USA) and

diluted 1:1,000 in TBST. Anti-rabbit IgG HRP-linked anti-

body and anti-mouse IgG HRP-linked antibody were also

obtained from Cell Signaling (Danvers, MA, USA) and

diluted 1:5,000 in TBST. The enhanced chemiluminescence

(ECL) western blotting detection reagent was purchased

from Wanleibio (Shanghai, China). Cell Counting Kit-8

was purchased from Dojindo (Kumamoto, Japan)

Cell culture
The human 5-8F NPC cell line was obtained from Shanghai

Institute of Cell Biology, Chinese Academy of Sciences

(Shanghai, China). 5-8F cells were cultured in RPMI-1640

medium supplemented with 10% FBS, penicillin

(100 U/mL), and streptomycin (100 U/mL) at 37 °C in a 5%

CO2 humidified atmosphere. The medium was replaced every

2 d. The cells were harvested at 75% confluence with 0.25%

trypsin containing 0.02% ethylenediaminetetraacetic acid

(EDTA). Shikonin was dissolved in DMSO to a stock concen-

tration of 20 mmol/L and stored in the dark at −20 °C. Nec-1
and z-VAD-fmk were dissolved in DMSO to a stock concen-

tration of 20 mM and 2 mM, respectively. NACwas dissolved

in phosphate-buffered saline (PBS) to a stock concentration of

400mM.Different concentrations of shikonin, Nec-1 (50 μM),

z-VAD-fmk (20 μM), and NAC (5 mM) were prepared in

culture medium for cell treatments. The maximum final con-

centration of DMSO was less than 0.1% for each treatment.

Cell proliferation assay
The viability of 5-8F cells was measured using the CCK-8

assay kit, according to the manufacturer’s instructions.

5-8F cells were seeded at a density of 7.5×103 cells in

each well (200 μL) of a 96-well plate and cultured for

24 h. The cells were then treated with different concentra-

tions of shikonin (2.5, 5.0, 7.5, 10, and 15 μM) for 6, 12,

24, and 48 h. Each well was incubated with 10 μL of

CCK-8 at 37 °C for 2 h. Subsequently, the absorbance

(A) of the solution was measured using an automatic

multi-well spectrophotometer (Bio-Rad, Hercules, CA,
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USA) at a wavelength of 540 nm. Treatment efficacy was

determined by comparing the cell viability for the treated

and untreated cells. The IC50, representing the shikonin

concentration required to inhibit 50% of cell proliferation,

was calculated using GraphPad Prism 6 (GraphPad

Software, Inc. La Jolla, CA, USA). All experiments were

repeated at least three times.

Detection of cell death by flow cytometry
Cell death modality was determined using the Annexin

V Apoptosis Detection Kit I, according to the manufac-

turer’s instructions. Briefly, 5×105 cells were plated and

pretreated with 50 μM Nec-1 for 3 h. The cells were then

treated with 7.5 μM shikonin for 6 h. After treatment, the

cells were washed twice with PBS and then resuspended in

200 μL binding buffer. The cells (100 μL) were transferred
to a 5 mL culture tube and stained with 5 μL Annexin

V-FITC and 5 μL propidium iodide (PI) for 15 min at

room temperature in the dark. After the addition of 400 μL
binding buffer into each tube, the apoptotic cells were

quantified using a fluorescence-activated cell sorting

(FACS) Calibur flow cytometer (BD Biosciences, San

Jose, CA, USA). The data were acquired by collecting

2×104 cells per tube. Both early apoptotic (Annexin

V-positive, PI-negative) and late apoptotic (double positive

for Annexin V and PI) cells were detected; the percentage

of stained cells was subsequently analyzed. The rate of cell

death in each quadrant was analyzed using Flowing soft-

ware version 2.4.1.

Evaluation of mode of cell death by

transmission electron microscopy
5-8F NPC cells were cultured and treated with 7.5 μM
shikonin for 6 h. The cells were harvested using 0.25%

trypsin, washed with PBS, and fixed with 3% ice-cold

glutaraldehyde and 2% paraformaldehyde in 0.1 M PBS

(pH 7.4) at 4 °C. The 5-8F cells were post-fixed with

1% osmium tetroxide with 0.1% potassium ferricya-

nide, dehydrated through a graded series of ethanol,

and embedded in Epon (EnergyBeam Sciences,

Agawam, MA, USA). A Reichert ultramicrotome

(Leica, Wetzlar, Germany) was used to cut sections of

65 nm thickness. The ultrathin sections were stained

with 1% uranyl acetate and 0.1% lead citrate and

examined using a transmission electron microscope

(JEOL, Pleasanton, CA, USA).

Gel electrophoresis and western blotting
5-8F NPC cells were directly lysed with RIPA buffer for

30 min on ice. The lysates were centrifuged at 12,000×g for

10 min at 4 °C to obtain the supernatant. The protein content

in the supernatant was determined using the Bio-Rad Protein

Assay kit. Equal amounts of protein were subjected to 10%

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

and then transferred onto polyvinylidene difluoride mem-

branes. The membranes were blocked with 5% skim milk

in PBS for 1 h and washed with Tris-buffered saline contain-

ing 0.1% Tween 20, three times. The membranes were incu-

bated overnight at 4 °C with anti-RIPK1, anti-RIPK3,

anti-MLKL antibodies, anti-GAPDH and anti-β-actin, fol-
lowed by secondary antibodies. The blots were washed and

the immunoreactive proteins were visualized using a gel

imager (Bio-Rad) with ECL western blotting detection

reagents. Densitometry was performed using Kodak ID

image analysis software (Eastman Kodak Company,

Rochester, NY, USA).

Evaluation of caspase-3 and -8 in

shikonin-induced apoptosis or

necroptosis
The activity of caspase-3 was measured using the Caspase-3

Fluorescence Metric Assay Kit. The cultured cells in 96-well

plates were pretreated with 20 μM z-VAD-fmk or 50 μM
Nec-1 for 3 h prior to treatment with 7.5 μM shikonin. The

assay was conducted according to the instructions provided

in the assay kit. The samples were read using a 485 nm

excitation filter and 535 nm emission filter with a fluores-

cencemicroplate reader (BioTek SynergyHT,Winooski, VT,

USA), and the results are expressed as the fold increase from

the basal level (control cells). The activity of caspase-8 was

measured similarly, with at least three repetitions.

Detection of intracellular ROS levels
The average level of intracellular ROS was evaluated

in 5-8F cells loaded with the fluorescent

probe 2′,7′-dichlorofluorescein diacetate (DCFH-DA).

DCFH-DA was first diluted with serum-free medium

to a concentration of 10 μM. The cells were cultured in

a 96-well plate, following which the supernatant was

removed. DCFH-DA was then added to each well. The

substrate solution was discarded after incubation at

37 °C for 30 min, and the cells were washed thor-

oughly with PBS. Afterward, ROS were evaluated in
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cells incubated with 7.5 μM shikonin following pre-

treatment with 50 μΜ Nec-1 or 5 mM NAC. Untreated

cells were used as the control. A multi-detection

microplate reader was used to observe the DCFH-DA

at an excitation wavelength of 485 nm and an emission

wavelength of 528 nm. The ROS level is expressed as

relative fluorescence units (RFU). 5-8F cells were trea-

ted either with 5 mM NAC alone at the indicated time

points or with 5 mM NAC for 1 h followed by shiko-

nin at the indicated concentrations. The cell viability

was then determined by CCK-8 assay.

Antitumor effect of shikonin in vivo
Five-week-old female Balb/C nudemice were purchased from

Beijing Vital River Laboratory Animal Technology Co. Ltd

(Beijing, China). The mice were randomly divided into the

control group and the experimental group. 5-8F cells (3×106

cells per animal) were injected into the right flank of the

experimental nude mice. The mice that developed tumors

were intraperitoneally injected with shikonin (0.5 mg/kg)

every 3 d for 21 d.15 In contrast, the negative control group

was injected with PBS every 3 d for 21 d. The nude mice were

weighed before each injection. After the experiment, tumors

were excised and the tumor weights were measured. The

tumors were preserved in 4% formalin solution, sectioned

into 6 μm thick slices and stained with hematoxylin and

eosin (H&E).

Statistical analyses
The data are presented as mean ± SE. To compare the data,

paired t-test and one-way analysis of variance (ANOVA)

were used. All data represent at least three independent

experiments and are expressed as mean ± SE. Results with

a P-value of <0.05 were considered significant.

Results
Shikonin inhibited 5-8F cell proliferation

in a dose- and time-dependent manner
We performed a CCK-8 assay to examine the effect of

shikonin on the viability of 5-8F cells. As shown in Figure

1A, shikonin significantly inhibited 5-8F cell proliferation

in a time- and dose-dependent manner. The cytotoxic

effect was evident at 6 h in the cell line; after 6 h of

incubation with shikonin at concentrations of 2.5, 5.0,

7.5, 10, and 15 μM, the average viability of 5-8F cells

decreased to 92.3%, 77.5%, 53.2%, 40.3%, and 32.5%

when compared with that of the control group, respec-

tively. As a result, the IC50 of shikonin after 6 h of

treatment was 7.5 μM. Thus, 7.5 μM shikonin was con-

sidered the optimum concentration and was used in sub-

sequent experiments.

Shikonin induced necroptosis in 5-8F cells
To clarify the mode of death in 5-8F cells treated with

shikonin, we observed the cells under a transmission

electron microscope. The shikonin-treated 5-8F cells

showed typical nuclear fragmentation, a ruptured

plasma membrane, gain in cell volume, swelling of

organelles, and subsequent loss of intracellular con-

tents, which were consistent with the characteristics

of necroptosis (Figure 1B), compared with normal

5-8F cells.

Shikonin induced both apoptosis and

necroptosis in 5-8F cells
To investigate the mode of 5-8F cell death caused by

shikonin, flow cytometry with FITC-conjugated

Annexin V and PI staining were performed. As shown

in Figure 1C, the control cells were negative for both

Annexin V-FITC and PI. After 6 h of incubation with

7.5 μM shikonin, 4.81% cells showed the induction of

necroptosis (Annexin V−/PI+), 4.96% of the cells were

in early apoptosis (Annexin V+/PI−) phase. To further

clarify the mode of cell death by shikonin, 5-8F cells

were treated with shikonin in combination with Nec-1.

Pretreatment with Nec-1 reduced cell necroptosis

caused by shikonin to 1.7%. In contrast, the rate of

early apoptosis of shikonin/Nec-1-treated cells

increased significantly compared with that of the con-

trol cells.

Involvement of caspase-3 and caspase-8 in

shikonin-induced apoptosis or

necroptosis
Treatment of 5-8F cells with 7.5 μΜ shikonin signifi-

cantly increased the activity of caspase-8 (Figure 2A)

and caspase-3 (Figure 2B) compared with those of the

control (P<0.05). Pretreatment of cells with z-VAD-

fmk (20 μM) significantly inhibited shikonin-induced

apoptosis in 5-8F cells compared with that in the con-

trol (P<0.05). In contrast, pretreatment with Nec-1

(50 μM) significantly increased the activity of cas-

pase-8 and caspase-3.
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Shikonin upregulated the expression of

necroptosis-associated proteins RIPK1,

RIPK3, and MLKL
To elucidate the molecular mechanisms underlying the

inhibitory effects of shikonin on 5-8F cell viability, we

examined the expression of RIPK1, RIPK3, and MLKL in

5-8F cells treated with different concentrations of shiko-

nin. RIPK1, RIPK3, and MLKL were significantly upre-

gulated in 5-8F cells treated with higher concentrations of

shikonin (Figure 2C and D). To clarify the relationship

between Nec-1 and the key proteins of necroptosis, we

performed western blotting to examine the effects of Nec-

1 on the expression of RIPK1, RIPK3, and MLKL. We

found that pretreatment with 50 μM Nec-1 markedly

decreased the levels of RIPK1, RIPK3, and MLKL when

compared with those of the control group. This indicated

that the expression of RIPK1, RIPK3, and MLKL in 5-8F

cells was upregulated significantly by 7.5 μM shikonin and

suppressed by pretreatment with Nec-1.

Involvement of ROS in shikonin-induced

necroptosis
Compared to the control cells, cells treated with 7.5 μΜ
shikonin showed significantly higher levels of ROS

(Figure 3A). In addition, treatment with 50 μM Nec-1

and 5 mM NAC considerably inhibited the elevation of

ROS levels. Furthermore, the fluorescence intensity of

cells treated with shikonin alone was stronger than that

of cells pretreated with antioxidant NAC. As shown in

Figure 3B, pretreatment with NAC protected the cells

from shikonin mediated cell death. We performed western

blotting to examine the effects of NAC on the expression

of proteins associated with necroptosis, RIPK1, RIPK3,

and MLKL. We found that pretreatment with NAC atte-

nuated the increase in RIPK1, RIPK3, and MLKL induced

by shikonin treatment (Figure 3C and D). Taken together,

our data suggest that treatment with shikonin resulted in

the generation of large amounts of ROS, which led to

necroptosis.
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In vivo antitumor effect of shikonin
In order to evaluate the antitumor effect of shikonin in vivo, we

transplanted 5-8F cells into nude mice. Shikonin significantly

inhibited the growth of the NPC tumors (Figure 4A and B) and

markedly decreased the whole body weights of the treated

nude mice (Figure 4C). In comparison with those of the

negative control group, the tumor weights in the shikonin-

treated group were significantly lower (Figure 4D). H&E

staining of tumor tissue demonstrated that the degree of

tumor necrosis in the treatment group (Figure 4F) was signifi-

cantly higher than that in the control group (Figure 4E).

Collectively, these results indicated that shikonin inhibited

the growth of NPC in the 5-8F xenograft mouse model.

Discussion
Accumulating evidence has demonstrated that complete treat-

ment of advanced NPC is very challenging as a large group of

NPC patients suffer from preexisting resistance to common

chemotherapeutic agents and radiotherapeutic regimes.

Fortunately, necroptosis induction effectively eliminates can-

cer cells that are resistant to apoptosis.16 Thus, necroptosis-

based therapy is a promising option for NPC.

Morphology is an important factor in the evaluation of

the mode of cell death. Transmission electron microscopy

revealed that necroptosis is characterized by cell swelling,

mitochondrial dysfunction, plasma membrane permeabili-

zation, and the release of cytoplasmic content to the extra-

cellular space.17 In light of these findings, the present

investigation was conducted to evaluate the effects of

shikonin on the induction of necroptosis. It is noteworthy

that shikonin may provide a novel approach to overcome

apoptosis-mediated drug resistance by inducing

necroptosis.18

To determine the mode of 5-8F cell death induced by

shikonin, we used the pan-caspase inhibitor z-VAD-fmk

and Nec-1. The morphological findings suggested that
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shikonin treatment. (C and D) Western blotting analysis of the expression of RIPK1, RIPK3, and MLKL. *P<0.05 versus untreated cells; **P<0.01 versus the control group.
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shikonin induced dominant necroptotic death in 5-8F cells.

Furthermore, when the apoptotic pathway was blocked by

z-VAD-fmk, the necroptotic pathway became more

dominant.13 On the contrary, when the necroptotic path-

way was inhibited by Nec-1, apoptosis became the major

route of cell death.13 Of note, shikonin exerted extremely

low cytotoxicity in normal nasal epithelial cells in our

previous study. Therefore, shikonin was considered an

excellent candidate drug for the treatment of NPC.

Targeting the weakness of cancer cells via the induction

of necroptosis may accelerate cancer cell death or enhance

the sensitivity of tumor cells to chemotherapeutic agents

and radiotherapeutic regimes.

Our results support results from previous studies that

have shown that RIPK1, RIPK3, and MLKL are crucial

mediators of necroptosis.19,20 As expected, we found

that the levels of RIPK1, RIPK3, and MLKL increased

in 5-8F cells after treatment with shikonin. Overall,

shikonin can induce necroptosis by regulating RIPK1/

RIPK3/MLKL expression. In addition, Nec-1 inhibited

the necroptosis of 5-8F cells by attenuating the

increased expression of RIPK1/RIPK3/MLKL.

Therefore, our results indicated that shikonin-induced

necroptosis of NPC cells is associated with the upregu-

lated expression of RIPK1/RIPK3/MLKL.

However, it remains unknown whether ROS participate

in the regulation of signals leading to necroptosis mediated

by RIPK1/RIPK3 necrosome formation. An elevation in

intracellular ROS level and the destruction of mitochon-

dria might result in the suppression of cancer cell migra-

tion, oxidative DNA damage, and arrest of the cell

cycle.21,22 We have shown that shikonin induces the pro-

duction of ROS in large quantities, which is followed by

the disruption of mitochondrial transmembrane

potential.23,24 Notably, we found that inhibition of ROS

with the antioxidant NAC attenuated the protein levels of
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Figure 3 (A) Shikonin mediated ROS production in 5-8F cells. (B) CCK-8 assay showed that the inhibitory effects of shikonin on the viability of 5-8F cells was suppressed

significantly by pretreatment with N-acetyl-L-cysteine (NAC). (C and D) Pretreatment with NAC attenuated the shikonin-induced increase in RIPK1, RIPK3, and MLKL.

*P<0.05 versus untreated cells; **P<0.01 versus the control group.
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RIPK1, RIPK3, and MLKL. Our results are consistent

with Huang et al who reported that the inhibition of ROS

with NAC attenuated shikonin-induced necroptosis in

glioma cells.4 Since scavenging ROS using NAC

decreased the expression of RIPK1 and RIPK3, ROS

might be upstream signals of RIPK1 and RIPK3. It is

reasonable to shown that ROS not only are responsible

for shikonin-induced NPC cell necroptosis but can also

regulate the expression of RIPK1/RIPK3/MLKL. Lu

reported that shikonin induced glioma cell necroptosis

in vitro by ROS overproduction and ROS was the trigger

that induces the activation of RIPK1/RIPK3 necrosome

formation.23 Taken together,these findings suggests that

ROS play a crucial role in the regulation of shikonin-

induced necroptosis via the formation of positive feedback

with RIPK1 and RIPK3.

Conclusion
The results revealed that shikonin can induce necroptosis

by ROS overproduction and regulating the expression of

RIPK1/RIPK3/MLKL. Thus, shikonin has the potential to
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Figure 4 Shikonin significantly inhibited tumor growth. (A) Photographs of tumor-bearing mice receiving different treatments. (B) Photographs of tumors under different

treatments. (C) Plot showing the change in body weight of nude mice during treatment. (D) Weights of tumors after treatment. (E) Hematoxylin and eosin (H&E) staining of

the control group (×200). (F) H&E staining of the test group (×200). *P<0.05 versus untreated group.
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be developed as a novel therapeutic agent to treat NPC.

However, in-depth studies are required to determine its

efficacy.
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