Neuroleptanalgesia for acute abdominal pain: a systematic review

Andrew C Miller1,2, Abbas M Khan2, Alberto A Castro Bigalli3, Kerry A Sewell4, Alexandra R King5, Shadi Ghadermarzi6, Yuxuan Mao6, Shahriar Zehtabchi7

1Department of Emergency Medicine, Vidant Medical Center, Brody School of Medicine, East Carolina University, Greenville, NC, USA; 2The MORZAK Collaborative, Orlando, FL, USA; 3Brody School of Medicine, East Carolina University, Greenville, NC, USA; 4William E. Laupus Health Sciences Library, East Carolina University, Greenville, NC, USA; 5Division of Emergency Medicine and Toxicology, Department of Pharmacy, Vidant Medical Center, Greenville, NC, USA; 6Department of Internal Medicine, Vidant Medical Center, East Carolina University; 7Department of Emergency Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA

Background: Acute abdominal pain (AAP) comprises up to 10% of all emergency department (ED) visits. Current pain management practice is moving toward multi-modal analgesia regimens that decrease opioid use.

Objective: This project sought to determine whether, in patients with AAP (population), does administration of butyrophenone antipsychotics (intervention) compared to placebo, usual care, or opiates alone (comparisons) improve analgesia or decrease opiate consumption (outcomes)?

Methods: A structured search was performed in Cochrane CENTRAL, CINAHL, Database of Abstracts of Reviews of Effects, Directory of Open Access Journals, Embase, IEEE-Xplorer, Latin American and Caribbean Health Sciences Literature, Magiran, PubMed, Scientific Information Database, Scopus, TÜBİTAK ULAKBİM, and Web of Science. Clinical trial registries (ClinicalTrials.gov, World Health Organization International Clinical Trials Registry Platform, and Australian New Zealand Clinical Trials Registry), relevant bibliographies, and conference proceedings were also searched. Searches were not limited by date, language, or publication status. Studies eligible for inclusion were prospective randomized clinical trials enrolling patients (age ≥18 years) with AAP treated in acute care environments (ED, intensive care unit, postoperative). The butyrophenone must have been administered either intravenously or intra-muscularly. Comparison groups included placebo, opiates only, corticosteroids, non-steroidal anti-inflammatory drugs, or acetaminophen.

Results: We identified 7,217 references. Six studies met inclusion criteria. One study assessed ED patients with AAP associated with gastroparesis, whereas five studies assessed patients with postoperative AAP: abdominal hysterectomy (n=4), sleeve gastrectomy (n=1). Three of four studies found improvements in pain intensity with butyrophenone use. Three of five studies reported no change in postoperative opiate consumption, while two reported a decrease. One ED study reported no change in patient satisfaction, while one postoperative study reported improved satisfaction scores. Both extrapyramidal side effects (n=3) and sedation (n=3) were reported as unchanged.

Conclusion: Based on available evidence, we cannot draw a conclusion on the efficacy or benefit of neuroleptanalgesia in the management of patients with AAP. However, preliminary data suggest that it may improve analgesia and decrease opiate consumption.

Keywords: neuroleptanalgesia, butyrophenone, abdominal pain, haloperidol, droperidol

Background

Acute abdominal pain (AAP): emergency medicine

AAP is one of the most common chief complaints of patients in the emergency department (ED), constituting 6%–10% of all visits,1,2 and the incidence is rising.3 The average...
ED length-of-stay (LOS) is over 6 hours, with admission rates approaching 25%.12 The majority (44%–59%) of patients are treated with an opiate/opioid analgesic, with morphine being the single most commonly administered analgesic (20%).3,5 In addition, inadequate pain management (oligoanalgesia) in the ED is a common problem.6 Only 50%–66% of ED patients with abdominal pain receive analgesia.3,4,7–9 Average analgesia wait times vary considerably, with one study reporting mean analgesia wait times of 4.1 hours for mild pain, 1.85 hours for moderate pain, and 1.37 hours for severe pain.10 This time to analgesia may itself be longer than the entire mean ED LOS for all comers.2,3,11 Timely analgesic administration has been shown to improve patient care and reduced ED LOS.12 Many factors contribute to ED oligoanalgesia, including the myth that early analgesia delays diagnosis of abdominal pain, despite evidence to the contrary.13–15 Commonly administered opioid analgesics also create a range of problems, from underuse (oligoanalgesia/opiophobia) and undesirable side effects to misuse (opioid crisis).16 A concerning observation is that 25% of AAP patients treated with an opioid are discharged with a prescription for one.17 Insufficient data regarding the efficacy of alternative regimens and their side effect profiles have hampered efforts to move away from heavy opiate regimens.18,19

AAP: postoperative

According to data from the US Agency for Healthcare Research and Quality, 6 of the 15 most common operating room procedures performed during hospital stays in 2012 were abdominal procedures, including 1) cholecystectomy and common duct exploration, 2) hysterectomy (abdominal and vaginal), 3) colorectal resection, 4) excision, lysis of peritoneal adhesions, 5) appendectomy, and 6) oophorectomy (unilateral and bilateral).20 These accounted for accounting for 1.85 million hospital stays.20 Evidence suggests that postoperative patients frequently need less opiates on discharge than that are prescribed, leaving excess opioid for potential diversion.21–23 Moreover, 5% of young adults continue to receive opioid refills long after surgery.24 Studies have demonstrated that opioid sparing postoperative analgesic techniques may be effective following abdominal surgery. For example, treatment with acetaminophen (1,000 mg intravenous [IV] every 6 hours or 650 mg IV every 4 hours) or non-steroidal agents has been shown to lower opioid consumption and the need for rescue medication following abdominal surgery, with greater effects demonstrated by combining these agents.25–27 In addition, IV lidocaine has been shown to hasten patient rehabilitation and shorten hospital stays following abdominal surgery.28 Dipyrone (metamazol) has been shown to have opioid sparing effects for abdominal pain in the postoperative setting.29 It remains unclear which (if any) opioid sparing postoperative analgesic regimens alter postoperative opioid requirements post-discharge.

Description of the intervention

How the intervention might work

Neuroleptanalgesia involves combining an opiate with a neuroleptic drug (eg, haloperidol and droperidol) for analgesia. The most commonly used neuroleptics in the USA are butyrophenones. Butyrophenones are a subclass of neuroleptic antipsychotic drugs. Haloperidol, which was introduced in 1957 and was approved by the US FDA in 1967, is a derivative of meperidine (Demerol) and is the most widely used butyrophenone in the USA. Although once widely used, droperidol (introduced in 1961, FDA approved in 1970) is now unavailable due to a black box warning and drug shortages. A complete list of butyrophenone medications is listed in Table 1. Benperidol is available in Europe only, and azaperone is approved for use in veterinary settings only at this time.

Haloperidol is a first-generation antipsychotic that exerts its effects via non-selectively blocking postsynaptic dopaminergic D2 receptors in the brain. It may also have effects by binding D1 dopamine, 5-HT2 serotonin, H1 histamine, and alpha2 adrenergic receptors in the central nervous system.30,31 The use of butyrophenones for analgesia dates back to the 1970s.32,33 It is believed that haloperidol exerts analgesic effects and synergistic analgesic effects, through the modulation of NMDA-receptors as well as sigma-1 receptors.34–36 After a single dose of 3 mg haloperidol, sigma-1 receptor antagonists will mimic opioid efficacy by blocking pain perception without unwanted opioid side effects.37 It has also been suggested that they decrease pain sensitivity via NMDA inhibition, thereby inhibiting the pain wind-up and opioid hyperalgesia phenomenon.38,39 Droperidol has some additional mechanisms of action; however, we will defer this discussion as the drug is not currently clinically available.

Haloperidol is metabolized by CYP 3A4, 1A2, and 2D6, therefore drug interactions will arise with any other medication that would induce or inhibit these hepatic enzymes, most notably carbamazepine, ketoconazole, and...
rifampin. Common side effects from short-term haloperidol administration include sedation and anticholinergic effects. Less common effects include orthostatic hypotension and tachycardia, although hypotension is less common with haloperidol than droperidol due to less alpha blocking effect. Uncommon adverse effects include pruritis, diarrhea, and electrolytrogram changes. QT-prolongation is a known side effect, thus concurrent administration with other QT-prolonging medications in patients with a prolonged QT or electrolyte abnormalities (low potassium or magnesium) should be avoided to prevent dysrhythmia (most notably torsades de pointes). Common adverse effects include pruritis, diarrhea, and electrolytrogram changes. QT-prolongation is a known side effect, thus concurrent administration with other QT-prolonging medications in patients with a prolonged QT or electrolyte abnormalities (low potassium or magnesium) should be avoided to prevent dysrhythmia (most notably torsades de pointes). Uncommon adverse effects include pruritis, diarrhea, and electrolytrogram changes. QT-prolongation is a known side effect, thus concurrent administration with other QT-prolonging medications in patients with a prolonged QT or electrolyte abnormalities (low potassium or magnesium) should be avoided to prevent dysrhythmia (most notably torsades de pointes).

Table 1: Marketed butyrophenones with approval status and indication

<table>
<thead>
<tr>
<th>Generic name</th>
<th>Trade name</th>
<th>Approved for human use?</th>
<th>Approved for use in the USA?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azaperone</td>
<td>Azaperona, Stresnil, Fluoperidol, Suicalm, Eucalmyl, Sedaperone vet</td>
<td>No</td>
<td>Yes</td>
<td>Approved for veterinary use only</td>
</tr>
<tr>
<td>Benperidol</td>
<td>Anquil, Glianimon</td>
<td>Yes</td>
<td>No</td>
<td>Most potent neuroleptic on the European market; 150%–200% potency of haloperidol</td>
</tr>
<tr>
<td>Bromperidol</td>
<td>Brimidol, Bromodol, Erodiom, Impromen</td>
<td>Yes</td>
<td>No</td>
<td>Only available in Belgium, Germany, the Netherlands, and Italy</td>
</tr>
<tr>
<td>Cinuperone</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droperidol</td>
<td>Droleptan, Dridol, Inapsine, Xonolox, Innovar (combination with fentanyl)</td>
<td>Yes</td>
<td>Yes</td>
<td>US FDA Black Box warning for torsade’s de pointes</td>
</tr>
<tr>
<td>Fluaniione</td>
<td>Haloanison, Sedalande, Anti-Pica, Moterin</td>
<td>Yes</td>
<td>No</td>
<td>Veterinary use; used for agitation in humans, but no longer marketed; was available in Belgium, France, Germany, and Switzerland</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>Haldol, Peridol</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Lenperone</td>
<td>Elanone-V</td>
<td>Yes</td>
<td>No</td>
<td>Veterinary use</td>
</tr>
<tr>
<td>Moperone</td>
<td>Luvatren, Methylperidol, Meperon, Luvatrena</td>
<td>Yes</td>
<td>No</td>
<td>No longer available on market. Previously available in Japan, Sweden, and Switzerland</td>
</tr>
<tr>
<td>Nonaperone</td>
<td>Nonaperonum, Nonaperona</td>
<td>Yes</td>
<td>No</td>
<td>Only available in India</td>
</tr>
<tr>
<td>Pipampereone</td>
<td>Dipiperone, Dipiperal, Piperonil, Piperonyl, Propitan</td>
<td>Yes</td>
<td>No</td>
<td>Also known by non-trade names including carpirpome and floropipamide or fluoropipamide, and as floropipamide hydrochloride</td>
</tr>
<tr>
<td>Spiperone</td>
<td>Spiroperidol, Spiropitan</td>
<td>Yes</td>
<td>No</td>
<td>Marketed in Japan</td>
</tr>
<tr>
<td>Timiperone</td>
<td>Tolopelon</td>
<td>Yes</td>
<td>No</td>
<td>Marketed in Japan</td>
</tr>
<tr>
<td>Trifluperidol</td>
<td>Psychoperidol, Triperidol, Trisedyl</td>
<td>Yes</td>
<td>No</td>
<td>Only available in India. Previously available in Belgium, France, Germany, Italy, and the UK</td>
</tr>
</tbody>
</table>

Notes: In 2001, the US FDA changed the labeling requirements for droperidol injection to include a Black Box Warning, citing concerns of QT prolongation and torsades de pointes. The evidence for this is disputed, with nine reported cases of torsades de pointes in 30 years and all of those having received doses more than 5 mg. QT prolongation is a dose-related effect, and it appears that droperidol is not a significant risk in low doses. A study in 2015 showed that droperidol is relatively safe and effective for the management of violent and aggressive adult patients in hospital emergency departments in doses of 10 mg and above and that there was no increased risk of QT prolongation and torsades de pointes.

Abbreviation: US FDA, United States Food and Drug Administration.
is from 0.5 to 3 hours post-administration. Although tolerance to haloperidol has been described for catalepsy and behavioral effects, butyrophenone drug tolerance for pain has not been reported. The dosing of haloperidol is typically 5 mg. One study found no additional benefit for postoperative pain for Haldol 10 mg over 5 mg dosing. Whether administration route alters efficacy is unclear.

Why it is important to do this review?
In the late 1990s, the medical community began to prescribe opioids at a greater rate, in part due to advertising and misguidance from pharmaceutical companies coupled with the public awareness of health care failure to adequately address pain. This spurred a widespread misuse of opioids, including prescription drugs, heroin, and synthetics. According to the Centers for Disease Control and Prevention, there was a quadrupling in the number of opioid prescriptions from 1999 to 2010, with a corresponding quadrupling of opioid-related deaths over the same period. The link between prescribing rates and overdose deaths appears to be directly related to maximum prescribed daily doses and not to regularly scheduled and as-needed doses.

This is not to say that opioid analgesics do not serve an important role in the treatment of acute and chronic pain, but misuse has become a public health crisis. The USA has become the prescriber of 80% of global prescribed narcotics; ≥50 times more than the rest of the world combined. Nearly 25% of prescribed opioid users misuse their prescription, and 115 Americans die daily from opioid overdose. Global consumption of opioids has more than tripled over the past 20 years with a majority of use in North America and Europe. Opiates comprise 58% of analgesic use in the ED, with abdominal pain accounting for 10%–44% of ED opioid administration. Administration of opioids (with later prescription) in the ED has been linked to an increased risk of becoming a recurrent opioid user. Identifying safe and effective analgesia techniques that limit narcotic consumption and prescription is needed. We investigated the evidence for using neuroleptanalgesia as an effective opioid sparing alternative to analgesia in patients with AAP.

Objectives
The objective of this systematic review was to address the following research question: in patients with AAP (population), does administration of butyrophenone antipsychotics (intervention) compared to placebo, usual care, or opiates alone (comparisons) improve analgesia and decrease opiate consumption (outcomes)?

Methods
This systematic review followed the steps outlined in the PRISMA. A systematic review protocol was developed before conducting the project. The systematic review was registered at the International prospective register of systematic reviews (PROSPERO, registration number: CRD42018104226).

Criteria for considering studies for this review
Types of studies
Prospective randomized trials were included.

Types of participants
Adult patients being treated for AAP in the ED, intensive care unit (ICU), or immediate postoperative setting were included.

Types of interventions
We assessed the analgesic effects of butyrophenone (haloperidol, droperidol) antipsychotics administered by either intravenous or intramuscular route. For all endpoints with available data, we compared 1) butyrophenone alone vs placebo or conventional therapy, 2) butyrophenone alone vs opiate alone, and 3) butyrophenone plus opiate vs opiate alone. For selected variables (eg, opiate consumption), we also analyzed the following data separately: 1) ED patients only and 2) postoperative patients only.

Outcome measures
Primary outcomes
The primary outcomes included 1) adequate pain control using any validated pain scale used by the original trials and 2) opiate consumption (milligrams of morphine sulfate or morphine equivalents) administered to achieve pain control.

Secondary outcomes
The secondary outcomes were 1) patient satisfaction with analgesia, 2) admission rates for ED patients, 3) ED LOS, 4) hospital LOS, and 5) side effects (extrapyramidal, akathisia, and cardiac).

Search methods for the identification of studies
Electronic searches
A librarian who was specialized in systematic reviews and meta-analysis developed a structured search strategy for Cochrane CENTRAL, CINAHL, Database of Abstracts of
Reviews of Effects (DARE), Directory of Open Access Journals (DOAJ), Embase, IEEE-Xplor, Latin American and Caribbean Health Sciences Literature (LILACS), Magiran, PubMed, Scientific Information Database (SID), Scopus, TÜBİTAK ULAKBİM, and Web of Science. Bibliographies of the relevant articles were also searched. The searches were not limited by date, language, or publication status.

Searching other resources
To limit publication bias, searches were conducted in ClinicalTrials.gov website, World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), and the Australian New Zealand Clinical Trials Registry (ANZCTR). Abstracts of the conference proceedings of the relevant disciplines were also searched (past 5 years) to identify any presented but not published abstracts. We also contacted the experts in the field and inquired about the possible ongoing trials that might not have been identified in our search. Unpublished or “in press” trials that met inclusion criteria were eligible for inclusion if only the authors responded to inquiry from ACM with requested primary data sets or unpublished results.

Selection of studies
Three authors (ACM, AMK, and AACB) reviewed the titles and abstracts to determine eligibility for inclusion based on relevance. Studies eligible for inclusion were prospective and randomized clinical trials enrolling patients with AAP treated in acute care environments (ED, ICU, and postoperative). The butyrophenone of interest must have been administered by either the IV or intramuscular route. Acceptable comparison groups included placebo, opiate only, corticosteroids, non-steroidal anti-inflammatory drugs, or acetaminophen. The full articles of relevant abstracts were obtained and reviewed in their entirety.

Data extraction and management
Reference management and application of inclusion/exclusion criteria was performed with Rayyan (Qatar Computing Research Institute, Ar-Rayyan, Qatar: https://rayyan.qcri.org/). Three authors applied inclusion exclusion criteria (ACM, AMK, and YM). Four review authors (ACM, AMK, AACB, and YM) extracted data onto a pre-designed structured data extraction forms. Any disagreements were resolved by consensus. We arranged translation of any papers by experts where necessary.

Assessment of reporting biases and quality assessment
Three review authors (AMK, AACB, and YM) independently assessed the risk of bias using two validated tools: Grading of Recommendations, Assessment, Development and Evaluations (GRADE),76 and RoB 2.0: “Revised tool for Risk of Bias in randomized trials”.77 ACM reviewed the Risk of Bias assessments. The review authors considered methods of randomization and allocation, blinding (of treatment administrator, participants, and outcome assessors), selective outcome reporting (eg, failure to report adverse events), and incomplete outcome data. Each trial was graded as high, low, or unclear risk of bias for each of these criteria.

Because of the clinical and statistical heterogeneity of the studies, the intended meta-analysis was omitted.

Results
Description of studies
Results of the search
We identified 7,217 references from the following sources: Cochrane CENTRAL (n=108), CINAHL (n=129), DARE (n=5), DOAJ (n=25), Embase (n=4850), IEEE-Xplor (n=149), LILACS (n=87), Magiran (n=10), PubMed (n=925), SID (n=22), Scopus (n=722), TÜBİTAK ULAKBİM (n=0), and Web of Science (n=185). We found no ongoing studies in the Clinicaltrials.gov, WHO ICTRP, or ANZCTR. No ongoing studies were identified in Clinicaltrials.gov, WHO ICTRP, or ANZCTR. Figure 1 shows the PRISMA flow diagram, and the Supplementary material provides the search strategy.

Included studies
Six studies met the inclusion criteria and are summarized in Tables 2 and 3.78–83 One study assessed patients presenting to the ED with AAP associated with gastroparesis,83 whereas five studies assessed patients with abdominal pain following abdominal surgery: abdominal hysterectomy (n=4)79–82 and sleeve gastrectomy (n=1).78

Excluded studies
Excluded references assessing neuroleptanalgesia for abdominal pain included three case reports,48,49,61 three case series,74,59,84 and one non-randomized controlled trial.61 Ramirez et al34 was excluded as it had a retrospective cohort design. Three studies assessed pain in mixed populations, including abdominal, but data for abdominal pain patients was not listed independently.38,47,85 Bertrand et al135 was excluded as they did not clearly describe which urologic procedures were included or whether they were intra-abdominal. Lamond et al19 was excluded due to lack of a morphine only, placebo, or “no droperidol” control arm. Lastly, studies that
assessed the effect of butyrophenones for abdominal pain administered neither intravenously or intramuscularly were excluded: epidural, extradural, or intrathecal; subcutaneous; or oral.

Risk of bias in included studies
We have summarized our risk of bias and GRADE assessments in Figure 2 and Table 4.

Allocation (selection bias)
Four studies were at low risk of selection bias, being adequately randomized with allocation concealment. Among the remaining studies, the risk of bias from the method of randomization was unclear, and the risk of bias for allocation concealment was unclear or high.

Blinding (performance bias and detection bias)
Four studies were double-blinded. Although all six studies had a control arm, only one was a placebo controlled trial. One study reported “double-blind”, but the methods of concealment and blinding were not described in the manuscript, so it was marked as unclear. One article did not describe blinding or placebo use.

Incomplete outcome data (attrition bias)
Two studies reported no patient attrition. One study reported <10% attrition, whereas one reported a rate of 16% for attrition. Two studies did not report patient attrition data.

Selective reporting (reporting bias)
All included studies reported their intended primary outcomes. One study did not report adverse events.

Other potential sources of bias
Diagnostic criteria
All included studies gave adequate information, namely that patients were diagnosed with AAP.

Outcome criteria
Five studies assessed pain intensity. Three used a VAS (1–10), while two used a verbal rating scale (VRS; 1–10). Five studies assessed opiate consumption in terms of milligrams of morphine or tramadol consumed. Patient satisfaction with analgesia was reported in two studies using a 5-point scoring system.

Statistical analysis
Five of the six included trials provided adequate details; they clearly stated the statistical tests used, which appeared appropriate. One trial was marked “unclear” as it did not state the tests used.

Baseline differences between groups
In five of the six trials, the provided information were adequate in this category. No significant differences were observed between treatment groups for these studies. One study scored “unclear” in this category as it did not clearly describe differences between groups.
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Design (N)</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Primary endpoints</th>
<th>Secondary endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency department</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roldan (2017)73</td>
<td>Prospective Randomized Double-blind Controlled (33)</td>
<td>USA; 2 hospitals; emergency department; adult patients with acute exacerbation of previously diagnosed gastroparesis</td>
<td>Haloperidol 5 mg IM (single dose)</td>
<td>Placebo (single dose) + Conventional therapy</td>
<td>Pain intensity measured validated 10-point visual analog scale</td>
<td>1. ED disposition 2. ED LOS 3. Nausea</td>
</tr>
<tr>
<td>Postoperative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharma (1993)82</td>
<td>Prospective Randomized (42)</td>
<td>UK; hospital number not reported; post-op; adult women undergoing abdominal hysterectomy</td>
<td>PCA (no basal infusion) with bolus of Morphine 1 mg + droperidol 0.05 mg, and 5 minutes lockout (continued for 24 hours)</td>
<td>PCA (no basal infusion) with bolus of Morphine 1 mg, and 5 minutes lockout (continued for 24 hours)</td>
<td>Morphine consumption defined by mg of morphine received over 24 hours post-op</td>
<td>1. Patient satisfaction with analgesia 2. Extrapyramidal side effects 3. Nausea</td>
</tr>
<tr>
<td>Laffey (2002)97</td>
<td>Prospective Randomized Double-blind (30)</td>
<td>Ireland; 1 hospital; post-op; adult women undergoing abdominal hysterectomy</td>
<td>Post-op PCA of morphine (1.0 mg) plus cyclizine (2 mg). No basal infusion, 6-minute lock-out, 4 hours max morphine sulfate dose of 30 mg (continued for 48 hours)</td>
<td>Post-op PCA of morphine (1.0 mg) plus droperidol (0.05 mg). No basal infusion, 6-minute lock-out, 4 hours max morphine sulfate dose of 30 mg (continued for 48 hours)</td>
<td>Pain intensity measured by 10 cm visual analog scale</td>
<td>1. Nausea and vomiting 2. Sedation 3. Extra-pyramidal side effects</td>
</tr>
<tr>
<td>Liu (2003)80</td>
<td>Prospective Randomized Double-blind (60)</td>
<td>China; 1 hospital; post-op; adult women undergoing abdominal hysterectomy</td>
<td>PCA (no basal infusion) with bolus of tramadol 20 mg + droperidol 0.1 mg; 10-minute lockout. (continued for 36 hours)</td>
<td>PCA (no basal infusion) with bolus of tramadol 20 mg; 10-minute lockout. (continued for 36 hours)</td>
<td>1. Pain intensity measured by 10 cm visual analog scale 2. Analgesia consumption defined by mg of morphine received over 36 hours post-op</td>
<td>Side effects (sedation, nausea, vomiting, others)</td>
</tr>
<tr>
<td>Lo (2005)81</td>
<td>Prospective Randomized Double-blind (179)</td>
<td>Taiwan; 1 hospital; post-op; adult women undergoing abdominal hysterectomy</td>
<td>PCA (no basal infusion) with bolus of morphine 1 mg + droperidol 0.05 mg, 5-minute lockout. 4 hours morphine max of 30 mg (continued for 72 hours)</td>
<td>PCA (no basal infusion) with bolus of morphine 1 mg, 5-minute lockout. 4 hours morphine max of 30 mg (continued for 72 hours)</td>
<td>1. Pain intensity measured by a 10-point verbal rating scale 2. Morphine consumption defined by mg of morphine received over 72 hours post-op</td>
<td>Side effects: extrapyramidal (restless, muscle spasms, involuntary/irregular movements)</td>
</tr>
<tr>
<td>Oliviera (2013)84</td>
<td>Prospective Randomized Double-blind (90)</td>
<td>Brazil; 1 hospital; post-op; adult patients undergoing laparoscopic sleeve gastrectomy</td>
<td>Ondansetron 8 mg IV + dexamethasone 8 mg + haloperidol 2 mg (single dose)</td>
<td>Ondansetron 8 mg IV + dexamethasone 8 mg IV + haloperidol 2 mg (both single dose)</td>
<td>1. Nausea defined by a 10-point verbal numerical scale 2. Pain intensity defined by a 10-point verbal rating scale</td>
<td>Morphine consumption defined by mg of morphine received over 36 hours post-op</td>
</tr>
</tbody>
</table>

Abbreviations: ED, emergency department; LOS, length-of-stay; IM, intramuscular; PCA, patient-controlled analgesia; IV, intravenous; post-op, postoperative.
Table 3 Summary of the clinical effects of neuroleptanalgesia in patients with acute abdominal pain

<table>
<thead>
<tr>
<th>Variable</th>
<th>Emergency department</th>
<th>Postoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butyrophenone</td>
<td>Haloperidol</td>
<td>Droperidol</td>
</tr>
<tr>
<td>Comparison</td>
<td>Standard care</td>
<td>Morphine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain intensity</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Patient satisfaction</td>
<td>↑</td>
<td>NC</td>
</tr>
<tr>
<td>Opiate consumption</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>ED admission</td>
<td>↓</td>
<td>NC</td>
</tr>
<tr>
<td>ED LOS</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Extrapyramidal side effects</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Nausea</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>↓</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedation</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

Notes: NC means no change. *The Haldol + dexamethasone + ondansetron group had improved pain scores compared to ondansetron alone (P=0.046), but no change compared to dexamethasone + ondansetron group (P=0.053).

Figure 2 Risk of bias assessment.
Notes: + signifies low risk; ? signifies uncertain risk; – signifies high risk.
Table 4 GRADE quality of evidence ratings

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number of studies</th>
<th>Study design</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Other considerations</th>
<th>Certainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opiate consumption</td>
<td>5</td>
<td>Randomized</td>
<td>Not serious</td>
<td>Very serious*</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Publication bias strongly suspected^d</td>
<td>Very low</td>
</tr>
<tr>
<td>Pain intensity</td>
<td>4</td>
<td>Randomized</td>
<td>Serious^c</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Publication bias strongly suspected^d</td>
<td>Low</td>
</tr>
<tr>
<td>ED admission</td>
<td>1</td>
<td>Randomized</td>
<td>Very serious^d</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Publication bias strongly suspected^d</td>
<td>Very low</td>
</tr>
<tr>
<td>ED length-of-stay</td>
<td>1</td>
<td>Randomized</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Publication bias strongly suspected^d</td>
<td>Moderate</td>
</tr>
<tr>
<td>Patient satisfaction</td>
<td>2</td>
<td>Randomized</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Publication bias strongly suspected^d</td>
<td>Moderate</td>
</tr>
<tr>
<td>Extrapyramidal side effects</td>
<td>3</td>
<td>Randomized</td>
<td>Very serious^d</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Publication bias strongly suspected^d</td>
<td>Very low</td>
</tr>
</tbody>
</table>

Notes: *Two study drugs were assessed: haloperidol (two studies) and droperidol (three studies). Significant variability existed in control groups: conventional therapy (one study), morphine plus cyclizine (one study), tramadol (one study), morphine alone (one study), and dexamethasone and ondansetron (one study). ^Small number of studies resulting in likely type II error. Absence of negative or neutral studies suggests evidence of publication bias. ±Risk of bias high in one study, low in three studies. The study was judged to have a high risk of bias. ±One study at high risk, one study at moderate risk, and one study at low risk for bias.

Abbreviations: ED, emergency department; GRADE, Grading of Recommendations, Assessment, Development and Evaluations.

Pooling the data

We detected significant differences in clinical settings, inclusion/exclusion criteria, and quality of the trials. Due to high level of clinical heterogeneity, we determined that pooling the data and performing a meta-analysis would not be appropriate.

Effects of interventions

An overview of results is presented in Table 3. Three of four studies found improvements in pain intensity in the butyrophenone group. Three of five studies reporting postoperative opiate consumption reported no change,79,80,82 while two reported a decrease in opiate consumption.78,81 One ED study reported no change in patient satisfaction,83 while one postoperative study reported improvement in satisfaction scores.82 Extrapyramidal side effects79,81,82 and sedation79,80,82 were both reported as unchanged in three studies each.

Discussion

Summary of main results

Six RCTs (538 participants) that met the inclusion criteria were identified. Neuroleptanalgesia was associated with improved pain control (three of four studies); however, only two studies compared the strategy to an opiate-only group (morphine, n=1; tramadol, n=1).79,80,81,83 Opiate consumption was reported in five postoperative studies (no change [n=3],79,80,82 decreased [n=2]),78,81 One ED study reported no change in patient satisfaction,83 while one postoperative study reported improvement in satisfaction scores.82 Extrapyramidal side effects79,81,82 and sedation79,80,82 were both reported as unchanged in three studies each.

Overall completeness and applicability of evidence

There are some caveats that should be considered before drawing any conclusions from the findings of this systematic review. The small number of studies identified, of which all are positive, suggest both a high risk for publication bias and possibly type I error.

Heterogeneity may be due to clinical variation, for example, in study participation characteristics, baseline disease severity, delay in receiving treatment, different treatment used, and small numbers. For example, the mean age of included studies ranged from 32 to 58 years. It is unclear how this relatively young patient demographic influenced the findings. Conversely, included studies represent a mixture of resource-rich and -poor environments, with one study each from Brazil, China, England, Ireland, Taiwan, and the USA.

In addition, variation may be due to methodological considerations such as method of randomization, the use of blinding, the choice of outcome assessment measures, and trial duration. In particular, the trial by Sharma et al had methodological weaknesses in allocation concealment, blinding (participants and personnel), blinding of outcome assessment, and incomplete outcome data.82
Heterogeneity was less notable in the postoperative studies as the inclusion criteria were narrow. Only one ED study was included. Clinical heterogeneity (different pain assessment scales used) and methodological heterogeneity (different treatment regimens and follow-up plans) limit the interpretation of these data. We found variation in the clinical endpoints chosen as defining improved analgesia: three trials reported VAS,79,80,83 two reported VRS,78,83 and two reported patient satisfaction with analgesia scores.82,83 Whereas the differences in symptoms at recruitment are likely minimal for the postoperative trials, it is unclear whether a difference existed between the ED and postoperative trials.

Quality of evidence
We downgraded the quality of evidence for the trial by Sharma et al for concerns for potential selection bias, performance bias, detection bias, attrition bias, reporting bias, and not describing a sample size calculation. The quality of evidence was also downgraded for the trial by Laffey et al because of concerns for potential selection bias (random sequence generation and allocation concealment) and attrition bias.

Potential biases in the review process
We excluded several studies and a published abstract that provided insufficient information. One abstract50 seemed to duplicate information available in a subsequent published manuscript.83 One study was excluded because the published manuscript did not differentiate patients with abdominal pain from those with extremity pain.47 Attempts to contact the author for results on the abdominal pain patients did not receive response. As a result, there could be some risk of publication and selective reporting bias due to data from some studies being unavailable.

Lastly, we included studies conducted in Asia, North and South America, and Europe. It is possible that genetic differences in drug metabolism or response or even different etiological processes may account for some of the observed variation in response.

Agreements and disagreements with other studies or reviews
We identified no other systematic reviews or meta-analyses on this topic for comparison.

Conclusion
Implications for practice
Based on available evidence, we cannot draw any definitive conclusion on the efficacy or benefit of neuroleptanalgesia in the management of patients with AAP. However, the existing data suggest that these drugs may improve analgesia and decrease opiate consumption.

Implications for research
Additional clinical study is needed to assess the utility of neuroleptanalgesia for decreasing pain and opiate consumption of patients in acute care settings with abdominal pain from gastroparesis, cyclical vomiting syndrome, cannabinoid hyperemesis, and other forms of AAP.

Differences between protocol and review
The presence of significant methodological differences between studies precluded the performance of a meta-analysis. Therefore, only the systematic review portion of the project is presented in this manuscript.

Acknowledgments
No funding was received for this work. An abstract of this paper was presented at the East Carolina University 21st Annual Medical Student Research Forum with interim findings. The poster is available online at https://doi.org/10.13140/RG.2.2.12582.01601.

Disclosure
The contributions of AACB in this study were funded by the East Carolina University Brody School of Medicine Summer Scholar Research Program. The authors report no other conflicts of interest in this work.

References

Supplementary material

Literature search strategy

Combined search for butyrophenones

Combined search for abdominal pain

Version 1: Combined MeSH terms for pain, postop pain, and acute pain with terms for abdomen and GI tract, without including all the MeSH terms nested under “pain”.

Version 2: Took off the ‘Mesh:NoExp’ from term “Pain”[Mesh]: yielded 553 articles when combined with butyrophenones terms.

Added in terms for abdomen and GI tract: yielded 2,489 articles when combined with butyrophenones terms; 772 when animal studies removed.

Took off the “no explosion” from Mesh term for pain: yielded 772 results when combined with butyrophenones terms; 560 articles when animal studies removed.
