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O R I G I N A L  R E S E A R C H

Objectives: Endothelial dysfunction is a common feature of type 2 diabetes. Recent studies

suggest that the B-vitamin folic acid exerts direct beneficial effects on endothelial function,

beyond the well known homocysteine lowering effects. Therefore, folic acid might represent

a novel “biomarker” of endothelial function. We sought to determine whether plasma levels

of folic acid determine endothelial-dependent vasodilation in patients with type 2 diabetes.

Methods: Forearm arterial blood flow (FABF) was measured at baseline and during intra-

brachial infusion of the endothelial-dependent vasodilator acetylcholine (15 µg/min) and the

endothelial-independent vasodilator sodium nitroprusside (2 µg/min) in 26 type 2 diabetic

patients (age 56.5 ± 0.9 years, means ± SEM) with no history of cardiovascular disease.

Results: FABF ratio (ie, the ratio between the infused and control forearm FABF) significantly

increased during acetylcholine (1.10 ± 0.04 vs 1.52 ± 0.07, p < 0.001) and sodium nitroprusside

(1.12 ± 0.11 vs 1.62 ± 0.06, p < 0.001) infusions. After correcting for age, gender, diabetes

duration, smoking, hypertension, body mass index, microalbuminuria, glycated hemoglobin,

low-density lipoprotein cholesterol, and homocysteine, multiple regression analysis showed

that plasma folic acid concentration was the only independent determinant (p = 0.037, R2 = 0.22)

of acetylcholine-mediated, but not sodium nitroprusside-mediated, vasodilatation.

Conclusions: Folic acid plasma concentrations determine endothelium-mediated

vasodilatation in patients with type 2 diabetes. These results support the hypothesis of a direct

effect of folic acid on endothelial function and the rationale for interventions aimed at increasing

folic acid levels to reduce cardiovascular risk.
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Introduction
Impaired endothelial function is a common feature in type 2 diabetes (McVeigh et al

1992; Enderle et al 1998; Hogikyan et al 1998; Chowienczyk et al 1999; Kawagishi

et al 1999; Makimattila et al 1999; Rizzoni et al 2001). This might contribute to the

increased cardiovascular morbidity and mortality observed in type 2 diabetes by

accelerating the atherosclerotic process and enhancing the prothrombotic state

(Stehouwer et al 2002; Landmesser et al 2004).

Several factors including co-existing hypertension, obesity, insulin resistance,

hyperglycemia, hypercholesterolemia, and a proinflammatory state may account for

endothelial dysfunction in type 2 diabetes (Guerci et al 2001). Folic acid, a B-vitamin,

has recently gained considerable interest because of its potential to enhance endothelial

function in several pathological conditions including coronary artery disease, smoking,

familial hypercholesterolemia, and type 2 diabetes (Verhaar et al 1999; Chambers et

al 2000; Mangoni et al 2002; van Etten et al 2002). Recent evidence supports the

hypothesis that the effects of folic acid on endothelium may be “direct” (ie,

independent) of the well known homocysteine lowering effects (Doshi et al 2002;
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Mangoni and Jackson 2002; Mangoni et al 2002). Folic acid

levels might represent a “biomarker” of endothelial function,

easily modifiable through safe, effective, and inexpensive

dietary and/or pharmacological interventions. Therefore, we

sought to determine whether folic acid plasma

concentrations affected endothelial function in a group of

patients with type 2 diabetes.

Methods
Subjects
Twenty-six patients with type 2 diabetes (age 56.5 ± 0.9

years, range 46–65; diabetes duration 5.5 ± 0.6 years,

means ± SEM) were recruited from diabetic and general

medical outpatient clinics and through local advertising. The

subjects had no history of angina, myocardial infarction,

stroke, or peripheral occlusive disease. Hypertension

(previous sphygmomanometric blood pressure values

> 130/80 mmHg and treatment with antihypertensive drugs)

was present in 16 patients. Antihypertensive treatment

included diuretics in 6 patients, angiotensin converting

enzyme inhibitors in 7, angiotensin II receptor antagonists

in 3, beta blockers in 7, Ca channel blockers in 4, and alpha

blockers in 2 patients. Antidiabetic treatment included oral

hypoglycemic agents and insulin in 4 patients, oral

hypoglycemic agents alone in 19, insulin alone in 2, and

diet alone in 1 patient. None of the subjects were on vitamin

supplements or drugs known to significantly alter folic acid

and/or homocysteine blood concentrations. Micro-

albuminuria, defined as urinary albumin–creatinine ratio

≥ 2.5 mg/mmol (men) or ≥  3.5 mg/mmol (women), was

present in 8 subjects. The study had been approved by the

Local Research Ethics Committee. Each subject gave written

informed consent before starting the study.

Protocol
Investigations were performed in a temperature-controlled

laboratory (25–27 °C). The subjects were asked to abstain

from cigarette smoking and alcohol consumption from the

evening prior to the study. Each subject underwent 2 visits.

During visit 1, a physical examination and an electro-

cardiogram were performed, and blood pressure (BP) (mean

of three consecutive readings after the subject was resting

for 5 min) and heart rate (HR) were recorded. During visit

2, a fasting blood sample was taken (serum lipids and

glucose, glycated hemoglobin, full blood count,

homocysteine, and folic acid). Then, endothelial function

was assessed by the perfused forearm technique.

Forearm arterial blood flow
The brachial artery was cannulated using a 27-gauge cannula

connected via an epidural catheter to a infusion pump.

Forearm arterial blood flow (FABF) was measured

simultaneously in both arms (infused and control forearm)

by strain-gauge venous occlusion plethysmography (DE

Hokanson Inc, Bellevue, WA, USA). Measurements were

obtained at baseline after each subject rested supine for

20 min and during an 8-min intra-arterial infusion of

the endothelium-dependent vasodilator acetylcholine

(15 µg/min, Clinalfa, Switzerland). After a second baseline

was obtained, the endothelium-independent vasodilator

sodium nitroprusside (2 µg/min, David Bull Laboratories,

Warwick, UK) was infused. The doses of acetylcholine and

sodium nitroprusside used did not have any systemic effect

on BP and HR. FABF measurements were taken during the

final 2 min of each step. Circulation to the hands was

excluded 1 min before FABF measurement by inflating a

pediatric cuff around the wrist at 200 mmHg. Vasodilators

were stopped 5 days before FABF assessment. This wash-

out period was considered adequate, as the elimination half-

life of vasodilators ranged between 11 and 22 hours.

Folic acid and homocysteine
Serum folic acid was measured from fresh samples by

competitive protein binding enzyme immunoassays on the

Table 1 Baseline characteristics of the patients studied

Parameter Mean ± SEM (95% CI)

Age (years) 56.5 ± 0.9 (54.6–58.4)
Male:female 14:12
Hypertension 16/26
Smoking 6/26
Microalbuminuria 8/26
Diabetes duration (years) 5.5 ± 0.6 (4.3–6.7)
Body mass index (kg/m2) 31.4 ± 1.1 (29.2–33.6)
Plasma glucose (mmol/L) 11.4 ± 0.8 (9.7–13.2)
Glycated hemoglobin (%) 8.3 ± 0.3 (7.6–8.9)
Serum folic acid (µg/L) 8.0 ± 0.6 (6.8–9.3)
Plasma homocysteine (µmol/L) 11.7 ± 0.4 (10.5–12.3)
Serum creatinine (mmol/L) 89 ± 3 (83–94)
Total cholesterol (mmol/L) 5.3 ± 0.1 (5.0–5.5)
HDL-cholesterol (mmol/L) 1.2 ± 0.1 (1.1–1.3)
LDL-cholesterol (mmol/L) 2.6 ± 0.1 (2.3–2.9)
Serum triglycerides (mmol/L) 3.3 ± 0.3 (2.7–4.0)
Systolic blood pressure (mmHg) 137 ± 3 (130–144)
Diastolic blood pressure (mmHg) 77 ± 2 (74–81)
Heart rate (beats/min) 74 ± 2 (69–79)

Abbreviations: CI, confidence interval; LDL, low-density lipoprotein; HDL, high-
density lipoprotein.
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Centaur analyzer (Bayer Diagnostics, Newbury, UK). The

coefficient of variation was 5.2%. Fasting venous blood

samples were collected into tubes containing disodium

EDTA and tubes without anticoagulation. The samples were

centrifuged at 1800 g within 30 min, and the plasma and

serum separated and stored at –20 °C. Plasma homocysteine

was determined using a fluorescence polarization immuno-

assay on an IMX analyser (Abbott Diagnostics, Maidenhead,

UK) (Refsum et al 1989). Between-batch imprecision was

assessed at homocysteine concentrations of 7.0, 12.5, and

25.5 µmol/L, and coefficients of variation of 2.4%, 2.3%,

and 1.6% respectively were obtained (n = 19).

Statistical analysis
Data are presented as means ± SEM and 95% confidence

intervals. FABF values at baseline and during acetylcholine

infusion are expressed as ratio between the infused and

control forearm. FABF ratio differences between baseline

and acetylcholine infusion were assessed by paired Student

t test. Univariate analysis was performed by calculating the

correlation coefficient r between different parameters.

Determinants of endothelium-dependent vasodilatation were

identified by backward stepwise regression analysis. (SPSS

for Windows 11.0, SPSS Inc, Chicago, IL, USA). The factors

included in the model were age, gender, diabetes duration,

hypertension, smoking, glycated hemoglobin, body mass

index, microalbuminuria, low-density lipoprotein (LDL)

cholesterol, folic acid, and homocysteine concentrations. A

p-value < 0.05 indicated statistical significance.

Results
Baseline characteristics are illustrated in Table 1. No patient

had biochemical or clinical evidence of folic acid deficiency.

A significant increase in FABF ratio was observed during

acetylcholine (1.10 ± 0.04 baseline vs 1.52 ± 0.07 during

acetylcholine, p < 0.001) and sodium nitroprusside

(1.12 ± 0.11 baseline vs 1.62 ± 0.06 during sodium

nitroprusside, p < 0.001), indicating significant vaso-

dilatation in the infused arm. Univariate analysis of baseline

clinical and biochemical parameters did not show any

significant relationship apart from a negative correlation

between homocysteine and glycated hemoglobin

concentrations (Table 2). After correcting for age, gender,

diabetes duration, smoking, hypertension, body mass index,

microalbuminuria, glycated hemoglobin, LDL-cholesterol,

and homocysteine, multivariate regression analysis showed

that folic acid concentration was the only significant and

independent determinant of acetylcholine-mediated

endothelium-dependent, but not of sodium nitroprusside-

mediated endothelium-independent, vasodilatation

(p = 0.037, R2 = 0.22; Tables 3 and 4).

Discussion
Folic acid levels significantly and independently determined

forearm endothelium-dependent, but not endothelium-

independent, vasodilatation in a group of stable patients with

type 2 diabetes. Therefore, blood concentrations of this B-

vitamin might represent a biologically and clinically useful

marker of endothelial function in these patients.

Table 2 Univariate analysis with correlation coefficients

Parameter Folate BMI LDL-Chol Hcy Age Diab dur HbA1c

Folate – –0.011 –0.068 –0.170 –0.058 –0.288 –0.273
p 0.956 0.754 0.438 0.780 0.153 0.178

BMI –0.011 – 0.352 –0.009 0.000 0.252 –0.059
p 0.956 0.091 0.969 1.000 0.215 0.776

LDL-Chol –0.068 0.352 – 0.039 0.021 0.182 –0.089
p 0.754 0.091 0.864 0.923 0.394 0.678

Hcy –0.170 –0.009 0.039 – 0.345 0.204 –0.498
p 0.438 0.969 0.864 0.107 0.351 0.016

Age –0.058 0.000 0.021 0.345 – 0.160 –0.219
p 0.780 1.000 0.923 0.107 0.435 0.282

Diab dur –0.288 0.252 0.182 0.204 0.160 – 0.304
p 0.153 0.215 0.394 0.351 0.435 0.132

HbA1c –0.273 –0.059 –0.089 – 498 –0.219 0.304 –
p 0.178 0.776 0.678 0.016 0.282 0.132

Abbreviations: BMI, body mass index; LDL-Chol, low-density lipoprotein cholesterol; Hcy, homocysteine; Diab dur, diabetes duration; HbA1c, glycated hemoglobin; p,
probability.
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Endothelial dysfunction is an independent predictor of

mortality in patients with type 2 diabetes followed up for 9

years, even after correcting for urinary albumin excretion

and markers of inflammation (Stehouwer et al 2002).

Therefore, enhancement of endothelial function might

provide significant cardiovascular protection.

The ameliorative effects of folic acid supplementation

on endothelial function have been traditionally ascribed to

its homocysteine lowering effects (Mangoni and Jackson

2002). It is well established that homocysteine acutely and

chronically impairs endothelial function by inhibiting the

synthesis and release of nitric oxide and enhancing the

production of superoxide (Zhang et al 2000; Mangoni and

Jackson 2002; Weiss et al 2003). Therefore, lowering of

homocysteine levels might explain the enhancement of

endothelial function following folic acid treatment (Bellamy

et al 1999; Woo et al 1999).

Recent studies, however, support the hypothesis that folic

acid exerts direct effects on the endothelium (Doshi et al

2002; Mangoni et al 2002). There is in vitro evidence that

5-methyltetrahydrofolate, the active form of folic acid,

interacts with the enzyme endothelial nitric oxide synthase

(eNOS) in a fashion analogous, yet independent, of the co-

factor tetrahydrobiopterin to enhance endothelial function

(Hyndman et al 2002).

The results of our study suggest that folic acid, by

directly interacting with eNOS, directly modulates NO

production and endothelial function, independently of

established markers of endothelial dysfunction and

cardiovascular disease in type 2 diabetes. Of note, none of

the study subjects had folic acid deficiency, suggesting that

a “relative” rather than an “absolute” deficiency may already

provide adverse effects on endothelial function. This might

have important clinical implications, as folic acid levels can

be easily and safely increased by dietary intervention

and/or vitamin supplementation (Lucock 2004).

Our patients were on several antihypertensive and

hypoglycaemic drugs affecting endothelial function, thus

potentially limiting data interpretation. Although

antihypertensive vasodilators were stopped at least 5 half-

lives before the study day, we ran another regression analysis

Table 3 Backward multiple regression analysis (last 6 steps) of
changes in maximal endothelial-dependent vasodilatation during
acetylcholine infusion

Model Beta t Sig R R2

Gender –0.312 –1.251 0.233 0.72 0.52
Body mass index –0.328 –1.411 0.182
Smoking 0.378 1.806 0.094
LDL-cholesterol –0.298 –1.452 0.170
Homocysteine 0.244 1.193 0.254
Folic acid 0.645 3.3037 0.010

Gender –0.356 –1.424 0.176 0.68 0.47
Body mass index –0.335 –1.420 0.178
Smoking 0.329 1.580 0.136
LDL-cholesterol –0.288 –1.380 0.189
Folic acid 0.608 2.850 0.013

Gender –0.316 –1.234 0.236 0.63 0.40
Body mass index –0.413 –1.750 0.101
Smoking 0.325 1.518 0.150
Folic acid 0.600 2.730 0.015

Body mass index –0.261 –1.275 0.220 0.58 0.33
Smoking 0.238 1.159 0.264
Folic acid 0.493 2.402 0.29

Body mass index –0.244 –1.185 0.252 0.53 0.28
Folic acid 0.465 2.260 0.037

Folic acid 0.469 2.253 0.037 0.47 0.22

NOTE: Dependent variable = changes in FABF ratio during acetylcholine infusion.
Abbreviations: Beta, regression coefficient; t, regression coefficient; Sig,
significance; R, R statistic; R2, R squared; FABF, forearm arterial blood flow.

Table 4 Backward multiple regression analysis (last 6 steps) of
changes in maximal endothelial-independent vasodilatation
during sodium nitroprusside infusion

Model Beta t Sig R R2

Smoking 0.415 1.844 0.088 0.68 0.47
Microalbuminuria –0.383 –1.691 0.115
LDL-cholesterol –0.301 1.424 0.178
Age 0.467 1.954 0.073
Gender 0.258 1.170 0.263
Hypertension 0.443 1.793 0.096

Smoking 0.442 1.952 0.071 0.64 0.41
Microalbuminuria –0.384 –1.676 0.116
LDL-cholesterol –0.369 –1.797 0.094
Age 0.408 1.724 0.107
Hypertension 0.396 1.604 0.131

Smoking 0.342 1.493 0.156 0.55 0.30
Microalbuminuria –0.222 –1.025 0.321
LDL-cholesterol –0.367 –1.701 0.110
Age 0.258 1.129 0.277

Smoking 0.329 1.439 0.169 0.50 0.25
LDL-cholesterol –0.356 –1.647 0.119
Age 0.263 1.148 0.268

Smoking 0.242 1.111 0.282 0.44 0.19
LDL-cholesterol –0.367 –1.687 0.110

LDL-cholesterol –0.367 –1.676 0.111 0.36 0.13

NOTE: Dependent variable = changes in FABF ratio during sodium nitroprusside
infusion. Abbreviations: Beta, regression coefficient; t, regression coefficient; Sig,
significance; R, R statistic; R2, R squared; LDL, low-density lipoprotein.
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to study the effect of antihypertensive and hypoglycemic

treatment. None of these drugs affected the relationship

between folic acid levels and endothelial-dependent

vasodilatation (data not shown).

The limitations of our study are related to the relatively

small sample size, the lack of data on oxidative stress

markers to further support a beneficial effect of folic acid

on eNOS activity, and the absence of “hard” end points such

as cardiovascular morbidity and mortality. Larger

randomized controlled studies are urgently needed to

demonstrate whether folic acid reduces cardiovascular risk

in type 2 diabetes.
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