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Background: In recent years, the incidence of thyroid cancer (TC), the most common endocrine 

malignancy, has been increasing. Emerging evidence indicates that the CUT/CUX/CDP family 

of proteins can play an important role in tumor development and progression by regulating many 

cancer-related functions. However, the molecular functions of CUX2 in TC remain unknown. 

Methods: In this study, we used a series of loss-of-function experiments and Western blot 

analysis to investigate the function of CUX2 in TC and the mechanisms involved. 

Results: Our data revealed that CUX2 expression levels were upregulated in papillary thyroid 

cancer (PTC). Functionally, CUX2 silencing significantly inhibited PTC cell line (KTC-1 and 

BCPAP) proliferation, colony formation, migration, invasion, and apoptosis. Furthermore, 

CUX2 induced epithelial–mesenchymal transition (EMT) and influenced the phosphorylation 

of AKT and mTOR in the PI3K–AKT–mTOR pathways.

Conclusion: In summary, CUX2 may function as a tumor promoter in TC.

Keywords: papillary thyroid carcinoma, CUX2, oncogene

Introduction
Thyroid cancer (TC) is the most frequent endocrine malignancy, with 53,990 estimated 

diagnosed cases and 2,060 estimated deaths in the United States in 2018. In recent 

years, its incidence has shown a significant upward trend worldwide. However, with the 

changes in clinical practice guidelines, TC incidence may appear to be decreasing, par-

ticularly among Whites.1,2 Papillary thyroid cancer (PTC) accounts for 80%–85% of all 

TCs.3 RAS mutations represent the second most identified genetic alteration in TC, and 

RAS-mutated PTC appears to be more aggressive and is associated with poor prognosis 

compared with other types of cancers.4,5 The PI3K/AKT pathway plays an extensive 

role in thyroid tumorigenesis, and its inhibitor can be a therapeutic target in TC.6

The CUT/CUX/CDP family of nuclear proteins was first reported in Drosophila; 

it plays an important role in mediating the dendrite branching pattern.7,8 Since then, a 

human version of CUT, named CUT-like homeobox 1 and 2 (CUX1 and CUX2), was 

subsequently identified as the mammalian orthologue of the Drosophila CUT gene. The 

full-length CUX proteins are characterized by four conserved DNA-binding domains, 

including the CUT homeodomain and three CUT repeat DNA-binding sequences (CR1, 

CR2, and CR3), each composed of 60–80 highly similar amino acids.9–11 Depending 

on the different cellular contexts, CUX genes can express various isoforms and exhibit 

regulated expression levels, which might contribute to functional diversity.12,13 CUX 

genes are known to be associated with the initiation and progression of multiple dis-

eases, such as brain diseases involved in synapse, dendrite, and axon development and 

various cancers.13–16 Paradoxically, CUX has been implicated in cancer, both as a tumor 
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suppressor and an oncogene, depending on distinct protein 

isoforms and perhaps on the dosage of gene expression. 

CUX1 expression is upregulated in many advanced cancers, 

such as glioblastomas, colon rectal cancer, and breast can-

cer.17–19 However, some genetic and functional evidence also 

point that many cancers (uterine leiomyomas, breast cancer, 

acute myeloid leukemias, and myelo proliferative diseases) 

commonly exhibit loss or inactivation of one CUX1 allele, 

resulting in decreased expression and activity and promoting 

tumorigenesis.20–24 Increasing evidence implicate the notion 

that CUX1, a haploinsufficient tumor suppressor gene, might 

be associated with tumor initiation, whereas increased copy 

number and expression promote tumor progression.

Unlike CUX1, which is broadly expressed in many 

tissues, CUX2 shows a more restricted expression pattern and 

is primarily expressed in the nervous system.25,26 Recently, 

Klampfl et al27 found that a mutation in CUX2 is also linked 

with myeloproliferative neoplasms. CUX1 and CUX2 have 

a 48% amino acid identity. CUX2 has several reported 

transcript variants.11 It exhibits similar DNA-binding speci-

ficities and binds to the same sequences as CUX1, although 

its kinetics appear to be much more transient and rapid.28 

CUX2 proteins have been found to bind not only to CCAAT-

containing sites but also to other promoter sequences, acting 

as a repressor or an activator to regulate transcriptional activ-

ity in different contexts.29,30 Interestingly, in the liver, CUX2 

functions as a female-specific transcription activator and 

inhibits male-biased genes.31,32 In addition, CUX2 is involved 

in various biological processes, including accelerating the 

repair of oxidative DNA damage, cell cycle progression, 

apoptotic signals, and other pathways.30,33–35

To date, few studies have focused on the relationship 

between CUX2 and TC. Hence, in this study, we investigated 

the role of the CUX2 gene in TC.

Patients and methods
Patients and samples
We selected 20 paired PTC tissues and matched noncancerous 

thyroid tissues from patients who underwent thyroid resection 

at the First Affiliated Hospital of Wenzhou Medical 

University. These tissues were flash frozen in liquid nitrogen 

immediately after surgery and stored at -80°C before RNA 

isolation and quantitative real-time PCR (qRT-PCR) analysis. 

Further clinicopathological data were available. The use of 

all tissue samples in this study was approved by the ethics 

committee of the First Affiliated Hospital of Wenzhou 

Medical University, and written informed consent was 

obtained from each patient.

Cell culture
Human TC cell lines, KCT-1, TPC-1, BCPAP, FTC-133, 

and Htori-3, were provided by the Stem Cell Bank, Chinese 

Academy of Sciences. These cells were cultivated in RPMI 

1640 (Thermo Fisher Scientific, Waltham, MA, USA) 

supplemented with 10% FBS (Thermo Fisher Scientific), 

1× Minimum Essential Medium nonessential amino acids 

(Thermo Fisher Scientific), and 1× sodium pyruvate (Thermo 

Fisher Scientific) and incubated in a humidified atmosphere 

containing 5% CO
2
 at 37°C.

RNA extraction and qRT-PCR
The total RNA was isolated using TRIzol reagent (Thermo 

Fisher Scientific) according to the manufacturer’s instruc-

tions and then reverse transcribed into cDNA using a kit 

from Toyobo (Tokyo, Japan). qRT-PCR was performed 

in triplicate by using the THUNDERBIRD SYBR qPCR 

Mix (Toyobo) according to the manufacturer’s instructions. 

The following gene-specific primers were used: CUX2 

(F: 5′-TGAACCATAGGCACAACC-3′; R: 5′-AAACACCA 

AGAGGGGAAG-3′) and GAPDH (F: 5′-GGTCGGAGTC 

AACGGATTTG-3′; R: 5′-ATGAGCCCCAGCCTT 

CTCCAT-3′).

RNA interference
For knockdown studies, siRNA for CUX2 was purchased 

from Shanghai Gene Pharma (Shanghai, China). Cell trans-

fection was performed using RNAiMAX (Thermo Fisher 

Scientific) according to the manufacturer’s protocol. The 

knockdown efficiency was confirmed by qRT-PCR and West-

ern blot analyses.

Cell proliferation and colony formation 
assays
We utilized the colony formation and Cell Counting Kit-8 

(CCK-8; Sigma-Aldrich Co., St Louis, MO, USA) assays to 

determine the proliferative ability. For the colony formation 

assay, the transfected KTC-1 and BCPAP cells (1.5×103/well) 

were seeded in six-well plates. After 7 days, the cells were 

fixated with 4% paraformaldehyde (PFA) for 30 minutes and 

stained with 0.1% crystal violet for 30 minutes. The colonies 

were counted only if they included at least 50 cells. For the 

proliferation assay, the transfected cells (1.5×103) were 

plated in 96-well plates and measured every 24 hours using 

the CCK-8 reagent following the manufacturer’s instruc-

tion. The absorption was measured at 450 nm after adding 

the reagent and incubating for 2 hours in a 37°C incubator. 

All experiments were performed in triplicate.
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Cell migration and invasion ability 
analyses
Cellular migration and invasion assays were performed 

in a Boyden chamber system with a pore size of 8  mm. 

For invasion assays, the inserts were coated with Matrigel 

matrix before cell seeding. The transfected cells (4×105 cells 

for KTC-1 and 5×105 cells for BCPAP, double amount for 

invasion) were seeded in the upper chamber, and the chamber 

was placed into a 24-well plate filled with a medium contain-

ing 20% FBS. The cells were incubated for 24 (KTC-1 cells) 

or 26 hours (BCPAP cells) at 37°C. Then, the cells adhering 

to the lower surface of the membrane were fixed with 4% 

PFA for 30 minutes, stained with 0.01% crystal violet for 

30  minutes, and photographed using a light microscope. 

All experiments were performed at least three times.

Cell apoptosis assay
Two days after infection, the cells were harvested and double 

stained with Annexin V conjugated to phycoerythrin and 

7-aminoactinomycin (7-AAD) (Apoptosis Detection Kit-1; 

BD Pharmingen, San Diego, CA, USA). Apoptotic events 

were analyzed using FlowJo software. All these experiments 

were repeated in triplicate.

Protein extraction and Western blot 
analysis
The total cellular protein was extracted using a RIPA protein 

lysis buffer (Beyotime, Shanghai, China). Equal amounts of 

protein (20 µg) were loaded and separated by SDS-PAGE 

and transferred onto the polyvinylidene fluoride membrane. 

After blocking with 5% skimmed milk, the membrane was 

incubated with a relative antibody (Abcam, Cambridge, UK) 

overnight at 4°C. Then, the membrane was washed and incu-

bated with horseradish peroxidase-linked secondary anti-goat 

immunoglobulin G antibody (Abcam) at room temperature 

for 1 hour. GAPDH was used as internal control. All experi-

ments were performed at least three times.

Statistical analyses
The data are expressed as mean ± SD. The different gene 

expression levels of CUX2 in tumor tissues were analyzed 

using paired sample t-test. We used the t-test or one-way 

ANOVA test for continuous variables. All P-values were 

two sided, and a P-value of ,0.05 was considered statisti-

cally significant. Statistical analysis was performed with 

SPSS software version 19.0 (IBM Corporation, Armonk, 

NY, USA). GraphPad Prism 5 (GraphPad Software, Inc., 

La Jolla, CA, USA) was used for the graphs.

Results
CUX2 is overexpressed in TC
To evaluate the expression level of CUX2 in PTC, qRT-

PCR analysis was performed on 20 paired PTC tissues and 

adjacent noncancerous thyroid tissues. Results showed 

that CUX2 was significantly higher than the corresponding 

normal tissues (P,0.05; Figure 1A). Meanwhile, we also 

assessed the mRNA expression levels of CUX2 in TC cell 

lines and found that CUX2 was consistently upregulated in 

KCT-1, TPC-1, BCPAP, and FTC-133 cells compared with 

the normal thyroid cell line, Htori-3 (Figure 1B).

CUX2 knockdown decreases  
proliferation and colony formation
To investigate the functional role of CUX2 in papillary thy-

roid cell lines, we sequentially performed loss-of-function 

experiments to explore the biological effect of CUX2. 

Considering that the TPC-1 cell viability worsened after 

siRNA treatment, the KTC-1 and BCPAP cells were finally 

selected to be transfected with siRNA targeting CUX2. The 

results of qRT-PCR and Western blot analyses showed that 

the expression of CUX2 was successfully decreased (.30%) 

both at the mRNA and protein levels (Figures 1C and 3C). 

Then, we performed colony formation and CCK-8 assays to 

investigate the biological role of CUX2. The colony forma-

tion assay indicated that CUX2 knockdown inhibited the 

proliferation in KTC-1 and BCPAP cells compared with the 

control group (Figure 2A and D). Furthermore, the CCK-8 

assay (Figure 2G and H) showed a consistent result with the 

colony formation assay. The proliferative capacity of the 

cell lines transfected with siRNA-CUX2 was significantly 

attenuated. These data indicated that downregulation of 

CUX2 can suppress the proliferation and growth abilities of 

KTC-1 and BCPAP cells.

CUX2 knockdown impairs the migration 
and invasion
Given that cell migration and invasion are critical steps for 

cancer metastasis, we carried out migration and invasion 

assays to further identify whether the knockdown of CUX2 

expression can regulate TC metastasis abilities. We performed 

cell migration assay using the Transwell chamber migration 

assay. The cancer cells with CUX2 knockdown displayed 

fewer cells that migrated through the membrane after 24 hours 

than cells transfected with the negative control. We then exam-

ined the number of cells that penetrated through the Matrigel 

in a Transwell chamber to investigate the invasiveness. 

Consistently, the invasion assays showed the same tendency, 
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Figure 1 CUX2 gene is overexpressed in thyroid cancer and knockdown CUX2 gene in thyroid cancer cell lines.
Notes: (A) mRNA expression of CUX2 in our clinical PTC tissues (n=20). (B) mRNA expression levels of CUX2 in TC cell lines and a control cell line. (C) qRT-PCR 
analysis of the knockdown efficiency of CUX2 in KTC-1 and BCPAP cells treated with two specific siRNAs. Data represent mean ± SD from three independent experiments. 
***P,0.001 compared with siRNA-CUX2 and siRNA-negative control.
Abbreviations: qRT-PCR, quantitative real-time PCR; PTC, papillary thyroid cancer; TC, thyroid cancer.

that is, CUX2 knockdown dramatically attenuated the 

invasion capacity compared with vector-transfected cells 

(Figure 2B, C, E, and F). Therefore, CUX2 knockdown has a 

significant role in inhibiting tumor metastasis in TC cell lines.

CUX2 knockdown induces apoptosis
To further explore the possible mechanism of the abovemen-

tioned observations, we used 7-AAD and Annexin V staining 

in KTC-1 and BCPAP cells after different treatments to ana-

lyze cell death and apoptosis by flow cytometry. We found 

that the percentage of apoptotic cells markedly increased 

in both cell lines compared with that of the control group 

(Figure 3A and B). These findings suggested that CUX2 

knockdown caused proliferation, and metastasis arrest might 

trigger cell apoptosis.

CUX2 facilitates cell migration and 
invasion by regulating the expression of 
E-cadherin and vimentin
Emerging evidence has verified that the epithelial– 

mesenchymal transition (EMT) is an integral process that 

involves cancer invasion, metastasis, and other tumor 

progression behaviors.36,37 Meanwhile, the deregulation or 

loss of the expression of E-cadherin plays a fundamental role 

in the EMT process. Inversely, upregulation of the expression 

of vimentin, a mesenchymal associated marker, contributes to 

cell metastasis.38–40 On the basis of our previous observation 

that CUX2 promotes PTC cell invasion, we next investigated 

whether CUX2 can mediate the EMT process of PTC cell 

lines. Through Western blot analysis, we observed that the 

expression levels of E-cadherin were increased, whereas 

those of vimentin were obviously downregulated in CUX2 

knockdown cells compared with the vector-transfected 

cells (Figure 3C). These results indicate that the expression 

of CUX2 might regulate the expression of E-cadherin and 

vimentin, thereby affecting the EMT process.

PI3K–AKT–mTOR pathway is involved 
in the regulatory effects of CUX2
The PI3K–AKT–mTOR pathway, an important survival 

pathway that is activated in many types of cancers, regulates 

cellular metabolism, tumor proliferation, and apoptosis.41 
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Figure 3 CUX2 knockdown induced PTC cell line apoptosis, and the EMT and PI3K–AKT–mTOR pathways were involved in CUX2’s effect.
Notes: (A) Effects of CUX2 knockdown on cell apoptosis. Cells transfected with siRNA had more apoptosis cells as determined by Annexin V/PI staining and flow cytometry 
analysis. (B) Data represent mean of the percentage of apoptosis cells from all three independent experiments. (C) PTC cells were transfected with siRNA-CUX2 and NC. 
The expression and phosphorylation of key molecules of the pathways were assessed via Western blot analysis. β-Actin was used as an internal control. *P,0.05; **P,0.01.
Abbreviations: EMT, epithelial–mesenchymal transition; NC, negative control; PI, propidium iodide; PTC, papillary thyroid cancer.

As critical downstream effectors, AKT and mTOR are fre-

quently hyperactivated in human cancers.42 To determine 

whether the PI3K–AKT–mTOR pathway is a potential cancer-

related pathway of CUX2 in TC cells, we further investigated 

the expression of relevant proteins by Western blot analysis. 

As shown in Figure 3C, the phosphorylation of AKT and 

mTOR decreased in both PTC cell lines transfected with CUX2 

siRNA, whereas total AKT and mTOR were not significantly 

altered. According to these results, we can speculate that the 

PI3K–AKT–mTOR pathway may be associated with the 

mechanism of CUX2 in promoting tumorigenesis in PTC.

Discussion
In this study, our experimental evidence supports that the 

CUX2 gene may play an oncogenic role in PTC cell lines. 

The results can be summarized as follows. First, we demon-

strated that CUX2 exhibits higher expression levels in PTC 

tissues and cell lines compared with the control. Moreover, 

we also found that CUX2 knockdown attenuated the ability 

of proliferation and inhibited the migration and invasion. 

The suppression of CUX2 can activate the apoptosis of PTC 

cell lines. Interestingly, this is reminiscent of the important 

role of CUX2 in regulating proliferation and cell cycle length 

of the nervous system.30 Pal et al previously found that CUX2 

knockdown reduces proliferation and increases apoptosis in 

breast cancer cells.35

In addition, the credible data strongly implied that CUX1 

and CUX2 displayed a highly conserved sequence and thus 

exhibited very similar molecular functions.10,11 Previously, 

experimental evidence showed the role of CUX1 in promoting 

cell migration and invasion in numerous tumor cells by regu-

lating TGF-β signaling and EMT.18,43 The EMT process has 

been proven to have a strong association with cancer invasion 

and migration.44 Meanwhile, our data revealed that CUX2 

silencing results in E-cadherin upregulation and vimentin 

downregulation. Therefore, we presumed that CUX2 may 

play an important role in PTC cell metastasis via reversing 

the EMT process. Furthermore, a previous report on CUX1 
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as a downstream effector of the PI3K–AKT pathway can 

confer resistance to apoptosis in pancreatic cancer,45 lending 

credence to the possibility of CUX2 regulating TPC cells’ 

function via the PI3K–AKT–mTOR pathway. Meanwhile, 

previous reports demonstrated that the PI3K–AKT–mTOR 

pathway is one of the cardinal pathways in most malignan-

cies, including TC.46–48 The PI3K–AKT–mTOR pathways 

have been demonstrated to regulate cell proliferation, apop-

tosis, and differentiation. We found that when CUX2 expres-

sion levels changed, phosphorylated AKT and mTOR were 

altered compared with total AKT and mTOR. Altogether, 

these results suggest that CUX2 may affect the protein phos-

phorylation of the PI3K–AKT–mTOR pathway and promote 

PTC tumorigenesis.

Moreover, the present observations provide evidence that 

CUX2 may function as a tumor-promotive gene in regulat-

ing PTC cell proliferation and progression. However, this 

work has some limitations. First, we analyzed the association 

between CUX2 expression and clinicopathological features in 

our clinical samples but failed to find a statistically significant 

relationship. This is probably due to the small number of 

patients. Second, whether CUX2 expression can influence the 

tumorigenesis of PTC cells in vivo should be further studied. 

In addition, previous studies have verified that CUX gene 

knockdown impairs the function of repairing oxidative DNA. 

In RAS-driven tumor cells, which tend to generate higher levels 

of ROS, CUX1 knockdown could exhibit synthetic lethal effect 

in cancer cells.35,49 In this regard, exploring the relationship 

between CUX2 and RAS mutation in TC may be interesting.

Conclusion
CUX2 may act as a tumor promoter gene in PTC via regulat-

ing EMT and influencing the phosphorylation of AKT and 

mTOR in the PI3K–AKT–mTOR pathways.
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