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Abstract: Neuroblastoma (NB) is a pediatric cancer of the sympathetic nervous system which 

accounts for 8% of childhood cancers. Most NBs express high levels of the disialoganglioside 

GD2. Several antibodies have been developed to target GD2 on NB, including the human/

mouse chimeric antibody ch14.18, known as dinutuximab. Dinutuximab used in combination 

with granulocyte–macrophage colony-stimulating factor, interleukin-2, and isotretinoin (13-cis-

retinoic acid) has a US Food and Drug Administration (FDA)-registered indication for treating 

high-risk NB patients who achieved at least a partial response to prior first-line multi-agent, 

multimodality therapy. The FDA registration resulted from a prospective randomized trial assess-

ing the benefit of adding dinutuximab + cytokines to post-myeloablative maintenance therapy for 

high-risk NB. Dinutuximab has also shown promising antitumor activity when combined with 

temozolomide and irinotecan in treating NB progressive disease. Clinical activity of dinutuximab 

and other GD2-targeted therapies relies on the presence of the GD2 antigen on NB cells. Some 

NBs have been reported as GD2 low or negative, and such tumor cells could be nonresponsive 

to anti-GD2 therapy. As dinutuximab relies on complement and effector cells to mediate NB 

killing, factors affecting those components of patient response may also decrease dinutuximab 

effectiveness. This review summarizes the development of GD2 antibody-targeted therapy, the 

use of dinutuximab in both up-front and salvage therapy for high-risk NB, and the potential 

mechanisms of resistance to dinutuximab.
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Introduction
Neuroblastoma (NB)
NB is a malignant sympathetic nervous system tumor which accounts for 8% of child-

hood cancers.1 High-risk NB, defined primarily by age, stage, and MYCN oncogene 

amplification, poses a major therapeutic challenge.2 For high-risk NB, aggressive 

multi-agent therapy, myeloablative consolidation, followed by maintenance therapy 

with high-dose, pulse isotretinoin (13-cis-retinoic acid; 13-cis-RA) to treat minimal 

residual disease, improved event-free survival (EFS) if utilized before progressive 

disease.3,4 A further improvement in overall survival (OS) was seen with addition to 

maintenance therapy of the anti-GD2 antibody ch14.18 + cytokines.5 The latter study 

led to the Food and Drug Administration (FDA) granting a registered indication for the 

ch14.18 antibody (dinutuximab) when used as maintenance therapy for high-risk NB 

together with cytokines and 13-cis-RA after myeloablative therapy. A recent Children’s 

Oncology Group (COG) randomized trial demonstrated a high response rate in NB 
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patients with progressive disease for temozolomide (TMZ) 

+ irinotecan (IRN) combined with dinutuximab.6

Anti-GD2 immunotherapy for NB has been previously 

reviewed.7–9 In this article, we review the development of 

dinutuximab and other antibodies targeting GD2, the wide-

spread clinical use of dinutuximab as part of maintenance 

therapy for high-risk NB, and the emerging use of dinutux-

imab as a component of chemoimmunotherapy for treating 

NB patients with disease progression. We also briefly review 

recent studies addressing mechanisms of NB resistance to 

therapy with dinutuximab and novel alternative immuno-

therapy approaches for NB that are in preclinical and clinical 

development.

GD2
NBs contain large amounts of gangliosides, and the disi-

aloganglioside GD2 is highly expressed in most NBs and 

is also expressed in other cancers including melanoma and 

osteogenic sarcoma.7 GD2 is synthesized10 starting with the 

conjugation of serine and palmitoyl-CoA into 3-ketosphin-

ganine, which is reduced to sphinganine. Ceramide synthases 

convert sphinganine to dihydroceramide, which is reduced to 

ceramide, and is glycosylated to glucosylceramide and then 

to lactosylceramide. Lactosylceramide is converted to GM3 

by GM3 synthase, GM3 to GD3 by GD3 synthase, and GM2/

GD2 synthase generates GD2 from GD3. Figure 1 illustrates 

the synthesis and metabolism of GD2.

Antibodies to GD2
Because of the strong expression of GD2 on NB, clinical 

grade antibodies were developed by multiple investigators. 

The different anti-GD2 antibodies and their key proper-

ties are listed in Table 1. Promising activity in early-phase 

Figure 1 Synthesis and metabolism of GD2.
Notes: GD2 is synthesized via nine steps from ceramides (obtained likely preferentially via the de novo synthetic pathway). Ceramide is glycosylated, and then via additional 
steps GD2 is synthesized. GD2 can be metabolized to GD1b by GM1a/GD1b synthase.
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 clinical  trials was seen with both a murine anti-GD2 antibody 

(3F8)11,12 and a chimeric anti-GD2 antibody (ch14.18),10 with 

the latter being used for the COG pivotal trial of ch14.18 + 

cytokines + 13-cis-RA after myeloablative therapy.5 Human-

ized anti-GD2 antibodies13 and a humanized anti-GD2/

interleukin-2 (IL-2) fusion protein12,13 have also been studied 

in early-phase clinical trials. In the USA, ch14.18 (dinutux-

imab) has a registered indication for maintenance therapy of 

high-risk NB,14 and a biosimilar antibody produced in CHO 

cells (and thus with differing glycosylation) has European 

Medicines Agency (EMA) approval for NB maintenance 

therapy in Europe.15,16 GD2 monoclonal antibodies have also 

been used for the detection and purging of NB cells in bone 

marrow and in peripheral blood stem cells.3,17,18

Clinical trials with anti-GD2 antibodies 
and regulatory approvals
Clinical trials of anti-GD2 antibodies have been conducted 

employing the antibodies as single agents or in combination 

with other chemotherapeutics or cytokines. It was apparent 

in the initial early-phase studies that the activity of anti-GD2 

antibodies against NB tumor masses was limited. Thus, most 

of the early clinical trials focused on using the antibody as 

a component of maintenance therapy to eliminate MRD 

remaining after cytoreductive therapy with traditional cyto-

toxic chemotherapy and radiation. The murine anti-GD2 

antibody 3F8 was used alone in NB patients19 or with granu-

locyte–macrophage colony-stimulating factor (GM-CSF) to 

stimulate myeloid effector cells in mounting an antibody-

dependent cellular cytotoxicity (ADCC) attack on the tumor 

cells.20,21 In one Phase I study, the use of 3F8 alone induced 

major antitumor responses in four out of 17 patients with 

either melanoma or NB, with two of the responders being NB 
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patients.19 When GM-CSF was combined with 3F8 in a Phase 

II NB trial, promising antitumor results were seen in patients 

with MRD in bone marrow.21 In a combined analysis of a 

series of nonrandomized single-arm trials for high-risk NB 

patients (NCI-V90-0023, NCT00002634, NCT00002560, 

NCT00072358), the best apparent outcome resulted from 

combining 3F8 with subcutaneous GM-CSF and 13-cis-RA.22 

The murine anti-GD2 antibody (ch14.G2a) was combined 

with intravenous IL-2 in a Phase I/IB trial (CCG-0901) and 

showed a partial response in one NB patient out of 33 patients 

with GD2-positive malignances and a decrease in NB cells 

in the bone marrow of three patients.23

Humanization of anti-GD2 antibodies was undertaken to 

diminish the development of human anti-mouse antibodies 

(HAMAs) which can potentially block antitumor activity of 

anti-GD2 antibodies. The first such antibody was not totally 

humanized but is the chimeric 14.18 (ch14.18) which was 

developed from 14.G2a. Clinical trials (A0935A, ANBL0931, 

CCG-0935) of ch14.18 combined with GM-CSF, IL-2, and 

13-cis-CA demonstrated the combination to be well toler-

ated and showed promising results.24–27 The COG undertook 

a large prospective randomized trial (ANBL0032) to deter-

mine whether adding ch14.18 combined with GM-CSF and 

IL-2 to maintenance therapy with 13-cis-RA (given after the 

completion of induction chemotherapy and myeloablative 

chemotherapy) was superior to maintenance with 13-cis-RA 

alone.5 The COG randomized trial demonstrated a significant 

improvement in both EFS and OS for patients randomized to 

receive ch14.18 + GM-CSF + IL-2 (intravenous)+13-cis-RA 

compared to maintenance therapy with 13-cis-RA alone.5 

Table 1 Anti-GD2 antibodies

Antibody Description Key aspects References

3F8 Mouse igG3 antibody Large experience as single agent and in 
combinations

11, 12, 21, 22

126 Mouse igM Used to purge bone marrow and peripheral 
blood stem cells

17, 18, 27, 104, 132

14.G2a Mouse igG2a antibody Used to generate ch14.18 39
Me36.1 Mouse antibody class switched to igG1 and igG2a Cross-reacts with GD3 7
14.18 Mouse igG3 antibody Lower ADCC than 14.G2a 39
L72 Fully human igM Produced by eBv-transformed cell lines 133
ch14.18 (dinutuximab) Mouse human chimeric igG1 antibody produced 

in SP2/0
FDA- and eMA-approved indication for NB 5, 12, 14, 134

ch14.18/CHO 
(dinutuximab beta)

Mouse human chimeric antibody produced in 
CHO cells

eMA-approved indication for NB 15, 32–34

hu14.18-iL2 Humanized 14.18 antibody fused with iL-2 Clinical trials of fusion version with iL-2 48, 50
hu14.18K322A Point mutation made in hu14.18 Made to reduce complement activation 13, 38
hu3F8 Humanized 3F8 antibody Less complement activation than 3F8 39, 135
8B6 Monoclonal antibody that binds to O-acetyl-GD2 Proposed to reduce pain 7, 39

Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; eBv, epstein-Barr virus; eMA, european Medicines Agency; FDA, Food and Drug Administration; NB, 
neuroblastoma.

Monitoring of that randomized trial (blinded to investiga-

tors) revealed that the stopping rule for the demonstration 

of effectiveness had been achieved prior to completion of 

planned enrollment; therefore, the study was converted to a 

nonrandomized study where all patients received maintenance 

with ch14.18 + cytokines + 13-cis-RA. To obtain additional 

data on safety and toxicity required by the FDA for the 

registration of ch14.18, a nonrandomized Phase III study 

(ANBL0931) of ch14.18 + GM-CSF + IL-2 +13-cis-RA was 

carried out, which demonstrated safety, toxicity, and outcome 

data comparable to that observed in the ANBL0032 study.25 

United Therapeutics Corporation, Silver Spring, MD, USA 

obtained a license from the National Cancer Institute for 

ch14.18, established production of the antibody, and secured 

from the FDA, a registered indication for the use of ch14.18 

(now called dinutuximab) in combination with GM-CSF + 

IL-2 + 13-cis-RA for maintenance therapy of high-risk NB.

A biosimilar version of the chimeric ch14.18 antibody 

known as ch14.18/CHO and also as dinutuximab beta was 

developed by European investigators to be produced in CHO 

cells; this latter antibody having an altered glycosylation 

pattern compared to ch14.18 produced in SP2/0 cells.7,15,28,29 

ch14.18/CHO was found to have similar pharmacokinetics 

to ch14.18 and showed a partial response in two out of seven 

patients with residual disease.15 Although not a randomized 

study, maintenance with ch14.18/CHO + IL-2 + 13-cis-RA 

(without GM-CSF) showed a significantly better outcome 

for patients receiving ch14.18/CHO + IL-2 + 13-cis-RA 

compared to historical controls before immunotherapy.30 

A study (EudraCT number 2005-001267-63) showed that 
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ch14.18/CHO was also found to be effective at stimulating 

effector responses throughout the treatment period when 

used as a continual long-term infusion with subcutaneous 

IL-2.31 The long-term infusion of dinutuximab beta resulted 

in reduced pain.32,33 Dinutuximab beta (ch14.18/CHO) has an 

approved indication in the European Union (EU) for treating 

high-risk NB patients at 12 months and greater who have 

received at least a partial response to induction chemotherapy 

and have received myeloablative chemotherapy.34,35 Dinutux-

imab, combined with IL-2, has an EMA-registered indication 

for the treatment of NB patients with relapsed or refractory 

disease who have not achieved a complete response to the 

first-line therapy after disease is stabilized.35

Relative contributions of multi-agent NB 
maintenance therapy
As the COG ANBL0032 randomized Phase III clinical trial 

employed ch14.18 together with GM-CSF and IL-2 and 

interspersed with 13-cis-RA, the relative contribution of the 

various components of maintenance therapy could not be 

determined from that trial. Although only randomized trials 

testing the various components (which are likely not feasible) 

can truly define relative contributions, some studies provide 

data that support the value of all components of therapy 

used for maintenance as used in the ANBL0032 study. For 

example, a nonrandomized study of ch14.18 given as a single 

agent without cytokines or 13-cis-RA in 334 metastatic NB 

patients (Cooperative German NB trials NB90 and NB97) 

did not show a significant improvement in patient outcome 

compared to maintenance cytotoxic chemotherapy.36 As 

described earlier, comparisons of studies using the murine 

anti-GD2 antibody 3F8 alone and with GM-CSF showed a 

better outcome for patients treated with 3F8 combined with 

GM-CSF.22 Pharmacokinetic analyses of 13-cis-RA for 524 

patients treated on ANBL0032 with ch14.18 + cytokines + 

13-cis-RA showed a lower OS for patients aged >18 months 

at diagnosis who achieved low exposures of 13-cis-RA and 

its active metabolite, suggesting an independent contribu-

tion of 13-cis-RA to maintenance therapy with ch14.18 + 

cytokines.37

Alterations of anti-GD2 antibodies to 
decrease systemic toxicity
A major toxicity of anti-GD2 antibody infusions is neuro-

pathic pain, which is thought to be a result of complement 

activation at GD2-expressing nerve fibers.38 Humanized 

anti-GD2 antibodies have shown some reduction in pain, with 

hu3F8 resulting in less apparent pain than murine 3F8.39 For 

hu14.18, a point mutation to reduce complement activation 

was made to create hu14.18K322A.38 In a Phase I study 

(NCT0074349) in recurrent or refractory NB, hu14.18K322A 

treatment resulted in four out of 31 complete responses and 

two out of 31 partial responses, but pain was still a common 

side effect.40 A pilot study (NCT01576692) in recurrent/

refractory NB with hu14.18K322A combined with GM-CSF 

and subcutaneous IL-2 resulted in a 61.5% response rate, with 

four complete responses and four partial responses.13 Thus, 

the elimination of complement binding may maintain anti-

GD2 activity and diminish neuropathic pain, but whether or 

not antitumor activity at the level obtained with dinutuximab 

remains can only be determined in a randomized clinical trial.

Anti-GD2 immunocytokines 
Immunocytokines are created by fusing a cytokine to an 

antibody. IL-2 was fused directly to ch14.18 to make a GD2-

specific immunocytokine, and IL-15 was directly fused to 

the anti-GD2 antibody c.60C3.41–44 The direct association of 

the cytokine with the antibody was hypothesized to be more 

effective by concentrating the cytokine to the tumor cells.7 

In mouse models, the immunocytokine of ch14.18–IL-2 

was shown to have superior antitumor activity compared to 

ch14.18 or IL-2 separately.9,45–47 In human studies, hu14.18 

was used to create an IL-2 immunocytokine in an effort to 

avoid human anti-chimeric antibodies (HACAs).48 However, 

initial Phase I studies (NCT00003750) did not show any 

objective clinical responses with hu14.18-IL-2.49 In a Phase 

II study (NCT00082758) using hu14.18-IL-2, five patients 

out of 23 had complete repsonses.48,50 In these clinical trials, 

hu14.18-IL-2 was well tolerated and demonstrated activity 

against recurrent NBs, but whether the immunocytokine 

offers advantages over dinutuximab combined with cytokines 

remains unclear.7,50

Use of dinutuximab to treat progressive 
NB
To address the potential for dinutuximab to enhance salvage 

chemotherapy of recurrent NB, a COG “pick-the-winner” 

randomized trial was carried out testing the addition of two 

novel agents (dinutuximab + GM-CSF vs temsirolimus) to 

TMZ + IRN (commonly used for re-induction chemotherapy 

of NB). That Phase II study showed a higher response rate 

in the arm of the trial where patients received TMZ + IRN + 

dinutuximab and has led to an increasingly frequent use of 

the latter combination for treating recurrent NB. TMZ + IRN 

+ dinutuximab + GM-CSF, achieved 10 partial responses and 

11 complete responses for an overall 53% objective response 
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rate (ANBL1221); with the study of additional patients, the 

objective response rate was ~40%.6,51 Future COG Phase II 

studies are planned that will build on the combination of 

TMZ + IRN + dinutuximab. In spite of the exciting clinical 

activity of TMZ + IRN + dinutuximab, more than half of all 

patients treated with that regimen did not show an objective 

response. There is currently no means for identifying patients 

who will not respond to TMZ + IRN + dinutuximab. A Phase 

I trial (NCT01711554) combining ch14.18 with lenalidomide 

and 13-cis-RA showed promising initial results, suggesting 

that immune cell activators other than cytokines may be 

effective in combination with dinutuximab, but whether such 

approaches are more effective (or as effective and better toler-

ated) than antibody + cytokines remains to be determined.52

Potential mechanisms of resistance to 
dinutuximab: differing immune effector 
cells
Progressive disease during or after therapy with dinutux-

imab reflects either inadequate exposure of tumor cells to 

the antibody, the inability of the patient’s immune effectors 

(myeloid cells, natural killer [NK] cells, complement) to 

combine with the antibody to kill tumor cells, or resistance 

of NB cells to antibody therapy. Mechanisms of resistance to 

anti-GD2 antibody therapy are not well defined. Most efforts 

in understanding the mechanisms of treatment failure of 

dinutuximab when used to treat MRD have focused on study-

ing effector cells involved in ADCC.15,16,19–21 Studies seeking 

to improve therapy have largely focused on improving the 

delivery of cytokines (such as with an immunocytokine)22 or 

using approaches to enhance the activity of effector cells.53,54

 The anti-cancer activity of dinutuximab relies on 

parterning with components of the patient’s immune 

response mechanisms that are listed in Table 2. One key 

player in the antitumor response of dinutuximab is NK 

cells. These cells are capable of killing antibody-bound 

NB cells via ADCC. The importance of NK cells in NB 

treatment has been widely reported.55–60 However, the low 

expression of NK cell-activating ligands, such as Major 

histocompatibility complex (MHC) class I related chain A, 

can compromise the ability of NK cells to target NB.59,61,62 

Furthermore, TGFβ1 in the tumor microenvironment can 

inhibit NK cell cytotoxicity, which can be restored by 

treatment with the TGFβR1 inhibitor galunisertib.53 The 

addition of cytokines to activate NK cells or other immune 

cells in the tumor microenvironment is one way to stimu-

late ADCC in antibody-treated tumors. The addition of 

GM-CSF and IL-2 to anti-GD2 therapy enhanced ADCC 

against NB.5,22,23,50,63–66 GM-CSF increases the activation 

of myeloid cells, which are also important in antibody-

mediated antitumor responses.22,66–68

Another complicating factor in the NK cell-mediated 

antitumor response is the repertoire of killer cell immuno-

globulin-like receptors (KIRs) and KIR ligands expressed in 

NB patients. The balance between activating and inhibitory 

KIR signals influences NK cell activation. NK cells that have 

mismatched KIR/KIR ligands have been reported as play-

ing a key role in 3F8 and hu14.18-IL-2-mediated anti-NB 

responses.22,59,66,69,70 COG investigators examined KIR and 

KIR ligand genotypes in patients in the ANBL0032 Phase 

III trial randomized to dinutuximab, IL-2, GM-CSF, and 

isotretinoin vs patients randomized to only isotretinoin. The 

immunotherapy group had a significantly better outcome than 

those randomized to only isotretinoin for the patients with all 

KIR ligands detected. However, if the patients had the KIR 

ligand missing genotype, no improvement in outcome was 

seen for those randomized to immunotherapy.71 Similarly, 

patients randomized to immunotherapy had a better outcome 

than isotretinoin alone depending on their KIR2DL2/KIR 

ligand status.71 In a subsequent study, the presence of NKp4+, 

KIR+, and KLRB1+ in pretreatment NK cells correlated with 

increased EFS and OS in patients treated with dinutuximab, 

GM-CSF, IL-2, and isotretinoin.72 Thus, it is possible that 

patients with certain immune effector cell genotypes may 

not benefit from antibody therapy, but further studies are 

needed to determine whether such genotypes are a robust 

way of identifying patients who do not benefit from anti-GD2 

antibody therapy.

Table 2 effector cells involved in dinutuximab treatment

Effector mechanism Positive features Negative features

NK cells ADCC; activation can be enhanced with cytokines5,22,23,50,63–66 KiR ligands being present may inhibit 
ADCC22,59,66,69,70

Neutrophils ADCC; response enhanced by chemotherapy83 Diminished with cytotoxic chemotherapy
Macrophages ADCC/phagocytosis of tumor67,79,80 TAMs are associated with poor prognosis75–78

γδ T cells Tumor cytotoxicity when combined with TMZ87 Minor cell population/may require ex vivo prep84,136

Complement CDC Complement binding associated with pain75–78

Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; CDC, complement-dependent cytotoxicity; KiR, immunoglobulin-like receptor; NK, natural killer; TAMs, 
tumor-associated macrophages; TMZ, temozolomide.
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FC gamma receptors (FCGRs) on effector cells are neces-

sary to attach antibodies and to mediate ADCC activity. In 

addition to KIR ligand mismatch, FCGR3A and FCGR2A 

polymorphisms have been associated with better outcome in 

antibody-treated NB patients.68,73 FCGR3A is predominantly 

on NK cells.68,74 FCGR2A is primarily expressed on macro-

phages, neutrophils, and monocytes, suggesting a role for 

enhanced phagocyte-mediated ADCC in 3F8 and ch14.18/

CHO-treated NB cells.68,73 Furthermore, Siebert et al68 also 

found that ch14.18/CHO-treated patients with FCGR2A and 

FCGR3A polymorphisms and the activating KIR 2DS2 had 

the best antitumor activity.

As reflected in the data with FCGR2A polymorphisms, 

NK cells are not the only effector cells that are responsible 

for antitumor responses in antibody-treated tumors (Table 

2). Macrophages and neutrophils are also capable of ADCC. 

Tumor-associated macrophages (TAMs) have been identi-

fied in NB tumors and have generally been associated with 

poor prognosis.75–78 However, macrophages are also able 

to phagocytose NB tumors and participate in an antitumor 

response.67,79,80 Macrophage polarization, and subsequent 

response to NB, relies in part on the cytokines and other factors 

in the tumor microenvironment. Neutrophil-mediated ADCC 

against NB has previously been reported.81,82 Furthermore, 

neutrophil-mediated antitumor responses in vitro were found 

to be associated with GD2 expression on NB cell lines treated 

with dinutuximab.83 Treatment with chemotherapy followed by 

dinutuximab also enhanced neutrophil-mediated cytotoxicity.83

A third cell type that induces tumor cell death is γδ T cells. 

These cells have been expanded and used to treat NB.84,85 A 

lineage of γδ T cells, Vγ9Vδ2cells, was shown to have cyto-

toxic activity against NB cells treated with ch14.18 in vitro.86 

An in vivo mouse study demonstrated that administered γδ 

T cells in combination with dinutuximab and TMZ resulted 

in tumor regression.87

Potential mechanisms of resistance to 
dinutuximab: antibodies to the antibody
Treating NB patients with antibody therapy can lead to the 

development of antidrug antibodies (ADAs). For murine 

antibodies, such as 3F8, HAMAs have been reported in 

patients. The presence of HAMA not only led to faster clear-

ance of antibodies but also was associated with better OS in 

3F8-treated patients.22,88–90 Patients treated with ch14.18/CHO 

have generated HACAs. The development of HACA was asso-

ciated with lower levels of therapeutic antibody detected and 

lower levels of ADCC and complement-dependent cytotox-

icity (CDC).31 However, the serum from NB patients treated 

with ch14.18/CHO who developed HACA still had measur-

able CDC at the first treatment cycle and subsequent cycles.91 

The frequency of HACA in patients treated with ch14.18/CHO 

(21%) was similar to those treated with dinutuximab.31,92 In 

patients treated with humanized anti-GD2 antibodies, about 

40% developed human antihuman antibodies (HAHAs) to 

hu14.18K322A, while 21% of patients were reported to 

develop an HAHA response to hu3F8.40,93 Similar to what was 

seen in ch14.18/CHO, HAHA in hu3F8 was associated with 

lower serum levels of antibody in NB patients.93 The effect 

of ADA on patient response in anti-GD2 antibody therapy is 

still not fully understood and requires further investigation. 

Furthermore, the generation of an anti-idiotype response to 

GD2 antibodies may actually enhance antitumor activity, 

although further investigation is also needed in this area.91,94

Potential mechanisms of resistance to 
dinutuximab: low GD2 expression
Prior data in the literature show that most NBs at diagnosis 

express GD2 and GD2 negativity in tumors recurring after 

GD2 therapy was thought to be infrequent.89 However, a 

recently published study by Schumacher-Kuckelkorn et al95 

in Germany demonstrated that low GD2-expressing NBs do 

occur, perhaps in as high as 12% of patients. The number of 

patients who had been treated with GD2 antibody therapy 

was not clear, and prior anti-GD2 therapy could increase the 

proportion of GD2-low patients.95 In a study of NB patients 

treated with ch14.18, five out of 15 patients experienced treat-

ment failure and also had significantly lower GD2 expression 

than the patients without relapse.96 These results show the 

association of a low percentage of GD2-positive cells prior 

to treatment corresponded to relapse in patients treated with 

ch14.18.96 A recent study by COG investigators also demon-

strated low dinutuximab binding to NB cell lines and patient-

derived xenografts (PDXs), using multicolor flow cytometry 

in patient blood and bone marrow samples.97 Thus, low or 

negative GD2 expression may account for some treatment 

failures in NB patients treated with dinutuximab (Figure 2). 

Importantly, these latter data suggest that not all patients 

with progressive NB will have tumor cells expressing high 

amounts of GD2 and such patients may experience toxicity 

without benefit from dinutuximab in salvage regimens. It is 

possible that patients who benefit from dinutuximab are those 

with a high density and/or a high percentage of cells that are 

GD2 positive. However, there exist no nonclinical or clinical 

data defining the levels of GD2 expression that are needed to 

trigger antitumor responses. The selective pressure of dinu-

tuximab therapy may result in decreased GD2 expression, 
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which has been observed with targeting CD20 on lymphoma 

with rituximab,98–101 targeting CD19 on leukemia with CAR 

T cells,102 and with antibodies to EGF in breast cancer.103

NB antibodies against antigens other than 
GD2
A number of different monoclonal antibodies that recognize 

cell surface antigens on NB have been described. HSAN1.2, 

459, and 390 are antibodies specific to NB but not bone 

marrow and were used for the purging of NB from bone mar-

row.3,17,18,104–107 KP-NAC8 is a monoclonal antibody specific 

to the cell surface of NB cells.108 B7-H3 (CD276) is found 

on the NB cell surface and can be targeted with antibodies, 

including enoblituzumab (MGA271) and 8H9.109–117 More 

recently, GPC2 has been identified as a potential target for 

drug antibody conjugates on the surface of NB cells.118–120 

Because of the potential for resistance to dinutuximab result-

ing from decreased GD2 expression, such antibodies have 

potential for treating recurrent NBs and for eventually being 

combined with dinutuximab for initial therapy.

Targeting GD2 with non-antibody 
approaches
The success in acute lymphoblastic leukemia with chimeric 

antigen receptor T cells (CART) against CD19121–123 has led 

to a number of investigators developing CART targeting 

GD2.124–128 While some activity has been observed in NB 

clinical trials with GD2-CART, activity data that would 

support CART being tested in large randomized trials have 

not yet been achieved.

With the goal of providing a long-term immunological 

attack against NB, investigators have developed vaccine 

approaches with various antigens, including GD2. While 

there are potential advantages to a vaccine approach or to 

the use of CART in treating NB, a major drawback is that 

the vast majority of high-risk NB patients in the USA and 

EU receive dinutuximab maintenance therapy as part of 

up-front therapy. If, as indicated by some data, resistance to 

NB involves a decreased expression of GD2, then both GD2 

vaccine and CART approaches will not be effective against 

tumor cells escaping primary therapy.

Conclusions
Monoclonal antibodies to GD2, murine, chimeric, and 

humanized have all shown activity. The clinical data sug-

gested that optimal use of antibody therapy as maintenance 

therapy to eliminate MRD remaining after maximal cytotoxic 

therapy, which required randomized clinical trials to prove 

effectiveness of adding anti-GD2 therapy to standard-of-care 

approaches. A Phase III randomized trial of  dinutuximab 

Figure 2 Potential mechanisms of acquired NB resistance to dinutuximab.
Notes: Killing of NB cells by dinutuximab requires the antibody to partner with the effector cells, such as NK cells, neutrophils (PMLs), and Mac to kill via ADCC and/or to 
fix complement on the tumor cell membrane. Based on the data to date, potential mechanisms of acquired resistance to dinutuximab are illustrated and include neutralization 
of antibody with HACAs and decreased expression or exposure on the cell surface of GD2.
Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; HACAs, human anti-chimeric antibodies; Mac, macrophages; NK, natural killer; NB, neuroblastoma; PMLs, 
polymorphonuclear leukocytes.
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 conclusively demonstrated that adding dinutuximab + GM-

CSF + IL-2 to maintenance therapy with 13-cis-RA sig-

nificantly improved outcome.5 Results with other anti-GD2 

antibodies, although not tested in a randomized fashion, are 

similar. Regulatory approval has been achieved for dinutux-

imab in the USA and the EU and for the biosimilar ch14.18/

CHO (dinutuximab beta) antibody in the EU.

The use of cytokines with dinutuximab has been devel-

oped to enhance the innate immune response, which is 

especially important in previously treated NB patients whose 

adaptive immune system has been inhibited.7 It is still an area 

of ongoing research to determine which immune effector 

cells are responsible for the antitumor responses with dinu-

tuximab. NK cells, complement, and macrophages have been 

associated with enhanced antitumor activity through ADCC, 

CDC, and other mechanisms in antibody-treated NB.7,59,129,130 

Neutrophils have also been reported to play a role in being 

responsible for killing tumor cells treated with dinutuximab, 

especially in combination with chemotherapy.81,83

Success with dinutuximab in maintenance therapy for 

patients in first response led to exploring the combination 

of dinutuximab with chemotherapeutic agents. Data from a 

study treating patients with progressive disease with the com-

bination of TMZ + IRN + dinutuximab + GM-CSF showed 

a very promising response rate,6,51 and recent nonclinical 

data demonstrated a significant contribution of dinutuximab 

to the combination of TMZ + IRN + dinutuximab in NB 

PDXs.97 Dinutuximab has been shown to be more efficient 

for targeting NB cells in bone marrow rather than solid 

tumor mass disease,7,39 which may impact which patients 

achieve response when treating overt progressive disease. 

As low GD2-expressing NBs do not show a response to 

dinutuximab in PDX models,97 testing patients for tumor 

cell GD2 expression, together with other biomarkers, such 

as KIR mismatch, may identify patients likely not to benefit 

from dinutuximab therapy.

Because of the success in combining dinutuximab with 

cytotoxic chemotherapy in the relapse setting, ongoing and 

planned studies seek to incorporate dinutuximab into induc-

tion chemotherapy for NB.131 Although this may enhance the 

effectiveness of induction chemotherapy, such an approach 

has the potential to provide additional selection pressure 

against GD2 expression and may enhance the frequency of 

low GD2-expressing tumor cells, which could diminish the 

effectiveness of maintenance therapy and of treating patients 

with progressive disease with anti-GD2 antibodies. Thus, if 

the use of dinutuximab occurs in all phases of therapy for 

high-risk NB, it will be increasingly important to assess 

GD2 expression in tumor cells as part of clinical trials and 

potentially in the future as a guide to therapy. For patients 

with low GD2-expressing tumors, the use of therapeutic 

antibodies against non-GD2 antigens, such as B7-H3, offers 

the potential for activity in the setting of progressive disease 

and eventually for use in multi-antibody combination therapy 

approaches.109–111
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