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Background: Transcriptional dysregulation is one of the most important features of cancer 

genesis and progression. Applying gene expression dysregulation information to predict the 

development of cancers is useful for cancer diagnosis. However, previous studies mainly focused 

on the relationship between a single gene and cancer. Prognostic prediction using combined 

gene models remains limited.

Materials and methods: Gene expression profiles were downloaded from The Cancer Genome 

Atlas and the data sets were randomly divided into training data sets and test data sets. A six-

gene signature associated with head and neck squamous cell carcinoma (HNSCC) and overall 

survival (OS) was identified according to a training cohort by using weighted gene correlation 

network analysis and least absolute shrinkage and selection operator Cox regression. The test 

data set and gene expression omnibus (GEO) data set were used to validate this signature.

Results: We identified six candidate genes, namely, FOXL2NB, PCOLCE2, SPINK6, ULBP2, 

KCNJ18, and RFPL1, and, using a six-gene model, predicted the risk of death of head and 

neck squamous cell carcinoma in The Cancer Genome Atlas. At a selected cutoff, patients 

were clustered into low- and high-risk groups. The OS curves of the two groups of patients 

had significant differences, and the time-dependent receiver operating characteristics of OS, 

disease-specific survival (DSS), and progression-free survival (PFS) were as high as 0.766, 

0.731, and 0.623, respectively. Then, the test data set and the GEO data set were used to evaluate 

our model, and we found that the OS time in the high-risk group was significantly shorter than 

in the low-risk group in both data sets, and the receiver operating characteristics of test data 

set were 0.669, 0.675, and 0.614, respectively. Furthermore, univariate and multivariate Cox 

regression analyses showed that the risk score was independent of clinicopathological features.

Conclusion: The six-gene model could predict the OS of HNSCC patients and improve thera-

peutic decision-making.
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Introduction
Head and neck cancer originates from the oral cavity, tongue, lip, gum, oropharynx, 

nasopharynx, and hypopharynx.1 Head and neck squamous cell carcinoma (HNSCC) 

accounts for more than 90% of head and neck cancers and is the most common cancer 

in the world, causing 350,000 deaths every year.2,3 Furthermore, the 5-year survival rate 

of patients with this disease is lower than 50%.4 However, in the past decade, there has 

been no significant improvement in the prognosis of HNSCC patients.5,6 Recent studies 

have found that tobacco use and human papillomavirus (HPV) status in patients with 

HNSCC had significant prognostic correlations.3,7–9
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Transcriptional dysregulation is a common feature of can-

cer genesis and development.10 For instance, it was reported 

that forkhead box Q1 was closely related to pancreatic cancer, 

where its high-expression level correlates with a poor prog-

nosis.11 Forkhead box F2 was downregulated in esophageal 

squamous cell carcinoma, and low-expression levels were 

associated with poor prognosis.12 Additionally, it was dem-

onstrated that U3 small nucleolar ribonucleoprotein was 

upregulated in various cancers, and its levels are significantly 

associated with the survival of HNSCC patients.3,13 However, 

previous studies mainly focused on the relationship between 

a single gene and cancer. Due to this limitation in robustness, 

predicting models can result in false predictions. Prognostic 

prediction using combined gene models remains limited.

In this study, we applied  weighted gene correlation 

network analysis (WGCNA) and least absolute shrinkage 

and selection operator (LASSO) Cox regression to identify a 

six-gene signature associated with HNSCC development and 

overall survival (OS) according to a training cohort.14 The test 

data set and gene expression omnibus (GEO) data set were 

used to validate this signature, and we also demonstrated that 

this signature was independent from other clinical factors, 

including sex and age. In the training and validation data sets, 

patients with high-risk scores have relatively poor prognosis 

and receiver operating characteristic (time-dependent ROC) 

of OS is up to 0.766 and 0.669 in the training data set and test 

data set, respectively. Meanwhile, we found that the six genes 

had a close relationship with tumor grade, which was supported 

using linear regression analysis. In summary, we integrated 

WGCNA and LASSO Cox regression to develop a six-gene 

model, which could be a new prognostic marker significantly 

associated with prognosis and tumor grade in HNSCC.

Materials and methods
Data collection and preprocessing
The workflow of this analysis procedure is shown in Figure 1. 

The raw count data of HNSCC patients were downloaded from 

The Cancer Genome Atlas (TCGA) project (https://tcga-data.

nci.nih.gov/tcga/), including 502 HNSCC patient samples 

and 44 control samples. The related clinical information 

for 502 patients was obtained from cBioportal (http://www.

cbioportal.org/) and TCGA Clinical Data Resource (https://

www.cell.com/cms/10.1016/j.cell.2018.02.052/attachment/

f4eb6b31-8957-4817-a41f-e46fd2a1d9c3/mmc1.xlsx). After 

excluding the samples in which the neoplasm histologic 

grade could not be assessed (GX) or those without OS 

information, 478 samples were included in this study. The 

detailed information about clinical data of the 478 samples 

is shown in supplementary material S2.

Differential expression analysis
The differentially expressed genes (DEGs) of HNSCC were 

identified using “DESeq2” R package at a cutoff |log2 fold 

change|>1 and P
adj

 < 0.01 (P-value adjusted for multiple 

testing using Benjamini–Hochberg method).

Construction of gene coexpression 
network
First, the counts data were normalized by the variance-

stabilizing transformation algorithm implemented in DEseq2 

package.15–17 Then, before network analysis, the HNSCC 

data were evaluated by clustering to check if there were any 

obvious outliers. After removing the outliers, 477 samples 

were retained, and the WGCNA package was used to construct 

the coexpression network.14,18 All other statistical information 

for the remaining samples are summarized in Table S1. In 

this study, we calculated Pearson’s correlation matrices and 

average linkage method for all pairwise genes. Then, a weighted 

adjacency matrix was constructed using a power function a
mn

 = 

|C
mn

|b (C
mn

=Pearson’s correlation between gene m and gene n; 

a
mn

=adjacency between gene m and gene n). Parameter β is used 

to penalize weak correlations and emphasize strong correlations 

between genes. After choosing the appropriate β, the adjacency 

was transformed into a topological overlap matrix, and average 

linkage hierarchical clustering was performed according to the 

topological overlap matrix-based dissimilarity measure.19,20 In 

our study, we chose a minimum module size (gene group) of 

30 for the gene dendrogram and a cutline (0.25) for the module 

dendrogram, and we merged some modules.20

Identification of clinically significant 
modules
We identified the modules related to clinical traits using 

two approaches. The module eigengene (ME) of a module, 

calculated by the first principal component of the module, was 

used to represent the overall expression level of the module. 

Correlations between MEs and clinical traits were calculated 

to identify the cancer-relevant module. Then, gene significance 

(GS) was defined as the log10 transformation of the P-value 

(GS=logP) in the linear regression between gene expression 

and a clinical trait. In addition, the average GS for all the genes 

in a module was regarded as module significance (MS), and 

among all the modules, the module with the maximal absolute 

MS was regarded as the one related to clinical traits.
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Construction of a weighted Os predictive 
score model
We randomly divided the data into training data sets (N=287) 

and test data sets (N=190). A Cox model was built using the 

LASSO algorithm with the training data set.21 To find an opti-

mal λ, tenfold cross-validation with minimum criteria was 

employed, and the λ with the smallest cross-validation error 

was chosen.22,23 Other parameters were set to default values. 

Finally, six genes were identified, and a formula for the risk 

score was constructed by using a linear combination of six 

genes weighted by the LASSO method in the training data 

sets. The LASSO Cox regression modeling was performed 

using the R package “glmnet”.24,25 A hazards model was 

constructed as follows:

 

RiskScore coef=
=
∑ (exp )*

i

N

1  

where N is the number of genes, exp was the expression 

value of gene, and coef was the coefficient of mRNA in the 

LASSO Cox regression analysis.

Figure 1 Flow diagram of the analysis procedure: data collection, preprocessing, analysis, and validation.
Abbreviations: Degs, differentially expressed genes; ROC, receiver operating characteristic; TCga, The Cancer genome atlas.
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gene set enrichment analysis
In the entire data set, samples of HNSCC were divided 

into two groups according to the optimal cutoff value. This 

included 307 high-risk samples and 170 low-risk samples. 

To identify the potentially altered pathways in the high-risk 

group, we performed gene set enrichment analysis (GSEA) 

to search Kyoto encyclopedia of genes and genomes26 

(KEGG) pathways using the package “clusterProfiler”27,28 

in R. Explicitly, we constructed a preranked gene list of 

all expressed genes ordered by log2 fold change from the 

DESeq2 package in two groups. Significant pathways with 

P-values<0.05 were identified.

statistical analyses
We calculated a risk score for each patient in the training data 

set and divided the patients into high-risk and low-risk groups 

by using the optimal risk score (–1.0) as a cutoff determined 

by X-tile plots.29,30 Then, survival analysis was performed 

using the Kaplan–Meier method, and two-sided log rank 

tests were used to assess the differences in OS between the 

high-risk and low-risk patient groups. The sensitivity and 

specificity of the model was evaluated by using ROC curves. 

K–M survival curves and time-dependent ROC curve analy-

ses were conducted on the survival, survminer, and survival 

ROC packages.31–33 Finally, we verified the confidence of the 

model using test data sets and entire data sets. Additionally, 

we conducted univariate Cox regression and multivariable 

Cox regression analyses to check whether the risk score was 

a prognostic factor within the available data. Meanwhile, 

linear regression analyses for the six genes in the entire data 

sets found that the six genes were highlighted, with P-values 

significantly <0.05. In all tests, a statistical significance was 

defined as a P-value <0.05, and all analyses were performed 

using the R program (www.r-project.org).34

Results
Weighted coexpression network to 
identify the modules
We identified the input genes for coexpression network 

analysis by differential expression analysis. A total of 4,663 

DEGs (2,282 upregulated and 2,381 downregulated) were 

selected at the threshold of |log2 fold change|>1 and P
adj

 < 

0.01 (Figure S1). After filtering the samples without suitable 

clinical information, 478 HNSCC samples were used. Then, 

we performed the first quality check, and one sample was 

removed from the TCGA data set for the subsequent analysis 

(Figure S2). At the same time, five types of clinical data, 

including histological grade, survival months, survival status, 

age, and sex of HNSCC patients, were used for clinical 

analysis.

Applying the WGCNA package, the DEGs were analyzed 

for coexpression network analysis, and the power of b=4 

(scale free R2=0.93) was selected to ensure a scale-free 

network, and finally, a total of 16 modules were identified 

(Figure S3A–E). Then, two methods were applied to test 

the association of each module with HNSCC progression. 

Modules with a larger MS were considered to have more 

connection with disease progression. We found that the ME 

of the yellow module also showed the highest GS (Figure 

2A). In addition, the ME in the yellow module showed 

a higher correlation with disease progression than other 

modules (Figure 2B). Therefore, the yellow module with 

tumor progression was identified as the clinically significant 

module, which was selected for further analysis.

six genes associated with the Os of 
hnsCC patients
We performed LASSO Cox regression to identify genes 

associated with HNSCC OS time by using hub module 

genes in the training data set. At the optimal λ=0.0810 in the 

LASSO Cox regression model, the ten fold cross-validation 

error was minimal (Figure S4). LASSO coefficient profiles 

of the hub module genes are shown in Figure S5. Finally, 

six genes were identified owing to their nonzero regression 

coefficients. By linearly combining the six mRNAs weighted 

by their coefficients, a hazards model was constructed as a 

formula of six genes:

 

Riskscore E EFOXL2NB PCOLCE2= + +
−

(0.0292 ) (0.0381 )

( 0.003

* * 

11 ) (0.0497 )

( 0.054 ) ( 0.2872

* * 

* 

E E
E

SPINK6 ULBP2

KCNJ18

+
− + −   )* ERFPL1  

where E
FOXL2NB

 is the expression value of FOXL2NB. The 

rest are similar. According to the optimal risk score –1.0 

as the cutoff determined by X-tile plots version 3.6.1 (Yale 

University School of Medicine, New Haven, CT, USA; 

Figure S6), the patients were divided into a low-risk group 

and a high-risk group, and we found that the OS time of 

the low-risk group was significantly longer than that of the 

high-risk group (Figure 3A). Meanwhile, the 5-year survival 

ROC curve of risk score was as high as 0.766 (Figure 3B). 

The similar results were observed for DSS and PFS between 

the low-risk and high-risk groups. The 5-year survival ROC 

curve of risk score were 0.731 and 0.623, respectively, dem-

onstrating a good performance for survival prediction (Figure 

3C–F). The six gene’s expression, detailed risk score, and 
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Figure 2 Identification of modules associated with the clinical traits of HNSCC.
Notes: (A) Distribution of average gs and errors in the modules associated with progression of hnsCC. (B) heatmap of the correlation between Mes and clinical traits 
of hnsCC.
Abbreviations: GS, gene significance; HNSCC, head and neck squamous cell carcinoma; ME, module eigengene.
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survival information were displayed (Figure 3G–I). Addi-

tionally, since the training data set and the test data set are 

from the same overall data set, we used the entire data set 

to obtain more reliable results and achieve a larger sample 

size. We performed linear regression analyses to verify the 

relationship between tumor progression and the expression 

of all the six genes. According to the results, we found that 

all six genes were highlighted, with P-values significantly 

<0.05 (Figure S7).
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Figure 3 (Continued)

Validation of the six-mRna signature 
model using the test data set and geO 
data set
To further verify the robustness of the hazards model, the 

performance of the hazards model was evaluated in the test 

data set (N=190). We used the same risk formula to calculate 

risk scores for HNSCC patients. Using the same cutoff value, 

patients were divided into low-risk and high-risk groups. 

Consistent results were observed that the OS, DSS, and PFS 
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Figure 3 The risk score performance in the training data sets.
Notes: (A-F) The survival plot and the 5-year survival ROC curve of Os, Dss, and PFs. (G–I) The relationship between risk score, survival information, and z-score 
transformed expression values are shown (top-down, FOXl2nB, PCOlCe2, sPinK6, UlBP2, KCnJ18, and RFPl1).
Abbreviations: AUC, area under the curve; DSS, disease-specific survival; OS, overall survival; PFS, progression-free survival; ROC, receiving operating characteristic.
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of the high-risk group were all significantly shorter than that 

of the low-risk group in the test group (P<0.05). The area 

under the curve (AUC) of time-dependent ROC curves for the 

test group was 0.669, 0.675, and 0.614, at 5 years,  respectively 

(Figure S8A–F). Risk scores, relative expression levels, and 

survival information of the patients are also shown in this 

paper (Figure S8G–I). In addition, an independent microarray 

data sets GSE65858 and  corresponding clinical data of 270 
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HNSCC patients were used to assess the prognostic power 

of the six-mRNA signature model developed in the TCGA 

data set.35 The Kaplan–Meier analyses indicated that the OS 

time in the high-risk group was significantly shorter than 

that in the low-risk group (P<0.01). Meanwhile, the model 

could accurately distinguish high-risk patients from low-risk 

patients (Figure S8J).

Risk score, radiation, different 
hnsCC sites, hPV status, and other 
clinicopathological information for 
prognosis
To obtain a better understanding of the clinical significance 

of the six-gene signature in HNSCC, in the entire data set 

(N=477), we correlated the signature with a series of clinico-

pathological parameters, which include gender, age, alcohol, 

smoke, pathological tumor-node-metastasis (pTNM) stage, 

HPV status, radiotherapy, and histologic grade. As show in 

Table 1, the risk score is significantly associated with alco-

hol, pTNM stage, grade, and radiotherapy, while independent 

from age, gender, HPV status, and smoke. Meanwhile, to 

assess whether the prognostic ability of the six-gene signa-

ture was independent of other clinical features, univariate 

and multivariate Cox regression analyses were performed 

for the training data set. The result of univariate Cox regres-

sion indicated that the risk score was significantly associated 

with OS (high-risk group vs low-risk group, HR=3.314, 95% 

CI=2.135–5.145, P<0.01, n=287). Additionally, in multivari-

able Cox regression, the risk score also has a significant 

relationship with OS (high-risk group vs low-risk group, 

HR=3.302, 95% CI=2.080–5.242, P<0.01, n=287). Then, 

the same analysis was also performed in the test data set 

and a similar result was observed in this data set (Table 2). 

These results demonstrated that the prognostic ability of the 

six-gene was independent of other clinical features.

Since the six-mRNA signature might have different 

adaptability for various HNSCC sites,36,37 the six-mRNA 

signature model was assessed in larynx and oral tongue 

cancers. The Kaplan–Meier and ROC analyses revealed that 

patients in the high-risk group had significantly shorter OS 

and DSS compared with patients in the low-risk group in both 

larynx and oral tongue cancers (P<0.001), which indicated a 

good predictive performance (AUC was 0.798, 0.757, 0.704, 

and 0.767, respectively; Figure S9). In addition, HPV-positive 

patients were more likely than HPV-negative patients to have 

better survival.38 According to Table 1, we found that there 

was no association between six-mRNA signature and HPV 

status. Considering the fact that HPV-positive patients had 

small sample size (n=14), we performed the Kaplan–Meier 

and ROC analyses in HPV-negative patients (n=63). The 

six-mRNA signature could distinguish high-risk patients 

from low-risk patients with high accuracy in HPV-negative 

patients (Figure S10). In the clinical practice, radiotherapy is 

the most common adjuvant of HNSCC treatment. To evaluate 

whether risk score is also suitable for patients underwent 

radiotherapy, we performed the Kaplan–Meier analysis. The 

results showed that the radiotherapy-treated HNSCC patients 

with high risk score had a significantly shorter survival rate 

than ones with low risk score (Figure S11). This suggests that 

the risk score is also feasible for the prognosis of HNSCC 

patients with radiotherapy.

Table 1 association of the six-mRna signature with 
clinicopathological characteristics in hnsCC patients (n=477)

Variables Six-mRNA signature P-value

Low riska High riska

alcohol 0.020
Yes 103 216  
no 65 83  

smoke   0.089
Yes 82 122  
no 88 185  

smoked packs   0.355
<40 packs 34 84  

≥40 packs 54 101  
pTnM stage   0.010

stage i 15 10  
stage ii 29 36  
stage iii 28 47  
stage iV 76 171  

hPV status   0.765
Positive 7 7  
negative 26 37  

grade   0.000
g1 36 25  
g2 102 194  
g3 32 86  
g4 0 2  

age (years)   0.315
≥60 103 170  

<60 67 137  
sex   0.105

Male 116 232  
Female 54 75  

Radiotherapy   0.007
Yes 31 81  
no 29 29  

Notes: alow risk refers to ≤ cutoff value of risk score, high risk refers to > cutoff 
value of risk score; the chi-squared test; P-value <0.05 was considered significant.
Abbreviations: hnsCC, head and neck squamous cell carcinoma; hPV, human 
papillomavirus; pTnM, pathological tumor-node-metastasis..
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altered pathways in high- and low-risk 
score group
GSEA was performed to identify the potential pathways that 

differentiate the high-/low-risk groups (Table S2). According 

to the results, we found that “Calcium signaling pathway”, 

“cGMP–PKG signaling pathway”, “PI3K–Akt signaling 

pathway”, “DNA replication”, “Rap1 signaling pathway” 

and “TNF signaling pathway” were significantly enriched 

(P-value <0.05; Figure 4), suggesting that the six-mRNA-

based risk score may influence these pathways and thus 

predict the survival of HNSCC patients.

Discussion
In this paper, we applied a weighted coexpression network 

and found 16 modules base on DEGs from HNSCC. The 

correlation analyses were performed, and the yellow mod-

ule showed the best correlation with tumor grade. As tumor 

grade always affects tumor prognosis, we then performed 

LASSO Cox regression to identify the key genes from hub 

module genes.39–41 Finally, a six-gene signature consisting 

of FOXL2NB, PCOLCE2, SPINK6, ULBP2, KCNJ18, and 

RFPL1 was identified from hub module genes in the train-

ing data set (n=287). The signature could also be used to 

classify HNSCC patients into low-risk and high-risk groups, 

which usually have significant differences in OS, DSS and 

PFS, and ROC is as high as 0.766, 0.731, and 0.623. These 

results suggested that this signature had a good performance 

in its survival predictions. Simultaneously, we evaluated the 

robustness of the model in the test data set and GEO data set. 

All of them suggested that the model was particularly good 

in accuracy. We also found significant differences (P<0.05) 

for each gene in the model across different tumor grades. 

To assess the independence of the six-mRNA signature in 

predicting OS, we performed univariate and multivariate Cox 

regression analyses.42,43 After adjusting the effects of age, 

grade, smoke, alcohol, and pathological tumor stage in the 

regression analysis, the risk scores of patients based on the 

six mRNA signature maintained a good correlation with OS. 

Overall, these results confirmed the prognostic power of the 

six-gene model for predicting the OS of HNSCC patients, 

and it was independent of other clinical features.

As for the characteristics of six mRNAs, the overexpression 

of FOXL2NB, PCOLCE2, and ULBP2 was associated with 

shorter OS (coefficient>0), whereas the overexpression of 

remaining SPINK6, KCNJ18, and RFPL1 was associated 

with longer OS (coefficient <0). Recently, some studies have 

revealed important roles in cancer progression of the six 

genes. For example, the altered expression of FOXL2NB 

was reported to be associated with cancer.44 In addition, 

the expression of FOXL2NB was driven by FOXL2, which 

suppresses proliferation, invasion and promotes apoptosis of 

cervical cancer cells.45,46 PCOLCE2 promotes the enzymatic 

cleavage of type I procollagen to yield mature structured 

fibrils.47–49 Importantly, PCOLCE2 protein was detectable at 

Table 2 Univariable and multivariable Cox regression analyses of the six-mRna signature and survival of hnsCC patients in the 
training, test, and entire group

Variables The training set (n=287) The test set (n=190)

HR 95% CI of HR P-value HR 95% CI of HR P-value

Lower Upper Lower Upper

Univariate analysis
sex Male vs women 1.205 0.820 1.771 0.343 1.413 0.907 2.256 0.124
age (years) ≥60 vs <60 1.165 0.807 1.683 0.414 1.711 1.096 2.671 0.018
grade g1/g2–g4 0.6868 0.4034 1.169 0.1664 0.485 0.211 1.119 0.09
smoke Yes/no 1.076 0.748 1.548 0.693 1.026 0.660 1.597 0.909
alcohol Yes/no 1.296 0.879 1.911 0.191 0.647 0.411 1.019 0.060
pTnM i, ii/iii, iV 2.564 1.439 4.567 0.0014 1.503 0.828 2.728 0.181
Risk high vs low 3.314 2.135 5.145 0.000 2.140 1.276 3.591 0.004
Multivariable analysis
sex Man vs woman 0.699 0.454 1.078 0.105 0.729 0.448 1.183 0.201
age (years) ≥60 vs <60 1.428 0.961 2.124 0.078 1.488 0.926 2.392 0.100
grade g1/g2–g4 0.857 0.488 1.506 0.592 0.689 0.289 1.641 0.401
smoke Yes/no 0.982 0.667 1.447 0.928 1.069 0.676 1.689 0.775
alcohol Yes/no 1.391 0.907 2.133 0.130 0.606 0.372 0.987 0.044
pTnM i, ii/iii, iV 2.040 1.136 3.661 0.017 1.449 0.779 2.694 0.242
Risk high vs low 3.302 2.080 5.242 0.000 2.338 1.361 4.015 0.002

Abbreviations: hnsCC, head and neck squamous cell carcinoma; pTnM, pathological tumor-node-metastasis.
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Figure 4 gsea performed identify the potential pathways that differentiate the high-/low-risk groups.
Note: The graphs depict only the six common functional gene sets enriched in hnsCC samples.
Abbreviations: gsea, gene set enrichment analysis; hnsCC, head and neck squamous cell carcinoma.
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appreciable levels in the ascites of ovarian cancer patients.48 It 

was found that PCOLCE2 was involved in regulating adhesion 

and can predict tumors with high risk of developing metastasis 

within 43 months, establishing potential prognostic value.50,51 

SPINK6 promotes nasopharyngeal carcinoma cellular motility 

in vitro and metastasis in vivo via autocrine and paracrine 

mechanisms.52 In addition, SPINK6 may also play an important 

role in epithelial to mesenchymal transition regulation, which is 

a crucial process involved in development and differentiation, 

as well as motility of cancer cells, by binding to EGFR and 

activating EGFR and downstream AKT signaling pathway.53 

Cell surface ULBP2 was the NKG2D ligand most widely and 

strongly expressed by lung cancer cells, especially with non-

small cell lung cancer cells.54 Also, serum surface ULBP2 was 

detectable in lung cancer patients and it also was a  prognosis 

indicator of ovarian cancer and melanoma.54–56 It also was a 

novel tumor marker to evaluate the risk of pancreatic cancer 

patients.57 RFPL1 is a primate-specific target gene of Pax6, 

which is notably a key transcription factor for pancreas, eye 

and neocortex development.58 RFPL1 inhibited HeLa cells 

proliferation through delaying cells entry into mitosis.59 It has 

been found that RFPL1 was an antiproliferative gene, which 

downregulated cyclin B1 and Cdc2 expression and controlled 

G2–M phase transition thereby lengthened G2 phase in HeLa 

cells.58

However, some limitations should be highlighted in our 

study. In this study, we just chose DEGs for coexpression 

analysis. They may be associated with OS in HNSCC. Then, 

big sample size allows a linear regression analysis to study 

the relationship between the expression level of six genes 
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and tumor grade in the entire data set. Third, currently, 

only limited data can be used for performance evaluation 

and it is necessary to collect more data set for a more 

comprehensive evaluation. Finally, experimental studies is 

needed to investigate the functional roles and confirm the 

presence of gene products of the six genes in HNSCC by 

immunohistochemistry in future work.

In summary, we integrated coexpression network analysis 

and LASSO Cox regression to build a prognostic model. This 

model was validated in the test data set and in the entire data set. 

Our analysis results indicated its good performance in HNSCC 

prognosis. Functional annotation suggested that the selected 

genes may reflect the impact of some HNSCC related pathways, 

such as “Calcium signaling pathway”, “cGMP–PKG signaling 

pathway”,60 “PI3K–Akt signaling pathway”,61 “DNA replica-

tion”,62,63 “Rap1 signaling pathway”64 and “TNF signaling path-

way”.65 Our findings will have important clinical implications 

for improving risk stratification, therapeutic decision-making 

and prognosis prediction in patients with HNSCC.

Conclusion
This is the first work to report a novel six-mRNA prognostic 

model on HNSCC prognosis and demonstrate the possible 

mechanism of this signature.
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