Letter to the editor regarding “To what extent are patients with migraine able to predict attacks?”

Xiang Fang1,*, Weili Kong2,*, Zeping Yu1, Jianqing Qiu1, Hong Duan1
1Department of Orthopedics, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 3Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People’s Republic of China
*These authors contributed equally to this work

Dear editor

With interest, we read the article by Gago-Veiga et al published in Journal of Pain Research in October 2018. Migraine attacks, encompassing a wide range of symptoms, greatly undermine the quality of life for patients. Premonitory symptoms usually precede and alert the patients of the attack. The objectives of this prospective study were to illuminate if any good predictor or specific combination of premonitory symptoms exists for prediction of migraine attacks. A total of 34 patients recording 229 attacks were analyzed: 67.6% were able to predict at least one attack, while only 35.3% were able to predict >50% of attacks. The positive predictive value was 85.1%. The authors concluded some specific symptoms were predictive, even though only a few were good predictors (predicting >50% of attacks).

However, certain issues regarding the methodology must be addressed. First, the sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio are the most suitable estimates to assess the validity of a test compared to the gold standard. Nevertheless, also reporting the diagnostic added value using receiver-operating characteristic curves should be considered, since all these validity estimates can be acceptable, whereas the diagnostic added value might be clinically negligible. Second, correlation, even with statistical significance (\(P<0.01\)), cannot guarantee prediction of a certain outcome. Furthermore, for prediction study, we usually need data from two distinct cohorts, or at least from one single cohort but divided into two, first to build a prediction model and then to validate it. Misleading results are generally the major outcome of research without validation of prediction models. Finally, in prediction study, we should evaluate the interactions between important variables. Final results could be affected dramatically if qualitative interactions are present, which means without evaluating interaction terms, prediction studies will mainly convey misleading messages.

Disclosure

The authors report no conflicts of interest in this communication.

References

3. Szkl M, Nieto FJ. Epidemiology Beyond the Basics. 2nd ed. Sudbury: Jones and Bartlett Publisher; 2007.
Authors’ reply

Ana B Gago-Veiga, Josué Pagán, Kevin Henares, Patricia Heredia, Nuria González-García, María-Irene De Orbe, Jose L Ayala, Mónica Sobrado, Jose Vivancos

Headache Unit, Department of Neurology, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa, Madrid 28006, Spain

Correspondence: Ana B Gago-Veiga
Headache Unit, Department of Neurology, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa, 62 Calle Diego de León, Madrid 28006, Spain
Tel +34 91 520 2416
Fax +34 91 520 2416
Email dra.anagago@gmail.com

Dear editor

We value Fang et al’s comments, and thank them for the insights provided on our recent work. We understand some of the comments, but we would like to let you know why we decided to present the results in the most suitable way from the perspective of the analysis performed using machine-learning techniques.

Regarding the comment about prediction and the need for two distinct cohorts, let us clarify that our work was not on prediction from the computational point of view (the “time” variable is not present in the model), but on classification (AdaBoost is a classification algorithm). Also, our work uses cross-validation for the validation of the classification model as a computationally valid technique for the estimation of performance of a predictive model. In any case, we have repeated our experiments with two cohorts (70% for building the classification model, 30% for validation), and obtained better results than those presented with our safer cross-validation:

<table>
<thead>
<tr>
<th></th>
<th>μ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>86.3%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Sensitivity = recall = TPR</td>
<td>80.3%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Specificity = TNR</td>
<td>89.7%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Precision = PPV</td>
<td>80.4%</td>
<td>2.0%</td>
</tr>
<tr>
<td>NPV</td>
<td>89.9%</td>
<td>1.0%</td>
</tr>
<tr>
<td>LR+</td>
<td>9.6</td>
<td>1.0</td>
</tr>
<tr>
<td>LR−</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>DOR corrected</td>
<td>8.5</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Finally, regarding the comment about the interaction between “important variables”, let us say that we already analyzed the effect of sociodemographic variables, and this was found negligible.

Once again, we thank Fang et al for taking the time to read our work and provide comments.

Disclosure

The authors report no conflicts of interest in this communication.