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Purpose: Sharing of detailed individual-level data continues to pose challenges in multi-

center studies. This issue can be addressed in part by using analytic methods that require only 

summary-level information to perform the desired multivariable-adjusted analysis. We examined 

the feasibility and empirical validity of 1) conducting multivariable-adjusted distributed linear 

regression and 2) combining distributed linear regression with propensity scores, in a large 

distributed data network.

Patients and methods: We compared percent total weight loss 1-year postsurgery between 

Roux-en-Y gastric bypass and sleeve gastrectomy procedure among 43,110 patients from 36 

health systems in the National Patient-Centered Clinical Research Network. We adjusted for 

baseline demographic and clinical variables as individual covariates, deciles of propensity scores, 

or both, in three separate outcome regression models. We used distributed linear regression, a 

method that requires only summary-level information (specifically, sums of squares and cross 

products matrix) from sites, to fit the three ordinary least squares linear regression models. A 

comparison set of analyses that used pooled deidentified individual-level data from sites served 

as the reference.

Results: Distributed linear regression produced results identical to those from the correspond-

ing pooled individual-level data analysis for all variables in all three models. The maximum 

numerical difference in the parameter estimate or standard error for all the variables was 3×10−11 

across three models.

Conclusion: Distributed linear regression analysis is a feasible and valid analytic method in 

multicenter studies for one-time continuous outcomes. Combining distributed regression with 

propensity scores via modeling offers more privacy protection and analytic flexibility.

Keywords: distributed regression, propensity score, distributed data networks, privacy-

protecting methods

Introduction
It is increasingly common and necessary to conduct multicenter, population-based 

studies with data from a large number of geographically and demographically diverse 

individuals.1–6 However, it is not always possible or desirable to share deidentified 

individual-level data sets in multicenter studies. For example, some data partners may 

be concerned about potential breaches of patient privacy, while others may be wor-

ried about unauthorized uses of their data, incorrect analysis or interpretation of the 

data, or inadvertent disclosures of sensitive corporate or institutional information.7–10 

Certain health plans or delivery systems, which collect electronic health data as part 

of clinical care, have contractual agreements with their patients that restrict sharing 
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of individual-level data for purposes other than patient care. 

Even when patients, health plans, and delivery systems are 

amenable to sharing individual-level data, sometimes the time 

and resources required to formalize data-sharing agreements 

can significantly delay a research project or make it infeasible.

There have been ongoing efforts to develop and apply 

more privacy-protecting analytic and data-sharing methods 

that do not require transferring of individual-level data sets in 

multicenter studies. For example, methods that leverage sum-

mary scores (eg, propensity scores and disease risk scores) 

are appealing because they allow researchers to adjust for a 

large number of covariates without having to share highly 

granular information.11–13 Prior studies have demonstrated the 

feasibility and validity of using only summary-level informa-

tion from participating sites to perform matched or stratified 

analysis with summary scores for fixed exposures and one-

time binary and time-to-event outcomes.12–14 Meta-analysis 

of site-specific effect estimates has also been shown to be 

a viable analytic option in certain multicenter studies.13–15 

Distributed regression, which has theoretical advantages of 

being computationally equivalent to pooled individual-level 

data regression,16,17 has also been used in some multicenter 

studies.18–21

There is a continued need for more methodological 

development and empirical assessment of these more privacy-

protecting analytic methods in real-world multicenter studies. 

We performed a study to empirically assess the feasibility 

and validity of 1) conducting distributed linear regression 

analysis in a large national distributed data network; and 2) 

combining distributed regression with propensity scores, a 

data dimension reduction technique, to achieve more privacy 

protection and analytic flexibility.

Materials and methods
setting
The National Patient-Centered Clinical Research Network 

(PCORnet) is a distributed data network designed to support 

studies that address questions important to patients and other 

stakeholders.22 It includes 13 Clinical Data Research Net-

works (CDRNs), 20 People-Powered Research Networks, two 

Health Plan Research Networks, and a coordinating center. 

The CDRNs, each of which includes multiple participating 

health systems, provide access to electronic health record 

(EHR) or administrative claims data from more than 100 

million individuals and over 40 million patients who could 

be recruited into pragmatic clinical trials. PCORnet employs 

a common data model to standardize the data extracted 

from the EHRs or administrative claims of the participating 

health systems.23 The data domains extracted from the EHRs 

included patient demographics, diagnoses and procedures, 

vital signs, and laboratory test results.

study cohort
The PCORnet Bariatric Study was initiated in 2016 to evalu-

ate the comparative effectiveness and safety of three com-

monly performed bariatric procedures – adjustable gastric 

band, Roux-en-Y gastric bypass, and sleeve gastrectomy.24 

The study identified patients who underwent a primary bar-

iatric procedure in participating health systems from Janu-

ary 1, 2005, to September 30, 2015. Patients must meet the 

following criteria to be eligible for the study: 1) aged 21–79 

years at the index procedure; 2) body mass index ≥35 kg/m2 

in the year before their procedure; 3) no multiple conflicting 

bariatric procedure codes on the same day; 4) no revision 

bariatric procedure code, gastrointestinal cancer diagnosis 

code, or fundoplasty procedure in the year before the index 

procedure; 5) no emergency room encounter on the day of 

index procedure; and 6) a weight measurement 6–18 months 

after the index procedure. A full description of the design and 

findings from the weight loss study are available elsewhere.25

Exposure
We restricted the analysis to the comparison of Roux-en-Y 

gastric bypass and sleeve gastrectomy.

Outcome
The outcome of interest was percent total weight loss at 1 

year after surgery in comparison with presurgery weight, cal-

culated as [(postsurgery weight at 1 year − baseline weight)/

baseline weight] and modeled as a continuous variable.

Confounders
We included the same potential confounders identified a 

priori by the study investigators in the main weight loss 

analysis based on their subject matter knowledge and input 

from stakeholders. These confounders included age; sex; 

race; Hispanic ethnicity; year of procedure; site; combined 

comorbidity score;26 baseline weight; the number of days 

between baseline weight measurement and the index proce-

dure; baseline smoking status; total days of hospitalization 

in the year prior to surgery; and diagnosis of anxiety, deep 

vein thrombosis, depression, diabetes, dyslipidemia, eating 

disorder, gastroesophageal reflux disease, hypertension, 

infertility, kidney disease, nonalcoholic fatty liver disease, 

osteoarthritis, polycystic ovarian syndrome, psychosis, pul-

monary embolism, sleep apnea, and substance use disorder, 
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recorded in the year prior to surgery. As described in more 

detail below, these confounders were accounted for in the 

outcome regression model as individual covariates, propen-

sity scores, or both.

Pooled individual-level data analysis
We used the pooled deidentified individual-level ordinary 

least squares regression analysis as the reference analysis. 

For this analysis, we wrote distributed programs to run at 

each site to pull individual-level data and then combined 

all site-specific individual-level data sets together to form a 

standard pooled deidentified analysis data set, which included 

exposure status, all confounders, site indicators, and the 

outcome. To estimate propensity scores within the combined 

data set, we fit a logistic regression model, separately for each 

site, which predicted the probability of receiving Roux-en-Y 

gastric bypass procedure (vs sleeve gastrectomy) using all 

the confounders described above as predictors.

We fit three ordinary least squares linear regression 

models to examine the difference in percent total weight 

loss at 1 year compared with baseline, comparing the Roux-

en-Y gastric bypass procedure with the sleeve gastrectomy 

procedure. Model 1 included an exposure indicator variable, 

indicator variables for sites, and potential confounders as 

individual variables. The purpose of this analysis was to 

demonstrate the feasibility and empirical validity of conduct-

ing multivariable-adjusted distributed linear regression in 

large real-world distributed data networks such as PCORnet. 

Model 2 included the exposure and site indicator variables 

and propensity scores (in deciles, defined within each site). 

The purpose of this analysis was to examine the feasibility 

and empirical validity of combining distributed regression 

with propensity scores via modeling. Model 3 included the 

exposure and site indicator variables, potential confounders 

as individual variables, and propensity scores (in deciles). 

This model is an example of a “doubly robust” regression 

model – the results would be valid if either the propensity 

score model or the outcome model was correctly specified.27,28

Distributed linear regression
Distributed regression is a suite of methods that enable 

researchers to conduct multidatabase regression analysis 

without the need to centrally combine all individual-level 

data from participating sites.16,17 As shown in Figure 1, it 

performs the same numeric algorithm as standard regression 

that is based on individual-level data but uses only summary 

statistics for computation. By following the same computa-

tion process, distributed regression and pooled individual-

level data analysis should theoretically produce statistically 

equivalent results.

For distributed linear regression, the total sums of 

squares and cross products (SSCP) matrix for the intercept, 

dependent variable, and independent variables across all 

databases is sufficient to obtain the overall parameter esti-

Analyst inputs individual-level
data set into statistical software

Statistical software 
produces final results 

Statistical software produces
intermediate statistics as part of 

computing process. The intermediate
statistics is what distributed regression

uses as input

 
 

ID E X1 X2 Y

A001 0 13.89 3.42 28.70

A002 1 18.10 1.29 27.90

A003 0 6.41 4.86 33.10

A004 1 16.30 1.45 17.20

A005 1 17.57 2.51 21.70

… … … … …

A100 0 5.78 2.53 23.76

Type Name Intercept E X1 X2 Y

SSCP Intercept 100.0 52.0 1,157.1 405.9 2,235.5

SSCP E 52.0 52.0 813.2 138.1 1,060.9

SSCP X1 1,157.1 813.2 17,751.3 3,458.7 23,815.8

SSCP X2 405.9 138.1 3,458.7 2,240.8 9,572.3

SSCP Y 2,235.5 1,060.9 23,815.8 9,572.3 56,911.9

Mean 1.0 0.5 11.6 4.1 22.4

SD 0.0 0.5 6.6 2.5 8.4

N 100 100 100 100 100

Variable Parameter 
estimate SE

Intercept 25.4540 3.7959

E –0.4323 1.7865

X1 –0.5643 0.1432

X2 –0.6564 0.4532

Figure 1 Computation process of a typical regression analysis.
Note: numbers are hypothetical and for demonstrative purposes only.
Abbreviations: ssCP, sums of squares and cross products; sE, standard error.
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mates and associated covariance matrix. Because of its sta-

tistical properties, the total SSCP matrix can be obtained by 

simply summing up the site-specific SSCP matrices across 

all databases. In other words, we can request the summary-

level SSCP matrix from each participating site and combine 

these matrices centrally to produce the parameter estimates 

and SEs (or 95% CIs), as shown in Figure 2. Although stan-

dard statistical software packages cannot readily perform 

distributed linear regression, they can produce the SSCP 

matrix. For example, SAS software has the procedure PROC 

REG, which performs linear regression analysis, and it read-

ily inputs and outputs SSCP matrix.

To perform distributed linear regression, we followed 

a process similar to the one described in the pooled indi-

vidual-level data analysis, but with more computation done 

at the site. Figure 3 describes the steps involved in each 

analysis. Specifically, we modified the distributed program 

used to pull individual-level data by including additional 

code that 1) fit a site-specific propensity score model and 

2) decomposed the individual-level data into three sets of 

SSCP matrices, one for each regression model described 

above. We distributed the modified program to the partici-

pating sites for local execution. We then combined these 

individual site-specific SSCP matrices to produce parameter 

estimates and SEs.

The distributed SAS packages used to create the site-spe-

cific deidentified individual-level data sets (for the reference 

analysis) and SSCP matrices (for the distributed regression 

analysis) as well as the SAS programs used by the analysis 

center to produce the final results are publicly available on 

GitHub at https://github.com/pcornet-analytics/bariatric.

Comparison
We compared the parameter estimate and standard error (SE) of 

each variable in each model (Models 1–3) from the pooled indi-

vidual-level data analysis and distributed regression approach.

Participating site A
ID E X1 X2 SITE Y

A001 0 13.89 3.42 0 28.70

A002 1 18.10 1.29 0 27.90

A003 0 6.41 4.86 0 33.10

A004 1 16.30 1.45 0 17.20

A005 1 17.57 2.51 0 21.70

… … … … … …

A100 0 5.78 2.53 0 23.76

Participating site B
ID E X1 X2 SITE Y

B001 0 10.01 2.76 1 19.30

B002 1 21.89 1.98 1 14.30

B003 0 4.05 3.13 1 29.40

B004 0 4.86 5.40 1 28.00

B005 1 18.1 3.03 1 19.90

… … … … … …

B100 0 6.87 2.67 1 32.10

Type Name Intercept E X1 X2 SITE Y

SSCP Intercept 100.00 52.00 1,157.11 405.93 0.00 2,235.50

SSCP E 52.00 52.00 813.19 138.06 0.00 1,060.90

SSCP X1 1,157.11 813.19 17,751.29 3,458.71 0.00 23,815.76

SSCP X2 405.93 138.06 3,458.71 2,240.83 0.00 9,572.34

SSCP SITE 0.00 0.00 0.00 0.00 0.00 0.00

SSCP Y 2,235.50 1,060.90 23,815.76 9,572.34 0.00 56,911.89

MEAN 1.00 0.52 11.57 4.06 0.00 22.36

STD 0.00 0.50 6.64 2.45 0.00 8.37

N 100 100 100 100 100 100

Type Name Intercept E X1 X2 SITE Y

SSCP Intercept 100.00 50.00 1,056.41 374.25 100.00 2,237.50

SSCP E 50.00 50.00 749.72 120.35 50.00 942.50

SSCP X1 1,056.41 749.72 15,664.78 3,046.88 1,056.41 19,651.78

SSCP X2 374.25 120.35 3,046.88 1,760.61 374.25 8,954.12

SSCP SITE 100.00 50.00 1,056.41 374.25 100.00 2,237.50

SSCP Y 2,237.50 942.50 19,651.78 8,954.12 2,237.50 59,599.37

MEAN 1.00 0.50 10.56 3.74 1.00 22.38

STD 0.00 0.50 6.75 1.91 0.00 9.81

N 100 100 100 100 100 100

Analysis center

Variable Parameter estimate Standard error

Intercept 36.5507 2.9734

E -0.5350 1.5401

X1 -0.8784 0.1315

X2 -0.9247 0.3968

SITE -1.1682 1.1335

Figure 2 Distributed regression in a multicenter study.
Note: numbers are hypothetical and for demonstrative purposes only.
Abbreviation: ssCP, sums of squares and cross products.
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secondary analysis
Due to small sample sizes, we expected some sites to have 

issues fitting their site-specific propensity score models. 

Therefore, we reran the analyses excluding sites that had any 

warnings or errors in their returned SAS logs.

Results
We identified 43,110 eligible patients – 23,963 underwent 

the Roux-en-Y gastric bypass procedure, and 19,147 patients 

had the sleeve gastrectomy procedure – from 36 participating 

data marts. The sample size ranged from 5 to 16,257 across 

sites. Table 1 summarizes the baseline characteristics of the 

study cohort by treatment group.

analyses that included all sites, regardless 
of warnings or errors when fitting the 
site-specific propensity score models
For each of the three regression models, the results were 

identical between the distributed regression analysis and 

the corresponding pooled individual-level data analysis, as 

shown in Tables 2–4. Overall, the results showed that Roux-

en-Y gastric bypass was associated with greater percent 

total weight loss than sleeve gastrectomy at 1-year follow-up 

– approximately 5 percentage points greater in all the three 

regression models examined. The maximum difference in 

numerical value was 3.28×10−11 for the parameter estimate 

and SE across all the variables in Model 1, 3.24×10−11 in 

Model 2, and 3.29×10−11 in Model 3. Across regression 

models, adjusting for potential confounders as individual 

covariates, propensity scores, or both in the models produced 

similar effect estimates for the comparison of interest.

analyses that included only sites without 
any warnings or errors when fitting the 
site-specific propensity score models
In total, 17 sites successfully executed the SAS package 

without any warnings or errors in the site-specific propensity 

score model. There were 36,476 patients – 20,260 Roux-

en-Y gastric bypass patients and 16,216 sleeve gastrectomy 

patients in these 17 sites. The sample size ranged from 242 to 

16,257 across these sites. Table S1 summarizes the baseline 

characteristics of these patients by treatment group. For each 

of the three regression models, the results were identical 

between the pooled individual-level data analysis and the 

distributed regression analysis, as shown in Tables S2–S4. 

The maximum difference in numerical value was 3.91×10−11 

Pooled individual-level
data analysis

Creates a study-specific individual-
level data set from the source data

Sends the individual-level data set to
the analysis center

Pools the individual-level data sets
from all sites

Performs regression analysis
using the pooled

individual-level data set

Distributed regression

Creates a study-specific individual-
level data set from the source data

Estimates site-specific propensity
scores

Processes the individual-level
data set to create a summary-level
data set for distributed regression

Sends the summary-level data set to
the analysis center

Pools the summary-level data sets
from all sites

Performs regression analysis
using the pooled

summary-level data set

Participating site

Analysis center

Figure 3 Workflow to perform pooled individual-level data analysis and distributed regression analysis.
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for the parameter estimate and SE across all the variables in 

Model 1, 3.35×10−11 in Model 2, and 3.67×10−11 in Model 

3. Across the regression models, adjusting for potential 

confounders as individual covariates, propensity scores, or 

both in the models produced similar effect estimates for the 

comparison of interest. Not surprisingly, the results from the 

17 error-free sites, which comprised 85% (36,476 of 43,110) 

of the data, were similar to the results obtained from the cor-

responding analyses that included all data.

Discussion
In this study, we demonstrated the feasibility of implement-

ing distributed linear regression in an active, real-world, 

national distributed data network and the validity of this 

Table 1 Baseline characteristics of patients who underwent roux-en-Y gastric bypass or sleeve gastrectomy procedure from 36 health 
systems participating in the PCOrnet Bariatric study

Variablea Roux-en-Y gastric bypass Sleeve gastrectomy

Number Proportion Number Proportion

Total 23,963 100.0 19,147 100.0
age

20–44 11,059 46.2 9,547 49.9
45–64 11,728 48.9 8,648 45.2
65–80 1,176 4.9 952 5.0

Male sex 4,701 19.6 3,748 19.6
race

White 16,995 70.8 10,970 57.3
Black 3,468 14.5 4,618 24.1
Other 3,540 14.8 3,559 18.6

hispanic ethnicity 3,813 15.9 4,624 24.2
Year of procedure

2005–2009 1,937 8.1 424 2.2
2010 3,487 14.6 1,195 6.2
2011 4,767 19.9 3,138 16.4
2012 6,101 25.5 4,011 21.0
2013 3,850 16.1 4,771 24.9
2014 3,315 13.9 4,908 25.6
2015 506 2.1 700 3.7
Comorbidity score (sD) −0.01 0.9 −0.04 0.9
Baseline weight (sD) 280.37 57.0 274.86 57.6
Baseline weight proximityb (sD) −21.64 35.3 −14.60 31.2
Days of hospitalization (sD) 0.60 8.0 0.49 6.6
smoking 2,278 9.5 1,605 8.4

Diagnosis of
anxiety 5,404 22.6 4,080 21.3
Deep vein thrombosis 181 0.8 150 0.8
Depression 8,150 34.0 5,540 28.9
Diabetes 10,608 44.3 5,677 29.7
Dyslipidemia 12,663 52.8 8,868 46.3
Eating disorder 3,833 16.0 1,168 6.1
gErD 11,196 46.7 6,917 36.1
hypertension 15,452 64.5 10,798 56.4
infertility 172 0.7 159 0.8
Kidney disease 2,172 9.1 1,469 8.0
naFlD 6,853 28.6 3,231 16.9
Osteoarthritis 461 1.9 337 1.8
PCOs 1,281 5.4 919 4.8
Psychosis 1,240 5.2 701 3.7
Pulmonary embolism 320 1.3 225 1.2
sleep apnea 13,116 54.7 8,255 43.1
substance use disorder 522 2.2 462 2.4

Notes: aMeasured in the year prior to the surgery unless otherwise specified; bnumber of days between baseline weight measurement and index procedure.
Abbreviations: GERD, gastroesophageal reflux disease; NAFLD, nonalcoholic fatty liver disease; PCORnet, National Patient-Centered Clinical Research Network; PCOS, 
polycystic ovarian syndrome.
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analytic method in producing results identical to those 

obtained from conventional pooled individual-level data 

analysis for a single continuous outcome. Although some 

of the prior studies have compared the results from distrib-

uted regression with those obtained from the correspond-

ing pooled individual-level data analysis,18–20 they were 

conducted within smaller distributed data networks or more 

controlled environments (ie, virtual or simulated distributed 

data networks). The current study is the largest study that 

demonstrated the feasibility and empirical validity of dis-

tributed regression. As these more privacy-protecting meth-

ods may be less well understood by researchers, empirical 

Table 2 results from a linear regression model that adjusted for sites and confounders as individual covariates (Model 1) from 36 
health systems participating in the PCOrnet Bariatric study

Variablea Parameter estimate SE

Pooled individual-
level data analysis

Distributed 
regression

Pooled individual-
level data analysis

Distributed 
regression

Exposureb −0.05312 −0.05312 0.00105 0.00105
age

20–44 −0.01662 −0.01662 0.00106 0.00106
45–64 reference reference reference reference
65–80 0.01339 0.01339 0.00218 0.00218

Male sex 0.02162 0.02162 0.00133 0.00133
race

White reference reference reference reference
Black 0.02873 0.02873 0.00130 0.00130
Other 0.00883 0.00883 0.00153 0.00153

hispanic ethnicity 0.00227 0.00227 0.00147 0.00147
Year of procedure

2005–2009 −0.00319 −0.00319 0.00218 0.00218
2010 −0.00301 −0.00301 0.00169 0.00169
2011 −0.00326 −0.00326 0.00144 0.00144
2012 reference reference reference reference
2013 0.00384 0.00384 0.00141 0.00141
2014 0.00569 0.00569 0.00145 0.00145
2015 0.03664 0.03664 0.00288 0.00288
Comorbidity scorec,d 0.00576 0.00576 0.00069243 0.00069243
Baseline weightc,d −0.00025096 −0.00025096 0.00000921 0.00000921
Baseline weight proximityd,e 0.00012330 0.00012330 0.00001430 0.00001430
smokingc −0.00657 −0.00657 0.00163 0.00163
Days of hospitalizationc,d 0.00017944 0.00017944 0.00006129 0.00006129

Diagnosis ofc

anxiety 0.00036721 0.00036721 0.00119 0.00119
Deep vein thrombosis 0.00245 0.00245 0.00530 0.00530
Depression 0.00412 0.00412 0.00107 0.00107
Diabetes 0.01914 0.01914 0.00107 0.00107
Dyslipidemia 0.00169 0.00169 0.00103 0.00103
Eating disorder −0.00247 −0.00247 0.00236 0.00236
gErD −0.00132 −0.00132 0.00095329 0.00095329
hypertension 0.01454 0.01454 0.00124 0.00124
infertility 0.00842 0.00842 0.00521 0.00521
Kidney disease 0.00059350 0.00059350 0.00176 0.00176
naFlD −0.00652 −0.00652 0.00150 0.00150
Osteoarthritis −0.00253 −0.00253 0.00337 0.00337
PCOs 0.00118 0.00118 0.00212 0.00212
Psychosis 0.00006296 0.00006296 0.00226 0.00226
Pulmonary embolism 0.00722 0.00722 0.00414 0.00414
sleep apnea −0.00153 −0.00153 0.00098117 0.00098117
substance use disorder −0.00729 −0.00729 0.00310 0.00310

Notes: aalso adjusted for sites (35 indicator variables; results not shown for brevity); broux-en-Y gastric bypass vs sleeve gastrectomy; cmeasured in the year prior to the 
surgery; dmodeled as a continuous variable; enumber of days between baseline weight measurement and index procedure.
Abbreviations: GERD, gastroesophageal reflux disease; NAFLD, nonalcoholic fatty liver disease; PCORnet, National Patient-Centered Clinical Research Network; PCOS, 
polycystic ovarian syndrome; sE, standard error.
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demonstration of their validity is essential for encouraging 

their adoption in practice.

To our knowledge, this is also the first study that combined 

distributed regression with propensity scores to provide even 

more privacy protection and analytic flexibility than either 

approach alone. Specifically, the approach first condenses 

information from a large number of covariates into a single 

measure and then further processes the condensed individual-

level information into highly summarized information.

Propensity scores are a data dimension reduction technique 

that can summarize a large number of individual covariates 

into a single, less identifiable scalar. Methods that leverage 

the property of propensity scores have been shown to produce 

results identical or highly comparable to those obtained from 

pooled individual-level data analysis.12–14 However, existing 

propensity score-based approaches only support matched or 

stratified analysis when sharing summary-level information. 

In this study, we demonstrated the feasibility of adjusting 

for propensity scores via regression modeling using only 

summary-level information in a multicenter study. Existing 

distributed regression requires all participating sites to fit the 

same multivariable-adjusted regression model.18–20 By combin-

ing distributed regression with propensity scores, researchers 

now have the ability to adjust for different sets of covariates 

via site-specific propensity score models (more below).

Transparency and reproducibility in 
distributed analysis
Without direct access to all the individual-level data from 

participating sites, researchers are required to specify all 

the descriptive and inferential analyses a priori as part of the 

data request process. It is possible and advisable to inspect 

the data using summary-level information (eg, “Table 1” that 

describes the patient characteristics at each site) before final-

izing the regression model. It is also recommended to include 

some sites that are able and willing to share individual-level 

data to test the analytic code before full distribution. As 

with pooled deidentified individual-level data analysis, it is 

feasible to fit multiple regression models as sensitivity or sec-

ondary analyses, as we did in this study. By being completely 

explicit about the analysis, the distributed analytic approach 

minimizes the risk of data dredging and selective reporting. 

In other words, although the analytic approach used in this 

study may initially appear opaque to readers who are less 

familiar with the approach, it is actually more transparent 

and reproducible.

Distributed regression for other 
generalized linear models
Although we only examined distributed linear regression, 

it is possible to conduct multivariable-adjusted distrib-

uted analysis for other commonly used generalized linear 

models, including logistic, Poisson, and Cox proportional 

hazards model.18–20,29–32 Unlike linear regression, which can 

be completed in a single computation step, the computation 

process of other regression models requires multiple iterative 

steps. The iterative process involves exchanging intermedi-

ate statistics and interim parameter estimates between the 

analysis center and participating sites. Manual exchanges 

of this summary-level information can be too tedious and 

Table 3 results from a linear regression model that adjusted for sites and confounders as propensity score deciles (Model 2) from 36 
health systems participating in the PCOrnet Bariatric study

Variablea Parameter estimate SE

Pooled individual-level 
data analysis

Distributed regression Pooled individual-level 
data analysis

Distributed regression

Exposureb −0.05470 −0.05470 0.00113 0.00113
Ps stratum 1 reference reference reference reference
Ps stratum 2 −0.00754 −0.00754 0.00209 0.00209
Ps stratum 3 −0.00671 −0.00671 0.00210 0.00210
Ps stratum 4 −0.00717 −0.00717 0.00211 0.00211
Ps stratum 5 0.00034218 0.00034218 0.00212 0.00212
Ps stratum 6 −0.00583 −0.00583 0.00213 0.00213
Ps stratum 7 −0.00135 −0.00135 0.00214 0.00214
Ps stratum 8 −0.00435 −0.00435 0.00216 0.00216
Ps stratum 9 −0.00523 −0.00523 0.00218 0.00218
Ps stratum 10 −0.00812 −0.00812 0.00222 0.00222

Notes: aalso adjusted for sites (35 indicator variables; results not shown for brevity); broux-en-Y gastric bypass vs sleeve gastrectomy.
Abbreviations: PCOrnet, national Patient-Centered Clinical research network; Ps, propensity score; sE, standard error.
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Table 4 results from a linear regression model that adjusted for sites and confounders as both individual covariates and propensity 
score deciles (Model 3) from 36 health systems participating in the PCOrnet Bariatric study

Variablea Parameter estimate SE

Pooled individual- 
level data analysis

Distributed  
regression

Pooled individual- 
level data analysis

Distributed  
regression

Exposureb −0.05355 −0.05355 0.00108 0.00108
age

20–44 −0.01668 −0.01668 0.00106 0.00106
45–64 reference reference reference reference
65–80 0.01364 0.01364 0.00218 0.00218

Male sex 0.02189 0.02189 0.00134 0.00134
race

White reference reference reference reference
Black 0.02917 0.02917 0.00132 0.00132
Other 0.00877 0.00877 0.00153 0.00153

hispanic ethnicity 0.00218 0.00218 0.00148 0.00148
Year of procedure

2005–2009 −0.00372 −0.00372 0.00241 0.00241
2010 −0.00352 −0.00352 0.00187 0.00187
2011 −0.00348 −0.00348 0.00146 0.00146
2012 reference reference reference reference
2013 0.00453 0.00453 0.00146 0.00146
2014 0.00683 0.00683 0.00157 0.00157
2015 0.03793 0.03793 0.00295 0.00295

Comorbidity scorec,d 0.00585 0.00585 0.00069368 0.00069368
Baseline weightc,d −0.00025150 −0.00025150 0.00000922 0.00000922
Baseline weight proximityd,e 0.00012628 0.00012628 0.00001507 0.00001507
smokingc −0.00653 −0.00653 0.00163 0.00163
Days of hospitalizationc,d 0.00018276 0.00018276 0.00006130 0.00006130
Diagnosis ofc

anxiety 0.00040061 0.00040061 0.00119 0.00119
Deep vein thrombosis 0.00272 0.00272 0.00530 0.00530
Depression 0.00403 0.00403 0.00107 0.00107
Diabetes 0.01859 0.01859 0.00115 0.00115
Dyslipidemia 0.00164 0.00164 0.00103 0.00103
Eating disorder −0.00226 −0.00226 0.00236 0.00236
gErD −0.00164 −0.00164 0.00097208 0.00097208
hypertension 0.01451 0.01451 0.00124 0.00124
infertility 0.00880 0.00880 0.00521 0.00521
Kidney disease 0.00055973 0.00055973 0.00176 0.00176
naFlD −0.00680 −0.00680 0.00150 0.00150
Osteoarthritis −0.00244 −0.00244 0.00337 0.00337
PCOs 0.00127 0.00127 0.00212 0.00212
Psychosis 0.00003263 0.00003263 0.00226 0.00226
Pulmonary embolism 0.00757 0.00757 0.00415 0.00415
sleep apnea −0.00177 −0.00177 0.00098965 0.00098965
substance use disorder −0.00745 −0.00745 0.00310 0.00310

Ps stratum 1 reference reference reference reference
Ps stratum 2 0.00180 0.00180 0.00204 0.00204
Ps stratum 3 0.00362 0.00362 0.00207 0.00207
Ps stratum 4 0.00058495 0.00058495 0.00211 0.00211
Ps stratum 5 0.00731 0.00731 0.00217 0.00217
Ps stratum 6 0.00056111 0.00056111 0.00223 0.00223
Ps stratum 7 0.00508 0.00508 0.00231 0.00231
Ps stratum 8 0.00383 0.00383 0.00242 0.00242
Ps stratum 9 0.00516 0.00516 0.00257 0.00257
Ps stratum 10 0.00336 0.00336 0.00285 0.00285

Notes: aalso adjusted for sites (35 indicator variables; results not shown for brevity); broux-en-Y gastric bypass vs sleeve gastrectomy; cmeasured in the year prior to the 
surgery; dmodeled as a continuous variable; enumber of days between baseline weight measurement and index procedure.
Abbreviations: GERD, gastroesophageal reflux disease; NAFLD, nonalcoholic fatty liver disease; PCORnet, National Patient-Centered Clinical Research Network; PCOS, 
polycystic ovarian syndrome; Ps, propensity score; sE, standard error.
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labor-intensive to be practical in actual multicenter studies. 

However, there are a number of statistical packages and stand-

alone software that enable researchers to perform distributed 

regression and partially or fully automate the file transfer 

process.19,20,31–33 We chose not to assess the operational per-

formance (eg, runtime) of our distributed regression analysis 

because it is highly network-dependent. Some multicenter 

studies have better (or less ideal) technical infrastructure to 

allow distributed regression to be conducted more (or less) 

efficiently.

Site-specific propensity score models vs a 
“global” propensity score model
We fit site-specific propensity score models because pro-

pensity scores are sensitive to the prevalence of exposure 

in the population under study. As the prevalence of bariatric 

procedures might vary across databases due to differences 

in clinical practice and other factors, patients from two dif-

ferent sites might not be comparable even if they had the 

same propensity score value. In addition, a given covariate 

(eg, diabetes) may have different effects on the probability 

of receiving a specific bariatric procedure at different sites. 

Therefore, it is generally advisable to estimate propensity 

scores by site and perform the analysis accounting for 

data source, eg, match on propensity scores within site, 

stratify jointly on site-specific propensity scores and site, 

and include both propensity scores and site as regressors. 

However, it is not always possible to estimate propensity 

scores by site because some sites might be too small to 

accommodate a robust propensity score model. Indeed, the 

number of patients in some sites in the current study was 

too low to allow the conventional rule of requiring 7–10 

“outcome events” (ie, exposed patients) per covariate in the 

propensity score model.34,35 In a distributed environment, 

researchers have the ability to inspect the log or other 

summary-level output (eg, a patient characteristic table) 

to assess the feasibility of fitting site-specific propensity 

score models.

An alternative is to fit one propensity score model that 

adjusted for the confounders, site, and additional interaction 

terms between confounders and site, which was done in the 

primary analysis for this study.25 This allows sites that do 

not have sufficient data to fit site-specific propensity score 

models to contribute their data to the analysis, with an addi-

tional assumption that the global propensity score model is 

correctly specified. It is straightforward to fit such a model 

in the pooled individual-level data analysis. Although we did 

not do it here, in principle it would be possible to fit a global 

propensity score model using distributed logistic regression. 

This is a topic for future research.

Some sites may have additional confounder informa-

tion that can be included in the study. For example, some 

participating health systems in this study may have dietary 

information from patients who underwent bariatric proce-

dure. For simplicity, we only adjusted for confounders that 

were available in all participating sites. It is straightforward 

computationally to include different sets of confounders 

in the site-specific propensity score models, but the use of 

different confounders across sites would need to be justified 

scientifically. Future studies should examine the strengths 

and limitations of allowing site-specific confounder lists.

limitations of distributed regression 
approach
Although we were able to illustrate the statistical equiva-

lence of the distributed linear regression approach to pooled 

individual-level data analysis for a one-time continuous 

outcome, we were not able to fully replicate the primary 

analysis in the main study, which used a linear mixed-

effects model to simultaneously estimate the association 

between bariatric surgeries and percent total weight loss 

at 1, 3, and 5 years postsurgery.25 In the main study, the 

estimated difference in percent weight loss at 1 year post-

surgery was −5.9% comparing Roux-en-Y gastric bypass 

with sleeve gastrectomy. The results from the distributed 

linear regression analyses, which were between −5.3% and 

−5.5% across the three models, were comparable. We may 

have observed greater dissimilarities if we estimated a 3- 

or 5-year postsurgery difference where the advantages of 

using repeated measure analysis with a linear mixed-effects 

model are more pronounced due to missing data assump-

tions being relaxed (eg, mixed-effects models assume that 

data are missing at random borrowing from more outcomes 

being measured). Distributed regression has not been fully 

developed for models that examine repeated outcomes or 

repeated exposures.

In addition, certain model diagnostics cannot currently 

be performed with summary-level information. For example, 

creating residual plots to examine the normality assumption 

in linear regression requires sharing of individual-level 

data. It is possible to introduce noise to the individual-level 

data but doing so could impact its fidelity.36 It is also more 

challenging to identify or assess idiosyncratic data issues 

at participating sites without direct access to all individual-

level data being analyzed. Enhancing the capability of dis-

tributed regression to perform other tasks that can readily 
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be performed with individual-level data is another topic for 

future research.

Other privacy-protecting analytic and 
data-sharing methods
Prior studies have demonstrated the feasibility and validity 

of using summary-level risk-set data to perform propensity 

score-matched and propensity score-stratified analysis.11–13 

Recent work has explored the feasibility of conducting 

inverse probability-weighted analysis using risk-set data.37 

Our study shows the feasibility of adjusting for propensity 

scores via modeling using only summary-level information 

in multicenter studies. In addition to summary score-based 

methods and distributed regression, meta-analysis of site-

specific estimates is another analytic option that does not 

require sharing of individual-level data in a multicenter 

study. Studies have shown that meta-analysis produced 

results comparable to those from pooled individual-level 

data analysis.13–15,38 However, unlike distributed regression, 

meta-analysis generally produces similar, but not identical, 

results to those from pooled individual-level data analysis.

Instead of using distributed regression, it would also 

be possible to request stratified counts of all unique com-

binations of the confounders from participating sites to fit 

a regression model in a multicenter study. The approach 

requires all confounders to be binary or categorical vari-

ables.39 It would be feasible to employ that approach for 

Model 2, but not the other two models examined in the 

study because of the large number of confounders in these 

two models and because some of them were modeled as 

continuous variables.

Conclusion
We demonstrated the feasibility and empirical validity 

of performing distributed linear regression analysis for 

one-time linear outcomes within a large distributed data 

network and the feasibility and validity of combining 

distributed regression and propensity scores to offer addi-

tional privacy protection and analytic flexibility. Along 

with other existing privacy-protecting analytic methods, 

distributed regression is a viable and valid analytic option 

that allows researchers to analyze data that may otherwise 

be inaccessible.

Availability of data and computing 
code
The analytic code is available at https://github.com/

pcornet-analytics/bariatric.
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