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Abstract: Osteoporosis is a bone disorder with remarkable changes in bone biologic material 

and consequent bone structural distraction, affecting millions of people around the world from 

different ethnic groups. Bone fragility is the worse outcome of the disease, which needs long 

term therapy and medical management, especially in the elderly. Many involved genes including 

environmental factors have been introduced as the disease risk factors so far, of which genes 

should be considered as effective early diagnosis biomarkers, especially for the individuals 

from high-risk families. In this review, a number of important criteria involved in osteoporosis 

are addressed and discussed.
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Introduction
Osteoporosis is a skeletal characterized by decreased bone mass and microarchi-

tectural deterioration of bone tissue resulting in less bone tension and strength and 

increased risk of fragility fracture.1,2 Osteoporosis is a major threat to elderly people, 

a fast-growing population of the world, in whom the risk of fracture increases with 

continued aging of the population.3

Impact of bone density and bone quality on the 
fracture risk
Bone geometry, microarchitecture and size are the factors influencing the ability of 

bone to withstand trauma. However, 75%–90% of variance in bone strength is related 

to bone mineral density (BMD).4 Indeed, bone strength arises from the integration of 

bone density and bone quality. The World Health Organization has defined the criteria 

including T-score and z score for evaluating bone status. T-score is explained as the 

number of SDs which fall below the young adult mean value in osteoporosis (the World 

Health Organization defines osteoporosis as a T-score of −2.5), and z score is the 

expected BMD for the individual’s age and sex. BMD is expressed as a correlation 

of the T-score and the z score.5 Dual-energy X-ray absorptiometry is the most widely 

utilized quantitative method for measuring BMD and appraisement of fracture risk.6

Prevalence of fractures
Worldwide, osteoporosis causes 8.9 million fractures annually, with the greatest 

number of osteoporotic fractures occurring in Europe (34.8%).7 The most serious clini-

cal consequence of osteoporosis is osteoporotic fracture. Fractures of the hip, vertebrae 

and distal forearm are considered as osteoporotic fractures with common epidemiologic 
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characteristics: the fracture incidences are higher in women 

compared to men, and they increase steeply with advancing 

age and occur at body positions with a large proportion of 

trabecular bone. Besides, osteoporosis can lead to fractures 

at other sites. These include fractures of the humerus, ribs, 

tibia (in women), pelvis femoral fractures.4

Ethnicity and race are important factors influencing the 

prevalence of osteoporosis. Older Asian men are reported 

to have 50% lesser risk of sustaining a hip fracture over 

their lifetime than Caucasian men. Similar to men, Asian 

women also have lower fracture risk than Caucasian women. 

Moreover, there are differences in drug treatment response 

for osteoporosis based on ethnicity and race.9 A study con-

ducted on different populations support the fact that BMD 

is higher in African American women than in white women 

at every level of body weight and is consistent with their 

lower fracture rates.10 The prevalence of both lifestyle-related 

metabolic disorders and osteoporosis is increasing in Asia. 

Metabolic syndrome may be associated with bone loss in 

Asian men, and atherosclerosis is associated with increased 

fractures.11

Bone fractures of hip
Hip fracture is one of the seriously occurring osteoporo-

tic fractures resulting in drastic morbidity, disability, 

diminished quality of life and mortality events.12 Proximal 

femur (hip) fractures which demonstrate about 20% of all 

osteoporotic fractures are the most destructive ones and 

responsible for the most payments related to health care 

resources.13 Hip fractures are associated with an 8%–36% 

excess mortality within 1 year, with a higher mortality in 

men than in women.14 Since 1990, the number of fractures 

has continued to increase as the population ages. It is esti-

mated that the annual worldwide hip fracture occurrence 

will increase up to 6 times by 2050, compared to the 

1990 hip fracture rate in Europe and North America.14 As 

the number of elderly people is increasing most rapidly 

in Asia, Latin America, the Middle East and Africa, it is 

expected that over 70% of the 6.26 million hip fractures 

will occur in these regions by year 2050 and Asian countries 

will contribute more to the pool of hip fractures in coming 

years.15 A total of 72 studies from 63 countries by Kanis 

et al250 showed a remarkable heterogeneity in hip fracture 

risk between the populations. The highest annual incidences 

were observed in countries from North Western Europe 

(Denmark [574/100,000 individuals], Norway [563/100,000 

individuals] and Sweden [539/100,000 individuals]). But 

the hip fracture rate in men was approximately half of that 

was reported in women.16 This low prevalence in men has 

been attributed to 12%–13% greater bone mass in men.12 

However, mortality rate following hip fracture is substan-

tially higher in men than in women.17,18 These findings 

showed that the variation in hip fracture incidence between 

countries was much greater than the differences between 

genders within a country.16

Bone fractures of vertebral bodies
Osteoporosis-related vertebral fractures as a hallmark of 

osteoporosis are common problems for the aged people.19,20 

However, it has been estimated that only about one-third 

of them seek clinical attention due to the absence of rec-

ognizable symptoms.20 Older white women with clinically 

recognized incident vertebral fracture experience substantial 

increases in back pain associated with decreased quality of 

life and functional limitation due to back pain.21,22 In Europe, 

the incidence of new vertebral fracture was 10.7/1,000 per 

year in women and 5.7/1,000 per year in men aged 50–79 

years. The prevalence of vertebral fracture was greater in 

Scandinavia compared with other European regions, while 

the geographic heterogeneity of vertebral fracture rate was 

less than that observed for hip fracture.23 Vertebral fracture 

rate increases exponentially with age in the same way as 

for hip fracture, and the risk of death is associated with the 

number of vertebral fractures. This raises the possibility 

that prevention of further vertebral fractures might decrease 

the mortality rate.24 Vertebral fracture cascade is a term 

referring to the occurrence of subsequent vertebral fracture 

after sustaining an initial vertebral fracture, and the risk of 

second vertebral fracture within a year following the first 

incident vertebral fracture in women is reported to be ~20%.25 

Women with vertebral osteoporotic fractures have reduced 

vertebral BMD and vertebral dimensions compared with 

controls with no history of fracture.26 Similar findings exist 

for men.27 Intravertebral distribution of bone mass, bone 

quality parameters, vertebral macroarchitecture, amount 

of intervertebral disc degeneration and balance control are 

factors varying significantly between individuals with and 

without vertebral fractures.28

Bone fractures of the distal forearm
Fracture of the distal forearm is a common osteoporotic 

fracture accounting for up to 18% of all fractures in the 

above 65 years age group29 and 75% of fractures of the fore-

arm.30 Recent data show an increase in incidence of distal 

radius (wrist) fractures for the pediatric, adult and elderly 

populations in recent years.29 Brogren et al documented 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Therapeutics and Clinical Risk Management 2018:14 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2031

Osteoporosis and its risk factors

comparable differences between men and women in the age 

group of 49–65, wherein they found that women had almost 

double the rate of fracture compared with men, likely due 

to the early onset of osteoporosis in women.31 A research by 

O’Neill et al identified that the incidence of forearm fractures 

in 3,161 adult British men and women aged 35 years and 

over was 36.8/10,000 person-years in women and 9.0/10,000 

person-years in men.32 The age distribution of the wrist 

fractures is typically bimodal, with peaks found in the age 

groups 5–14 years and above 60 years.30 The prevalence of 

distal radius fractures in the adult population is significantly 

lower than in elderly groups.31 However, it has been sug-

gested that this fracture is the most common injury in adult 

population and is more predominant than hip fractures. The 

rate of forearm fractures in Denmark was somewhat higher 

in both genders than that recently imputed from hip fracture 

rates and was close to the rates previously reported in studies 

from Norway and Sweden.33 Urban/rural differences in BMD 

are a risk factor contributing to the fracture rate difference. 

A study showed that women residing in urban areas have 

a higher BMD than those in rural areas, which is entirely 

consistent with a 30% increased risk of sustaining a forearm 

fracture.34 The occurrence of a distal forearm fracture con-

vincingly predicts future fracture risk.35 Overall, a 1.5-fold 

increase in the risk of a subsequent hip fracture among 

2,252 Swedish women 40 years of age with a forearm 

fracture in 1968–197236 and also a 1.8-fold increase among 

1,162 Danish women 20 years of age with a forearm frac-

ture in 1976–1984 support the present hypothesis.37 Fractures 

are also common among children, which result from mild or 

moderate trauma, endocrine dysfunction, chronic illnesses, 

genetic disorders, lack of weight-bearing physical activity 

and obesity.38

Risk factors for osteoporosis and 
osteoporotic fractures
Osteoporosis is initiated by an imbalance between bone 

resorption and formation.39,40 Research studies point to a 

number of risk factors for osteoporosis that are modifiable, 

including diet and lifestyle factors, while some factors are 

non-modifiable (Box 1).

Nutritional deficiency (especially 
consumption of junk food) and sedentary 
lifestyle
Health-promoting behaviors, such as consuming a healthy 

diet, could lessen the impact of chronic diseases such as 

osteoporosis and cardiovascular diseases.41 It was previ-

ously recognized that maternal diet can influence bone mass 

in the offspring and a good general nutritional status with 

adequate dietary protein, calcium, vitamin D, fruits and 

vegetables has a positive influence on bone health, while 

a high-caloric diet and heavy alcohol consumption have 

been associated with lower bone mass and higher rates of 

fracture.42 It is now proven that a dietary pattern with high 

intake of dairy products, fruits and whole grains may con-

tribute positively to bone health and dietary pattern-based 

strategies could have potential in promoting bone health.43 

Confirming this evidence and similar investigations, a study 

on Chinese older women in Hong Kong showed that higher 

“vegetables–fruits” and “snacks–drinks–milk products” pat-

tern scores were associated with reduced risk of cognitive 

impairment.44

Moreover, absence of vitamin K, particularly as 

vitamin K2, in junk food results in impairment of the calcium 

removal process and increases the risk of calcification of 

the blood vessels. An increased intake of vitamin K2 could 

be a means of lowering calcium-associated health risks.45 

In addition, the recent trends in avoiding sunbathing and eat-

ing fewer fish products have resulted in a high prevalence of 

vitamin D deficiency in the general Japanese population.46

Box 1 Risk factors involved in osteoporosis

1. Major modifiable risk factors:
Inadequate nutritional absorption
Lack of physical activity or fall risk
Weight loss
Cigarette smoking
Alcohol consumption
Air pollution
Stress

2. Major non-modifiable risk factors:
History of falls
Older age
Gender
White ethnic background
Prior fracture
Reproductive factors (family history of osteoporosis)

3. Secondary causes of osteoporosis
Chronic use of certain medications (prolonged corticosteroid use, 

and so on)
Hypogonadism
Hyperparathyroidism
Chronic liver disease
Inflammatory diseases (rheumatoid arthritis, and so on)
Vitamin D deficiency
Renal disease (history of kidney stones)
Cardiovascular disease
Diabetes mellitus
Dementia
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Use of alcohol and its relation to BMD
In 2013, Sommer et al demonstrated the results from 

Osteoporosis Risk Factor and Prevention-Fracture Prevention 

Study (OSTPRE-FPS) which suggested that low-to-moderate 

alcohol intake may exert protective effects on bone health in 

elderly women.47 Nevertheless, osteoporotic patients should be 

counseled regularly about cigarette cessation, alcohol intake, 

and estrogen status.48 Recently, a meta-analysis identified a 

nonlinear association between alcohol consumption and the 

risk of hip fracture. Light alcohol consumption was inversely 

significantly associated with hip fracture risk, whereas heavy 

alcohol consumption was associated with an elevated hip 

fracture risk.49 Alcohol consumption (low and moderate/

high) may have a detrimental impact on bone health in both 

the cortical and trabecular compartments at the distal radius in 

men, and similar results were found in the trabecular and distal 

tibia compartments of women with minimal alcohol and low 

alcohol consumptions, respectively, suggesting that avoidance 

of alcohol may be beneficial for bone health.50

Smoking
Cigarette smoking is considered as a risk factor for osteopo-

rosis and is related to a loss of bone mass and increased risk 

of osteoporotic fractures.51,52 Krall and Dawson-Hughes53,54 

reported decreased BMD at the radius, femoral neck and whole 

in smokers than in nonsmokers. However, other investigators 

found no link between smoking and fracture risk in women.55,56 

Parathyroid hormone (PTH) and vitamin D metabolites play 

a vital role in the regulation of calcium homeostasis and bone 

metabolism.57,58 Notably, serum PTH showed an increasing 

level in heavy smokers, which is consistent with the result of a 

similar study by Ortego-Centeno et al in young male smokers.51 

Smokers had about 10% decrease of circulating levels of 1,25-

dihydroxyvitamin D (1,25(OH)
2
D).59 Smoking is associated 

with increased follicle stimulating hormone and luteinizing 

hormone, which directs the estrogen levels to decrease and 

results in rapid bone loss.52 The influence of some of the osteo-

porosis risk factors and their role in the bone formation pathway 

regulation and bone diseases is illustrated in Figure 1.

There is no clear evidence to show the direct causal rela-

tionship between passive cigarette smoking and osteoporosis. 

Furthermore, the underlying mechanism is unknown. The 

bone turnover biochemical markers in urine and serum and 

also the bone microarchitecture by micro-computed tomogra-

phy were compared with the control group exposed to normal 

ambient air. In the cell culture experiments, MC3T3-E1 

and RAW264.7 mouse cell lines used as osteoblast and 

RA

Osteoblast lifespan↓
PTH↓

IL-1α↑
IL-1β↑
IL-6↑
IL-11↑
TNF-α↑
M-CSF↑

RANKL↑ Dickkopf↑OPG↓

Wnt inhibition

Osteolysis↑

Bone formation↓

PTHrP

AP2
DM

Tumor cell

Osteoporotic fractures

PPARγ

Osteoblast differentiation↓

Vitamin D↓

Smoking Glucocorticoid

Figure 1 Common osteoporosis risk factors involved in pathways associated with bone formation and osteoporotic fractures.
Note: RA, smoking, glucocorticoids, diabetes mellitus and tumors, the most common risk factors, negatively control the bone organization pathway, resulting in osteoporotic 
fractures.
Abbreviations: IL, interleukin; M-CSF, macrophage colony stimulating factor; OPG, osteoprotegerin; PPARγ, peroxisome proliferator-activated receptor-γ; PTH, parathyroid 
hormone; RA, rheumatoid arthritis; RANKL, RANK with its ligand; TNF, tumor necrosis factor; DM, diabetes mellitus; AP2, adipocyte fatty acid binding protein 2; RANK, 
receptor activator of nuclear factor κ.
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osteoclast, respectively, were treated with the sera obtained 

from BALB/c mice exposed to 4% cigarette smoke during 

14 weeks. Their actions on cell viability, differentiation 

and function on these bone cells were assessed. The urinary 

mineral and deoxypyridinoline levels and also serum alkaline 

phosphatase (ALP) activity were significantly higher in the 

4% smoking group when compared with the control group, 

indicating an elevated bone metabolism after cigarette smok-

ing. In addition, femoral osteopenia was observed in the 4% 

smoking group, as shown by a decrease in relative bone vol-

ume and trabecular thickness. In isolated cell studies, osteo-

blast differentiation and bone formation were inhibited, while 

osteoclast differentiation was increased. The current mouse 

smoking model and the isolated cell studies demonstrate that 

passive cigarette smoke could induce osteopenia by exerting 

a direct detrimental effect on bone cells differentiation and 

further on bone remodeling process.60

Genetic factors
The genetics of osteoporosis represents one of the greatest 

challenges and the most active area of research in bone biology. 

It is well established that the variation in BMD is determined 

by our genes. Several candidate gene polymorphisms in rela-

tion to osteoporosis have been implicated as determinants of 

BMD. The vitamin D receptor (VDR) gene, the collagen type 

I α1 (COLIA1) gene and the estrogen receptor-α (ERα) gene 

are among those most intensively studied. VDR modulates 

the transcription of target genes involved in calcium uptake 

or bone formation, including calcium-binding proteins61–63 

and osteocalcin (OC).64 The VDR gene maps to chromosome 

12q13-14 and possesses at least 11 exons.65 Allelic variants 

of the gene encoding VDR are recognized by ApaI (allele 

A/a), BsmI (allele B/b), FokI (allele F/f) and TaqI (allele 

T/t) restriction endonucleases.66–69 All these polymorphisms 

are restriction fragment length polymorphisms.70 VDR BsmI 

polymorphism, genotype bb showed the maximum influence 

on BMD in combination with other alleles and has been 

associated with higher rate of calcium absorption compared 

to that in women with the BB genotype.71 Furthermore, BMD 

levels were consistently higher in women with the VDR bb 

genotype.72 The BB genotype had a greater set point for the 

feedback inhibition of PTH initiated by an increase in 1,25-

(OH)
2
D, more active bone resorption and breakdown of 

type I collagen, and greater concentrations of 1,25(OH)
2
D, 

compared with the bb genotype.71 The assessment of BsmI 

polymorphism in a group of normal and osteoporotic Iranian 

women confirmed that BsmI polymorphism of VDR gene 

is significantly associated with BMD in the lumbar spine 

and may have a minor effect on the proximal femur BMD.73 

BsmI polymorphism could influence expression of the VDR 

gene and alter BMD through different mechanisms, includ-

ing disruption of a splice site for VDR mRNA transcription 

and changes in mRNA stability or in the intronic regulation 

element.74,75 BMD was also associated with polymorphisms at 

other marker loci of the VDR gene, including the TaqI76 and 

FokI.77 Genotype TT for the TaqI polymorphism had lower 

rate of bone loss than those with other genotypes. Given the 

tight linkage disequilibrium of the b allele with the T allele, the 

bb individuals had lesser bone loss.78 FokI is an independent 

polymorphism, and FF genotype is associated with higher 

BMD at the femoral neck,79 spine and hip.80 The FF individu-

als had greater calcium absorption and BMD values than Ff 

and ff genotypes. This leads to the conclusion that the VDR 

alleles act differentially on intestinal calcium absorption.71 

Another polymorphism, the start codon polymorphism (SCP), 

is identified by the FokI polymorphism and is located at the 

translation initiation site in exon II of VDR. Unlike the above 

polymorphisms, which do not result in amino acid changes, 

the SCP changes the VDR structure. SCP makes the F allele 

VDR three amino acids shorter than the f allele, leading to 

altered receptor function.78 Recently, a novel polymorphism 

in the Cdx-2–binding site of the VDR gene promoter region 

was identified. Polymorphic region function, which is also 

called the human VDR-sucrose-isomaltase footprint 1 

sequence, was analyzed using an intestinal cell line as a model 

system.81,82 Cdx-2 was able to activate VDR gene transcription 

by binding to the human VDR-sucrase-isomaltase footprint 

1 sequence. Mutations of the sequence suppressed transacti-

vation activity.81 VDR also regulates OC which plays a role 

in bone mineralization and calcium ion homeostasis. Higher 

OC levels have been reported in premenopausal Japanese 

women with the BB genotype.83,84 However, Willing et al 

found no such association between the BB genotype and either 

OC levels or their change over a 3-year period.72

In addition to VDR, estrogen receptors (ERs) also 

play an important role in controlling skeletal growth and 

maintenance of bone mass. Two functional ERs, ERα and 

ERβ, are encoded by different genes and have similar struc-

ture and considerable homology in the DNA-binding and 

ligand-binding domain. The human ERα gene (ESR1) is 

located on chromosome 6q25, and consists of eight exons 

and spans 140 kb. The ERβ gene (ESR2) is located on 

chromosome 14q23-24.1.85 Decreased BMD in mice lacking 

functional ERα supports the hypothesis that ERα is probably 

a candidate gene for osteoporosis.86–89 Several polymorphisms 

of this gene have been studied, including the T→C and the 
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A→G in intron 1 and the TA repeat in the promoter region, 

codon 325 (CCC→CCG),90 T262C of exon 1,91 G2014A of 

exon 892 and G261C of exon 1.93 Furthermore, the TA repeat 

polymorphism is located within the promoter region 1,174 bp 

upstream from exon 1, which affects BMD by changing the 

production or stability of mRNA leading to changes in ER 

number. Linkage of two intronic PvuII and XbaI polymor-

phisms with BMD has been extensively studied. In general, 

the XX and pp genotypes (or the X and p alleles) were asso-

ciated with greater BMD, as compared with the xx and PP 

genotypes (or the x and P alleles).72,94–97 Pouresmaeili et al98 

observed a majority of PX haplotypes among 200 pre- and/or 

postmenopausal Iranian women, which is in contrast with the 

frequencies for Caucasians with a reduced PX haplotype.99

Potentially, there is a physiologic functional relationship 

between the ER and VDR.100 We observed that BMD levels 

were consistently higher in women with the VDR bb geno-

type and the (−/−) PvuII and Xba I ER genotypes.17 However, a 

significant gene-by-gene interaction effect indicated that women 

who were homozygous (−/−) at the PvuII or Xba I loci had sig-

nificantly different BMD levels according to their VDR status.72

Osteoporosis may also be caused by mutations in the 

Collagen I alpha 1 (COL1A1) gene that has been consistently 

associated with fracture risk.101 The Sp1 polymorphism stems 

from a G→T substitution at the first base of a consensus site 

in the first intron in the COLIA1 gene for the transcriptional 

factor, Sp1.102,103 BMD was greater for the G/G (SS) genotype 

than for the G/T (Ss) and T/T (ss) genotypes. The s allele 

had greater affinity than the S allele for Sp1 protein. Brown 

et al104 found that lumbar spine bone loss was greater in the 

ss and Ss genotypes than in the SS genotype.

Most genetic polymorphisms are associated with the genes 

encoding the important pathways of bone metabolism, includ-

ing transforming growth factor-β1 (TGF-β1), interleukin-6 

(IL-6), insulin-like growth factor (IGF)-I, calcitonin (CT), cal-

citonin receptor (CTR) and interleukin-1 receptor antagonist 

(IL-1ra). The TGF-β1 gene has seven exons, of which exons 

5–7 encode the active TGF-β1. Keen et al105 reported that the 

T→C polymorphism of intron 5 was associated with femoral 

neck BMD. Yamada et al106 studied the 509 C→T polymor-

phism in postmenopausal Japanese women and found a link 

with lumbar spine and total body BMD. Activation of cytokine 

expression in bone is a feature of postmenopausal women, 

leading to bone loss. IL-6, a pleiotropic cytokine, mediates 

estrogen deficiency-related bone loss in patients.107 Several 

studies have demonstrated the relationship of polymorphisms 

of the IL-6 gene with BMD, including the variable number 

tandem repeat (VNTR) polymorphism in the 3′ flank region 

of the gene,108 the CA repeat polymorphism109 and the -174 

G→C polymorphism.110 IGF-I is produced by osteoblasts and 

is involved in bone metabolism.111 Serum IGF-I concentra-

tions were correlated with BMD in humans.112,113

CT is a polypeptide hormone secreted by the thyroid 

gland and inhibits osteoclastic bone resorption. The human 

CTR belongs to a family of G-protein-coupled receptors. 

In a study in 663 postmenopausal and 52 premenopausal 

Italian women, the Alul restriction enzyme polymorphism 

of the CTR gene was associated with spine BMD.114 The 

TaqI polymorphism and the T→C polymorphism are two 

polymorphisms of the CTR gene which are related to lumbar 

and femoral neck BMD.115,116

IL-1 acts as a powerful stimulant of bone resorption by 

inhibiting osteoclast apoptosis. IL-1ra competes with both 

IL-1α and IL-1β, the two isoforms of IL-1, for binding with 

IL-1 receptors. Postmenopausal increase in IL-1 and IL-1ra 

production results in bone loss.117

The human IL-1ra gene consists of four exons.118 The 

VNTR is due to an 86 bp repeat within intron 2 of the gene. 

VNTR polymorphism is associated with spinal bone loss.117

Wong et al’s 119 study assessed the correlation between 

BMD and allele E4 of apolipoprotein E (ApoE4) in the 

Chinese population. One hundred and ninety women aged 

55–59, 267 women aged 70–79 and 235 men aged 70–79 

were studied. High frequency of ApoE4 and a higher inci-

dence of femoral neck fractures in Caucasians were shown in 

other studies.120,121 Table 1 presents some of the genes known 

to be involved in the etiology of bone disorders.

Medication
Synthetic glucocorticoids are administered to treat disorders 

caused by autoimmune, pulmonary and gastrointestinal 

diseases, as well as in patients receiving organ transplanta-

tion and with malignancies.122 Glucocorticoids cause pro-

found effects on the skeleton, and glucocorticoid-induced 

osteoporosis is the most common secondary cause of 

osteoporosis.122,123 Glucocorticoids induce a biphasic bone 

loss with a rapid initial phase showing 10%–20% bone loss 

in as little as 3 months of therapy and a slower phase of 

2%–5% bone loss annually.124 They increase the expression 

of receptor activator for nuclear factor κ-B ligand (RANKL) 

and decrease the expression of its soluble decoy receptor, 

osteoprotegerin (OPG), in stromal and osteoblastic cells, 

leading to elevated bone resorption.123 Glucocorticoids inhibit 

osteoblast cell differentiation by increasing the expression 

of dickkopf, an inhibitor of Wnt signaling, and opposing 

Wnt signaling.125 Glucocorticoids suppress IGF-I gene 
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Table 1 Candidate genes associated with osteoporosis

Candidate gene Protein Chromosome Function Reference

VDR Vitamin D receptor 12q12-14 The nuclear hormone receptor for 
vitamin D3

Ferrari et al,62

Durrin et al,252

Remes et al,253

Lambrinoudaki et al,254

Wang et al,255

Pouresmaeili et al,73

ER-α Estrogen receptor-α 6q25 An estrogen receptor Ioannidis et al,256

Yamada et al,257

van Meurs et al,99

Tang et al,258

ER-β Estrogen receptor-β 14q22-24 A member of the family of estrogen 
receptors and the superfamily of 
nuclear receptor transcription 
factors

Ogawa et al,259

Lau et al,260

Scariano et al,261

Kung et al,262

CT Calcitonin 11p15 A peptide hormone that causes 
reduction in serum calcium

Miyao et al,263

Magaña et al,264

CTR Calcitonin receptor 7q21 A high-affinity receptor for the 
peptide hormone calcitonin

Tural et al,265

PTH Parathyroid hormone 11p15 This hormone elevates blood Ca2+ 
level by dissolving the salts in bone 
and preventing their renal excretion

Hosoi et al,266

PTHR Parathyroid hormone 
receptor 1

3p22-21 A receptor for PTH and for PTHLH Minagawa et al,267

CYP19 Aromatase (cytochrome P450) 15q21 A member of the cytochrome 
P450 superfamily of enzymes and 
catalyzes the last steps of estrogen 
biosynthesis

Napoli et al,268

CYP17 Steroid 17-alpha-
hydroxylase/17,20 lyase

10q24 A member of the cytochrome P450 
superfamily of enzymes and a key 
enzyme in the steroidogenic pathway

Zmuda et al,269

Sharp et al,270

GCR GC receptor 5q31 Receptor for GCs that affects 
inflammatory responses, cellular 
proliferation and differentiation in 
target tissues

Huizenga et al,271

CaSR Calcium-sensing receptor 3q13-21 It senses changes in the extracellular 
concentration of calcium ions and 
maintains ion homeostasis

Tsukamoto et al,272

AR Androgen receptor Xq11-12 A nuclear receptor that affects 
IGF-1 and genes involved in the 
development of primary and 
secondary male sexual characteristics 
expression

Langdah et al,273

TGF-β1 Transforming growth factor-β1 19q13 Potent stimulator of osteoblastic 
bone formation

Langdahl et al,274

IL-6 Interleukin-6 7p21 A cytokine that functions in 
inflammation and also as a bone-
resorbing cytokine

Murray et al,108

Tsukamoto et al,109

IGF-I Insulin-like growth factor I 12q22-24 A physiologic regulator of [1-14C]-
2-deoxy-d-glucose transport and 
glycogen synthesis in osteoblasts

Rivadeneira et al,275

IL-1ra Interleukin-1 receptor 
antagonist

2q14 A member of the IL-1 cytokine family 
which inhibits the activities of IL-1

Langdahl et al,93

OPG Osteoprotegerin 8q24 As a potent inducer of DKK-1 can 
inhibit the Wnt signaling pathway

Arko et al,276

García-Unzueta et al,277

Jurado et al,278

TNF-αsw Tumor necrosis factor-α 6p21 A multifunctional bone-resorbing 
cytokine

Mencej et al,279

(Continued)
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Table 1 (Continued)

Candidate gene Protein Chromosome Function Reference
TNFR2 Tumor necrosis factor 

receptor 2
1p36 A member of the TNF-receptor 

superfamily
Hoshino et al,280

COL1A1 Collagen type Iα1 17q21-22 A fibril-forming collagen found in 
most connective tissues and bone

Grant et al,281

Tural et al,265

COL1A2 Collagen type Iα2 7q22 A fibril-forming collagen found in 
most connective tissues and bone

Lau et al,282

BGLAP Osteocalcin 1q22 Constitutes 1%–2% of the total bone 
protein and binds strongly to apatite 
and calcium

Chen et al,283

McGuigan et al,284

MGP Matrix Gla protein 12p12 An inhibitor of bone formation Zebboudj et al,285

AHSG α-2-HS-glycoprotein 3q27 Influences the mineral phase of bone Eichner et al,286

ApoE Apolipoprotein E 19q13 Mediates the binding, internalization 
and catabolism of lipoprotein 
particles

Johnston et al,287

Cauley et al,288

MTHFR Methylenetetrahydrofolate 
reductase

1p36 Catalyzes the conversion of 5,10-
methylenetetrahydrofolate to 
5-methylenetetrahydrofolate, which 
is used for homocysteine methylation 
to methionine

Villadsen et al,289

P57 (KIP2) Cyclin-dependent kinase 
inhibitor 1c

11p15 Regulates osteoblast proliferation 
and differentiation

Urano and Inoue,290

HLA-DR15 Major histocompatibility 
complex, class II, DR

6p21 Interacts with another gene related 
to bone metabolism such as TNF-α

Douroudis et al,291

PPARγ Peroxisome proliferator-
activated receptor-γ

3p25 Key regulator of adipocyte 
differentiation and glucose 
homeostasis

Altshuler et al,292

FRA-1 Fos-related antigen-1 11q13 Leucine zipper proteins that act 
as regulators of cell proliferation, 
differentiation and transformation

Albagha et al,293

RUNX-2 Runt-related transcription 
factor-2

6p21 Essential for osteoblastic 
differentiation and skeletal 
morphogenesis

Vaughan et al,294

Doecke et al,295

Klatho gene Klotho protein 13q12 Involved in the regulation of calcium 
and phosphorus homeostasis by 
inhibiting the synthesis of active 
vitamin D

Kawano et al,296

WRN (Werner 
syndrome gene)

Werner helicase 8p12 A DNA helicase involved in many 
aspects of DNA metabolism

Ogata et al,297

LRP5 Receptor related protein 5 11q12-13 A coreceptor with frizzled protein 
family members for transducing 
signals by Wnt proteins

Babij et al,298

Ai et al,299

CTSK Cathepsin K 1q21 A lysosomal cysteine proteinase 
involved in bone remodeling and 
resorption

Giraudeau et al,300

BMP4 Bone morphogenetic protein 4 14q22 It plays an important role in the 
onset of endochondral bone 
formation in humans

Babu et al,301

CLCN7 Chloride channel 7 16p13 Slow voltage-gated channel mediating 
the exchange of chloride ions against 
protons

Pettersson et al,302

Kornak et al,303

TCIRG1 T cell immune regulator 11q13.4-q13.5 Part of the proton channel of 
V-ATPases

Lee et al,304

FDPS Farnesyl pyrophosphate 
synthase

1q22 Key enzyme in isoprenoid 
biosynthesis

Marini et al,305

(Continued)
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transcription123 which is responsible for bone formation and 

the synthesis of type I collagen.126

Hyperparathyroidism
Primary hyperparathyroidism (PHPT) is a calcium meta-

bolic disorder with the highest incidence in postmenopausal 

women.127 Several studies have shown decreased BMD in 

patients with PHPT.128 Vestergaard et al129 reported high 

fracture risk of the forearms and the vertebrae in a group of 

674 patients with PHPT. PTH is normally the major regula-

tor of calcium homeostasis and functions mainly on kidney 

and bone.130 It acts on kidney cells by increasing the renal 

tubular reabsorption of calcium and as well as the conversion 

of 25-hydroxy vitamin D (25-(OH)D) to 1,25(OH)
2
D through 

activation of 1α-hydroxylase.131,132 In vitro and in vivo stud-

ies confirm that PTH directly activates survival signaling 

in osteoblasts and increases osteoblast number.133 Indeed, 

the preosteoblastic precursors and preosteoblasts possess 

receptors for PTH, which induces differentiation from the 

precursor to osteoblast.134 The fibroblast growth factor-2, 

which primarily produced by osteocytes in bone, regulat-

ing phosphate metabolism through its inhibitory effects on 

the renal sodium-phosphate contransporter.135 However, 

increased secretion of PTH in PHPT leads to elevated serum 

calcium levels due to release from the bone stores. This has 

been shown to increase the risk of osteoporosis by increasing 

the rate of bone turnover.130

Rheumatoid arthritis (RA)
RA is the most common form of inflammatory disease 

in adults characterized by progressive and systemic 

inflammation.136 RA is associated with osteoporosis due to 

active systemic inflammation, immobilization and the use of 

glucocorticoids.137 Osteoporosis occurs in two forms in RA: 

1) generalized bone loss with axial distribution including the 

spine, pelvis, hips, ribs and humerus and 2) periarticular or 

localized bone loss in the proximity of the inflamed joints.138 

Several studies reported that the rate of spine or hip fractures 

is higher in patients with RA compared with primary osteo-

porotic patients.139–142 Histomorphometric and biochemical 

markers analysis indicates that generalized bone loss in RA is 

related to a decrease in bone formation and increase in bone 

resorption.143 Rheumatoid synovial tissues are enriched with 

bone-resorbing cytokines including IL-1α and IL-1β, tumor 

necrosis factor (TNF)-α, macrophage colony-stimulating fac-

tor, IL-6, IL-11, PTH-related peptide and the newly described 

T-cell–derived cytokine IL-17.144–150 The interaction of 

RANK with its ligand (RANKL) has been identified as a 

common pathway to control the differentiation, prolifera-

tion and survival of osteoclasts.151 Expression of RANKL is 

upregulated by inflammatory cytokines. RANKL, also known 

as TRANCE (TNF-related activation induced cytokine), is 

a membrane-bound TNF receptor. RANKL is expressed on 

osteoblast precursor cells that interact with RANK on the 

osteoclast surface. OPG, a soluble decoy receptor protein, is 

produced by osteoblast/stromal cells that bind to RANKL and 

prevent its binding to RANK on the preosteoclast cells.152–154 

OPG protects against TNF-induced bone loss.155 TNF, as a 

potent inducer of dickkopf-related protein 1 (DKK-1), can 

inhibit the wingless (Wnt) signaling pathway and expression 

of OPG, leading to bone formation limitation.156 TNF-α 

promotes the production of proinflammatory cytokines (eg, 

IL-1, IL-6 and IL-8) in RA. TNF-α also prolongs osteoclasts’ 

lifespan or it may promote osteoclast formation by directly 

stimulating its precursors.157,158

Diabetes mellitus
Diabetes mellitus is a debilitating metabolic disease with 

substantial morbidity characterized by hyperglycemia result-

ing from defects in insulin secretion and/or insulin action.159 

In the USA, about 8% of youth have diabetes160 and it has 

been predicted that the number of Americans with diabetes 

will rise from 11 million in 2000 to 29 million in 2050.161

Table 1 (Continued)

Candidate gene Protein Chromosome Function Reference
P2X7 Purinergic receptor P2X, 

ligand-gated ion channel, 7
12q24 Found in the central and peripheral 

nervous systems and increases 
the release of proinflammatory 
molecules such as IL-1β, IL-6 and 
TNF-α

Gartland et al,306

Abbreviations: GC, glucocorticoid; IGF, insulin-like growth factor; IL, interleukin; PTH, parathyroid hormone; PTHLH, parathyroid hormone-like hormone; TNF, tumor 
necrosis factor.
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Reports about the prevalence of diabetes mellitus in Saudi 

Arabia estimate the current prevalence to be around 17%, 

with expectations that it will peak to 20% by the year 2030. 

Advanced age, oral hypoglycemic agents and vitamin D 

deficiency are determinants of decreased BMD in Saudi 

women with type 2 diabetes.162 Skeletal disorders in diabetes 

may be caused by multiple mechanisms including changes 

in insulin and IGF levels, hypercalciuria associated with 

glycosuria, reduced renal function, obesity, higher concen-

trations of advanced glycation end products (AGEs) in col-

lagen, angiopathies, neuropathies and inflammation.163–166 

Comparison of BMD values in type 1 and type 2 diabetic 

patients of similar age showed that type 1 diabetes mellitus 

(T1DM) is associated with reduction in BMD. However, 

type 2 diabetes mellitus (T2DM) can be related to increased 

BMD.167 It can be speculated that T1DM and T2DM are asso-

ciated with higher fracture risk.168 Schwartz et al in a study 

of osteoporotic fractures, confirmed that women with T2DM 

experience higher fracture rates in hip, humerus and foot than 

nondiabetic women.169 A previous research by Nicodemus 

and Folsom170 evaluated the incidence of hip fracture (1.6 per 

1,000 person-years). A statistically significant positive 

association between T2DM and hip fracture incidence was 

found. Women with T1DM had 12.25 (95% CI 5.05–29.73) 

times higher risk of hip fracture compared with nondiabetic 

women. Women with T2DM were 1.70-fold more likely than 

women without diabetes to sustain a hip fracture.170,171 This 

rate is consistent with that reported in a similar survey by 

the National Hospital Discharge.172 Women with T2DM who 

were treated with insulin and nondiabetic women had simi-

larly lower risk for hip fracture.173 Diabetic patients usually 

have an elevated risk of falling because of vision-related risk 

factors including diabetic retinopathy, advanced cataracts, 

laser therapy for retinopathy, hypoglycemia and also balance-

related risk factors such as peripheral neuropathy, foot ulcers, 

polyuria, nocturia and decreased reflexes.169,174 Hip fracture 

risk increases in both T1DM and T2DM due to increased 

risk of falling and not decreased BMD.174 Insulin has been 

proposed to be an anabolic agent in bone, capable of stimu-

lating osteoblast proliferation and differentiation. It has been 

reported that insulin stimulates increase of human osteoblas-

tic cell line MG-6 in a time- and dose-dependent manner, 

and blockade of both MAPK and PI3K pathways could 

inhibit cell proliferation.175 Data obtained in this study sug-

gested that insulin promoted ALP activity, which is a bone 

formation enzyme secreted by osteoblasts,176 the secretion 

of type I collagen, OC gene expression and mineralized 

nodule formation. Insulin also upregulates osterix (Osx) and 

IGF-1 expression through ERK and significantly downregu-

lates runt-related transcription factor 2 (Runx2) expression 

through MAPK pathway.175,177 High glucose inhibits cell 

growth, mineralization and expression of osteogenic markers 

including Runx2, collagen I, OC and osteonectin.177 Adipo-

genesis or lipogenesis is still active in diabetic type I bone, 

and the number of lipid-dense adipocytes and the expression 

of adipogenic markers (peroxisome proliferator-activated 

receptor-γ [PPARγ2], resistin, adipocyte fatty acid binding 

protein [aP2] and adipsin) are increased.178 PPARγ levels lead 

to increased adipogenesis in mice with a dominant suppres-

sive influence on osteogenesis.178,179 It is recognized that fatty 

acids can activate PPARγ2 and suppress ALP expression in 

osteoblastic cells.180 In addition to hyperglycemia, impaired 

leptin function may indirectly be related to osteoporosis in 

DM, since leptin receptor knockout mice showed an increase 

in bone mass compared to normal mice.181,182 Some BMP and 

TGF-β signaling pathway inhibitors including DKK-1,183,184 

sclerostin,185 gremlin,186 PTH,187 angiotensin II (Ang-II),188 

IL-6189 and TNFs190 are overexpressed in DM. DM also 

sequesters the overexpression of vitamin D required for the 

normal growth of osteoblasts.191 Vitamin D increases the 

uptake of calcium and phosphorus and improves calcium 

reabsorption by the kidney, thus resulting in maintenance of 

mineral homeostasis and regulation of bone remodeling.192 

DM decreases the expression of endothelial progenitor cells 

derived from bone and, consequently, the rate of angiogenesis 

required for bone healing.193 Pancreatic β cells also produce 

amylin and preptin. It is known that amylin causes bone 

formation and blocks bone resorption. Preptin induces osteo-

blast differentiation and mineralization and also decreases 

osteoblast apoptosis. DM reduces the production of OC that 

regulates osteogenesis positively.194 It can be speculated that 

formation of AGEs plays a crucial role in the pathogenesis 

of diabetic neuropathy.195 Under hyperglycemic conditions, 

levels of methylglyoxal, 3-deoxyglucosone and glyceralde-

hyde increase, leading to the formation of AGEs which signal 

through the receptor for advanced glycation end product 

expressed on the nerve cells, resulting in different types of 

cytokine production, which may have roles in nerve dam-

age as well as deleterious effect on nerve cells because they 

modify neuronal proteins including tubulin, neurofilament, 

laminin and actin through glycation, and thereby sequester 

the nerve function.196 In a recent study, Catalano et al have 

shown that lower bone formation and increased bone resorp-

tion, although not statistically significant, were observed in 

patients with poor metabolic control in comparison to patients 

with good metabolic control. Therefore, poor metabolic 
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control may worsen the quality of bone in T1DM. Phalan-

geal quantitative ultrasound could be considered as a tool 

to screen T1DM women for osteoporosis in premenopausal 

age.197 However, Neumann et al showed that trabecular bone 

score was lower in T1DM patients with prevalent fractures 

in comparison to healthy controls, suggesting an alteration 

of bone strength in this subgroup of patients.198

Walsh and Vilaca believe that BMI is positively associ-

ated with BMD, and the mechanisms of this association 

in vivo may include increased loading, adipokines such as 

leptin and higher aromatase activity. However, some fat 

depots could have negative effects on bone; T2DM is also 

associated with higher BMD, but increased overall and hip 

fracture risk. There are some similarities between bone in 

obesity and T2DM, but T2DM seems to have additional 

harmful effects where glycation of collagen may be an 

important factor. Higher BMD but higher fracture risk pres-

ents challenges in fracture prediction in obesity and T2DM. 

It seems that osteoporosis treatment does reduce the fracture 

risk in obesity and T2DM with generally similar efficacy to 

that in other patients.199 A very recent meta-analysis strongly 

supported the association between T2DM and increased risk 

of overall fracture. These findings emphasize the need for 

fracture prevention strategies in patients with diabetes.200

Dementia
Osteoporosis and Alzheimer’s disease (AD) are common 

chronic degenerative disorders prevalent in elderly people. 

The large majority of AD cases occur sporadically by genetic 

mutation, aging and environmental factors as pathogenic 

mechanisms. Osteoporosis is a multifactorial, mostly 

polygenetic disease, and no single factor can completely 

account for their occurrence as well. Common risk factors 

in both diseases include body mass loss, vitamin D deficien-

cies, less exposure to sunlight and less physical activity.201 

Evatt et al251 showed a substantial incidence of vitamin D 

deficiency among Parkinson’s disease cohort patients com-

pared with the AD patients and control cohorts. It can be 

speculated that Parkinson’s disease may cause patients to 

have decreased activity levels and lower sunlight exposure. 

In 2003, Weller and Schatzker from Canada observed that 

femoral neck fractures were more prevalent in patients with 

AD compared to those without the disease.202 The incidence 

of hip fracture, the most common type of fracture, among 

patients with AD (17.4 per 1,000 person-years) was con-

sistently higher than in patients without AD (6.6 per 1,000 

person-years). In both men and women with AD, the inci-

dence rate of sustaining a hip fracture was the same. Among 

the patients who experienced a hip fracture, approximately 

one-third (32.4%) of AD patients and 18.8% of non-AD 

patients did not survive 1 year after a hip fracture,203 which 

is consistent with another study in which Haasum et al204 

confirmed that hip fractures occurred in 16% of the people 

with dementia and 3% of the people without dementia. 

AD also could increase the incidence rate of osteoporosis 

through the neurotoxic effects of amyloid beta (Aβ), a 40–42 

aminoacid peptide considered to play a role in the develop-

ment of AD.205 Aβ leads to increased levels of H
2
O

2
, one of 

the main reactive oxygen species (ROS), resulting in free 

radical damage.206 H
2
O

2
 and peroxides are potent inducers of 

osteoclastogenesis.207 Osteoclasts are cells that are derived 

from the monocyte–macrophage cell lineage and strongly 

participate in bone resorption. It is known that different 

types of mediators including nuclear factor κB (NF-κβ), 

RANKL, osteopontin, PTH, macrophage colony stimulating 

factor and angiotensin-II play outstanding roles to induce 

osteoclastogenesis.208 RANKL is a key element derived 

from osteoblasts and stromal cells and stimulates the dif-

ferentiation of preosteoclast to osteoclast through activating 

NF-κβ, as well as induces nuclear factor of activated T cells 

(NFAT) by ROS-mediated pathway.207,209 Park et al210 found 

that RANKL stimulation induces a novel signaling pathway 

that leads to generation of ROS and calcium oscillations and 

is essential for osteoclastogenesis. The constant RANKL-

induced calcium oscillations result in activation of NFATc1 

and osteoclast differentiation to mediate bone remodeling.211 

Hence, it is seen that OC, a marker of bone matrix synthesis, 

increases in osteoporosis (63%) and substantially in AD 

(76%) versus controls, while there is no change visible in 

cases with mild cognitive impairment.212

Cancer
Cancer-induced bone disease can originate from the pri-

mary disease itself or from therapies administered to treat 

the cancer. Bone metastases are a common consequence of 

cancer, leading to pathologic fractures. Bone is the most 

common site for metastasis in cancer and is of particular 

clinical importance in breast and prostate cancers because 

of the prevalence of these diseases. At postmortem examina-

tion, ~70% of patients dying of these cancers have evidence 

of metastatic bone disease.213 It has estimated that ~350,000 

people in the USA die annually of bone metastases.214 Bone 

metastases predominantly includes osteolytic or osteoblastic 

metastases. Osteolysis might be caused by parathyroid-

hormone-related peptide (PTHrP) released by tumor cells in 

the bone microenvironment that stimulate the production of 
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the cytokine RANKL leading to osteoclast activation.214,215 

Osteoblastic metastases are caused by osteoblast prolif-

eration, differentiation and bone formation.216 On the other 

hand, treatment-induced osteoporosis may occur as a result 

of androgen deprivation therapy (ADT), glucocorticoid 

therapy, chemotherapy-induced ovarian failure and estrogen 

deprivation therapy.217

ADT as a treatment for metastatic prostate cancer 

increases the risk of osteoporosis in men with prostate cancer 

associated with a gradual decline in BMD at the hip.218 

ADT administration by orchiectomy (surgical removal of 

the testes) or by luteinizing hormone releasing hormone 

injections suppresses the production of testosterone which 

is necessary to maintain bone mineralization.219,220 Radia-

tion treatment for prostate cancer also leads to bone injury 

through a fall in blood flow and bone tissue oxygenation as 

well as reduction of bone-forming cells and bone atrophy.221 

Dickman et al showed that the risk of hip fracture from diag-

nosis until death was 1.6 in men exposed to ADT within 6 

months of diagnosis, compared to control men in a Swedish 

population.221 Breast and prostate cancer treatments that cause 

hypogonadism disrupt the normal bone remodeling process 

because estrogen and testosterone have been shown to play 

a key role in bone health in both men and women.223

Pharmacologic treatment
Most of the studies have focused on the effects of ana-

bolic therapies and antiresorptive therapies on generalized 

bone loss.

Anabolic therapy
This type of osteoporosis therapy refers to the usage of drug 

components, that is, recombinant hormones such as rhPTH 

(1–34); hPTH (1–84) for strengthening, stimulating bone 

synthesis and treating the disease;224 calcium supplements 

to prevent bone resorption and to increase BMD;223 short-

term treatment with calcimimetics225 and PTH to increase 

trabecular bone mass and cortical bone mass.225

Antiresorptive therapy
This kind of therapy is applied for osteoporosis treatment due 

to its effect on strengthening the bone. The therapy consists of 

five types of chemical components, that is, bisphosphonate, 

a class of antiresorptive drugs which can affect osteoclast 

activity,226,227 hormone replacement therapy for the treatment 

of osteoporosis and particularly for relief of menopausal 

symptoms,228 tibolone, a synthetic steroid used for early post 

menopausal women, leading to increase BMD due to extend 

of estrogen replacement therapy therapy,229 selective ER 

modulators such as raloxifene used for the treatment of post-

menopausal osteoporosis increase BMD and reduce the risk 

of vertebral fracture,230 bazedoxifene inhibits estrogen-induced 

responses in mammary glands in animal models231 and in con-

jugation with estrogen is used for the treatment of menopausal 

osteoporosis,227 and anti-RANKL antibody226 and cathepsin 

K inhibitors, inducing bone mineral density (BMD) gain in a 

phase II study in postmenopausal osteoporosis patients.232

Influence of lifestyle on osteoporosis risk
Different societies have different information and aware-

ness about health. In a report about knowledge and health 

beliefs on osteoporosis in a sample of 262 men aged 36–55 

years, it was revealed that level of osteoporosis knowledge 

and perceived susceptibility were low. Given the increased 

prevalence of osteoporosis-related fracture in men, there 

is a need to develop methods to increase knowledge and 

awareness.233 Observational findings suggest weight-bearing 

physical activity may influence bone strength due to favorable 

geometric adaptation, independent of changes in BMD. Over-

all, young healthy individuals with “average” baseline bone 

mass are unlikely to display notable changes in parameters 

of bone strength. While exercise interventions in pediatric 

cohorts have been primarily jump-based programs, exercise 

protocols in older adult trials have varied by mode, intensity, 

frequency and duration.234 Among physical activities, walk-

ing is not effective in osteoporosis prevention, as it only 

provides a modest increase in the loads on the skeleton above 

gravity.235 The menopausal women may improve the muscle 

strength and physical activities levels by exercise intervention 

for reducing the osteoporotic and sarcopenic risk.236

Discussion
Osteoporosis originates from loss of bone mass along with 

microarchitectural deterioration of the skeleton. Bone mass 

starts decreasing among men and women in their 40s, leading 

to increased risk of fragility fractures. However, women lose 

bone more rapidly, particularly during the first 5–10 years 

after menopause due to estrogen deficiency, while men 

experience a slow loss of bone.237 Multiple risk factors are 

associated with low bone density-related fractures. Signifi-

cant associations include advancing age, white race, history 

of prior fractures and genetic factors. Modifiable factors 

such as increased alcohol consumption and smoking are 

also prominent. Furthermore, chronic glucocorticoid use, 

hypogonadism, diabetes, dementia and RA were discussed 

as secondary causes of osteoporosis in the current review.
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Since osteoporosis is asymptomatic, early diagnosis can 

help in deciding treatment strategies and preventing disease 

progress. On the other hand, many metabolic bone diseases 

including hyperparathyroidism and osteomalacia also are 

associated with low BMD. Thus, a conclusive test is essential 

to diagnose osteoporosis and future fracture risk prediction. 

Several methods of imaging have been developed to measure 

bone density and decide treatment strategies.238 Fracture Risk 

Assessment Tool is an algorithm used to evaluate the 10-year 

probability of hip fracture and major osteoporotic fracture 

(spine, proximal humerus and forearm) risk in either men or 

women that integrates clinical risk factors (individual’s age, 

sex, weight, height, prior fracture, parental history of hip 

fracture, smoking, long-term use of glucocorticoids, RA and 

alcohol consumption) and BMD at the femoral neck in its cal-

culations.239 With regard to the clinical consequenses and heavy 

economic burden of fractures in the aging population, signifi-

cant efforts to decrease fracture risk are needed. Our study 

updates reviews on available treatments for osteoporosis.

The two key elements in treating osteoporosis are increas-

ing the bone mass by using anabolic therapies and decreasing 

bone resorption through antiresorptive therapies.

First and foremost, regular physical activity is recom-

mended in all age groups to maximize peak bone mass 

and maintain bone strength.240 Physical activity has been 

suggested as a nonpharmacologic intervention for increas-

ing bone density in youth and preventing bone loss in the 

elderly.241 Both aerobic exercise and resistance training, 

the best forms of weight-bearing exercise, increase the rate 

of bone remodeling in postmenopausal women. However, 

resistance exercise training induces more effective favor-

able changes in BMD status than aerobic exercise training 

in postmenopausal women.242 These findings are consis-

tent with a previous study which showed that resistance 

exercise had a significant protective influence on several 

changes associated with loss of BMD, unfavorable changes 

in serum and urinary bone markers and hypercalciuria.243 

A 10% increase in peak bone mass was predicted to delay 

the development of osteoporosis by 13 years244 and reduce 

the risk of fragility fractures after menopause by 50%.245 

Adequate daily calcium and vitamin D is required to 

maximize bone mass and for the subsequent maintenance 

of bone health.246 The National Osteoporosis Foundation 

recommends that postmenopausal women should consume 

at least 1,200 mg per day of calcium and 800–1,000 interna-

tional units of vitamin D per day.247 With an unhealthy diet, 

calcium and vitamin D supplementations may be needed. 

Dietary supplementation with calcium and vitamin D 

reduced bone loss and the rate of nonvertebral fractures in 

both 65-year-old men and women during a 3-year study.248 

Other active osteoporosis therapies should be considered 

for adjunctive treatment with calcium and vitamin D.249 

Osteoporosis is a challenging human disease. In spite of 

using various therapeutic approaches for the prevention or 

treatment of osteoporosis, their side effects are undeniable. 

Increasing our knowledge about the signaling pathways 

involved in bone remodeling will help us to design new 

therapeutic options for osteoporosis.
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