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Abstract: Glutathione S-transferase π (GSTπ) is a Phase II metabolic enzyme that is an 

important facilitator of cellular detoxification. Traditional dogma asserts that GSTπ functions 

to catalyze glutathione (GSH)-substrate conjunction to preserve the macromolecule upon expo-

sure to oxidative stress, thus defending cells against various toxic compounds. Over the past 

20 years, abnormal GSTπ expression has been linked to the occurrence of tumor resistance to 

chemotherapy drugs, demonstrating that this enzyme possesses functions beyond metabolism. 

This revelation reveals exciting possibilities in the realm of drug discovery, as GSTπ inhibitors 

and its prodrugs offer a feasible strategy in designing anticancer drugs with the primary purpose 

of reversing tumor resistance. In connection with the authors’ current research, we provide a 

review on the biological function of GSTπ and current developments in GSTπ-targeting drugs, 

as well as the prospects of future strategies.
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Introduction
In addition to combating a variety of noxious substances from the external environment, 

cell-detoxification mechanisms are capable of resisting the deleterious effects of certain 

endogenous substances (eg, ROS, a product generated from normal cellular metabolism), 

in order to maintain physiological homeostasis. Drug metabolism represents an important 

component of cellular detoxification and involves two enzymes: Phase I and Phase II 

drug-metabolism enzymes. The Glutathione S-transferase π (GST) family of enzymes 

is a group of typical Phase II detoxification enzymes and is found in many prokaryotes 

and eukaryotes.1 Of these enzymes, GSTπ catalyzes the conjunction between GSH and 

its electrophilic substrates upon exposure to damaging free radicals. Besides metabo-

lite detoxification, GSTπ also exhibits ligand-binding properties that initiate cellular 

apoptosis when triggered by cellular stress.2 Further research has also demonstrated that 

GSTπ is expressed abundantly in tumor cells and associated closely to carcinogenesis, 

tumor formation, and chemotherapy resistance.3,4 Moreover, experiments involving 

drug-resistant cell lines have also demonstrated increased GSTπ expression.5,6 In 

multidrug-resistant HL60/VCR acute myelogenous leukemia cells, GSTπ is found to be 

expressed at higher levels than HL60.7 GSTπ is involved in facilitating tumor resistance 

and suppressing apoptosis in tumor cells via two mechanisms. First, GSTπ weakens the 

efficacy of chemotherapy drugs by promoting their in vitro extrusion. Second, GSTπ 

also functions as an MAPK-pathway inhibitor to prevent tumor-cell apoptosis.

A variety of anticancer drugs based on these principles have been synthesized in 

efforts to improve their therapeutic indices and reverse tumor resistance. Drugs that 

work through the GST system include GSTπ inhibitors and their respective prodrugs. 
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The former work by exerting high GSTπ-inhibitory activity, 

while the latter comprise inactive compounds designed to 

target tumor tissue locally by undergoing GSTπ catalysis in 

the tumor to release cytotoxic metabolites.8 Development 

of therapies targeting GSTπ is a major field of research. 

As such, we believe that there is a need for more detailed 

studies outlining the diverse biological functions of GSTπ, 

in order to assist drug discovery and unlock more exciting 

possibilities in the realm of tumor treatments.

Structure
GSTs consist of the following three superfamilies: cyto-

plasmic (cGSTs), mitochondrial (κGSTs), and microsomal 

(membrane-associated proteins in eicosanoid and glutathione 

metabolism [MAPEG]). Among these families, cGSTs are 

the most complex and most closely linked to the develop-

ment of human diseases.9,10 The cGSTs are divided into 

seven subtypes according to similarities in amino-acid 

sequence, different structure of genes, and immunological 

cross-reactivity. These subtypes are α, π, μ, θ, ω, σ, and δ.11 

Among them, GSTα is highly expressed in many normal 

cells.12 However, recent studies have shown that GSTα 

also takes part in promoting multidrug resistance in p53-

mutated lung cancer cells.13 GSTμ has been found to be able 

to act synergistically with MRP1 to decrease the effects of 

vincristine treatment.14 GSTπ is widespread in tumor cells, 

and is intricately involved with cellular carcinogenesis, tumor 

formation, and tumor-drug resistance.15 Current evidence 

supports the role of cGSTs in facilitating multidrug resistance 

across different types of tumors.16,17

GSTπ is the most frequently and extensively studied of 

all the GSTs. Its encoding gene is located on chromosome 11 

and is composed of seven exons. In humans, GSTπ often 

consists of two identical dimer subunits, with each subunit 

consisting of 210 amino acids and two binding sites, the 

G-site and the H-site (Figure 1). Different G- and H-site 

locations in the amino-acid residue of different GSTs exert 

different functions. GSTπ is able specifically to bind to GSH 

or GSH analogs via the G-site, which catalyzes the interaction 

between GST amino-acid residues with GSH sulfhydryl and 

conventional electrophilic substances at the H-sites to pro-

mote catalytic action.18 Therefore, G-site modification often 

guides the development of specific GSTπ inhibitors.

Biological function
GSTπ in metabolite detoxification 
and antioxidation
The classical view holds that as a dimeric isoenzyme, GSTπ 

can conjugate GSH with substrate molecules in efforts to 

promote clearance of active ionic substances.19 However, 

tumor cells also utilize GSTπ to form a GSH–X complex 

between antitumor drugs and GSH, proceeding to excrete 

the complex out of the cell by Pgp and MRP. Pgp, encoded 

by MDR1, is often found to be highly expressed in tumor 

cells.6,20 What is more, GSTπ and Pgp or MRPs (eg, MRP2) 

are synergistic in driving the development of multidrug 

resistance in tumor cells21 (Figure 2). Studies have docu-

mented high GSTπ expression in various tumor cells, such 

as cancers of the gastrointestinal tract,6 pancreas,22 breast,23 

liver,24 lymphoma,25 as well as melanoma.26

Recent literature has characterized GSH and other related 

metabolic enzymes as vital in protecting cells from ROS27 

through oxidation and reduction (redox) mechanisms.28 GSH 

carries a cysteine residue with an active thiol group and is 

responsible for maintaining thiol equilibrium. Meanwhile, it 

can also modulate the activities of many signaling molecules 

and redox-sensitive transcription factors through S-glutathi-

onylation, a form of posttranslational modification that com-

bines cysteine residues with GSH.29 GSTπ serves as a general 

S-glutathionylase enzyme and promotes S-glutathionylation. 

Its enzymatic function is based on two aspects: its catalytic 

activity and the auto-S-glutathionylation of GSTπ by itself on 

Cys47 and Cys10, both of which disturb the subsequent inter-

action with c-Jun NH
2
-terminal kinase (JNK), resulting in the 

formation of a GSTπ multimer30 (Figure 3). Besides GSTπ, 

other members of the GSH-redox system, such as glutamate 

cysteine ligase,31 glutathione peroxidase, and glutathione 

reductase, also play significant roles in this process.32

GSTπ in regulation of MAPK pathway
Besides metabolite detoxification, GSTπ also exhibits 

ligand-binding properties that allow the enzyme to interact 

covalently and noncovalently with compounds, resulting in 

inhibition of conjugation activity.18 GSTπ can induce cellular 

apoptosis in the setting of cellular stress by activating MAPK, 

MKK4, downstream JNK-signal components, and p38 

kinase. Normal cells have low basal JNK activity to maintain 

optimal cellular growth conditions. However, in the presence 

Figure 1 The two binding sites (G and H) of GSTπ.
Note: The G-site represents a GSH-binding site and the H-site a substrate-
binding site.
Abbreviation: GST, glutathione S-transferase.
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of oxidative or nitrosative stress, GSTπ can form homodi-

mers that alter the reduced states of cysteine residues in its 

structure, resulting in JNK dissociation from the GSTπ–JNK 

heterocomplex and causing subsequent activation of the 

c-Jun protein. Ultimately, these series of reactions will acti-

vate the apoptotic pathways33,34 (Figure 4).

Further research indicates that GSTπ can influence the 

MAPK pathway both through JNK and TRAF2 modulation. 

π

Figure 3 The process of S-glutathionylation.
Notes: in this process, low-pKA cysteine-residue proteins are targeted upon exposure to nitrosative or oxidative stress. The cysteine residues are oxidized to produce 
protein sulfinic (P–OOH) and sulfenic (P–OH) acids. GSH functions as a thiol donor to facilitate GSTπ-mediated S-glutathionylation, protecting the target protein from 
further damage. This reaction is also influenced by enzymes involved in deglutathioylation, such as sulfiredoxin (Srx), glutaredoxin (Grx), and thioredoxin (Trx).
Abbreviation: GST, glutathione S-transferase.

π

Figure 2 involvement of GSTπ in the detoxification of exogenous and endogenous substrates.
Note: in the process, Pgp or MRPs (eg, MRP2) give assistance to GSTπ to excrete the complex out of the cell.
Abbreviation: GST, glutathione S-transferase.
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In-depth analysis of biological information tools has revealed 

that the TRAF family is strongly linked to GSTπ. Of all the 

TRAF members, TRAF2 is expressed most abundantly and 

has been subjected to intense research.35 Following the acti-

vation of TNFR though TNFα binding, TRAF2 is recruited 

to the plasma membrane, resulting in the production of ROS. 

ROS generation leads to oxidation of the ASK1 inhibitor 

thioredoxin, separating and activating ASK1 from the inactive 

ASK1–thioredoxin complex. ASK1 goes on to bind to TRAF2, 

which in turn activates downstream-signaling cascades, 

including the MKK3/4/6–p38 and MKK4/7–JNK signaling 

pathways36,37 (Figure 4). Further evidence from steady-state 

fluorescence analysis confirms that direct binding between 

TRAF2 and GSTπ also exists.38–42 In tumor cells, GSTπ can 

suppress JNK activity and block the interaction between 

TRAF2 and ASK1 to inhibit tumor-cell apoptosis. Conse-

quently, regarding the formation of multidrug resistance in 

tumor cells, besides acting as a detoxification enzyme though 

excretion of drugs to decrease pharmacological efficacy, GSTπ 

can also act as an MAPK-pathway inhibitor to improve tumor-

cell survival. GSTπ also represents a scaffold protein to unite 

different members across signaling pathways.

Other functions
GSTπ also functions as a chaperone protein that regulates 

common but significant cellular functions. It interacts with 

several key cellular proteins, including TGM243 and FANCC.44 

Research has found STAT3 to be an active factor in signal 

transduction and transcription. STAT3 overexpression is a 

key molecule that drives the progression of hepatocellular 

carcinoma, and its activation may be critical in initiating 

oncogenesis.33,45,46 There are studies illustrating that GSTπ 

interaction with STAT3 can inhibit the STAT3-signaling 

pathway, curb aberrant cell-cycle progression, and decrease 

cell proliferation.36 Furthermore, GSTπ can participate in 

nonhomologous end-joining DNA repair by inhibiting DNA-

dependent protein kinase.47 In conclusion, these findings men-

tioned show that seemingly disparate functions of GSTπ in 

fact work on several aspects of tumor carcinogenesis, making 

it an ideal molecule for further antitumor therapy research.

Gene variants and polymorphisms
The study of pharmacogenomics in recent decades has 

proved that genetic polymorphism of drug-metabolizing 

enzymes is an important mediating factor in determining 

individual drug responses. Genetic polymorphism is due to 

a single-nucleotide mutation in the genomic sequence that 

fundamentally changes how a person responds to chemo-

therapeutic drugs. Polymorphisms affecting GSTπ have been 

documented to exert significant modulatory effects on the 

biological cascade of carcinogenesis and have been discussed 

vigorously in the literature.48

Figure 4 Ligand-binding properties of JNK and TRAF2.
Notes: Under physiological conditions, cells possess low JNK activity. JNK is sequestered in the form of the GSTπ–JNK protein complex. GSTπ dissociates from the 
GSTπ–JNK complex upon oxidative stress induced by drug administration, resulting in the accumulation of GSTπ oligomers. This results in c-Jun phosphorylation and/or 
ATF2 activation, and this progress further impacts downstream events as well. Meanwhile, TRAF2 recruitment to the plasma membrane stimulates the production of ROS. 
Subsequent oxidation of the previously inactive ASK1–Trx complex causes dissociation of the ASK1 molecule. TRAF2 then binds to ASK1 to activate the ASK1–JNK signaling 
cascade. Nevertheless, on account of high expression in tumor cells, GSTπ acts as an endogenous negative regulatory switch by forming complexes with JNK, preventing 
TRAF2–ASK1 interactions and ultimately inhibiting tumor-cell apoptosis and proliferation.
Abbreviation: GST, glutathione S-transferase.
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The human GSTP1 gene exists as two functionally 

different variants, with both variants having documented 

nucleotide transitions from isoleucine to valine at codon 105 

(A→G) and alanine to Val at 114 (C→T). This results in four 

alleles of GSTP1: wild-type GSTP1*A (Ile105 + Ala114), 

GSTP1*B (Val105 + Ala114), GSTP1*C (Val105 + Val114), 

and GSTP1*D (Ile105 + Val114).49 Besides GSTP1, cytosolic 

GSTs demonstrate clinically significant gene polymorphism 

(Table 1). These changes occur in active sites, leading to a 

decrease in encoded protein activity, decreased excretion 

of foreign substances, and suboptimal catalytic efficiency. 

On the other hand, reducing the rate of drug excretion has 

the benefit of improving an individual’s sensitivity to chemo-

therapeutic drugs, enhancing their curative effects.50–52

There are a great number of reviews that have summa-

rized the associations between individual GSTπ variability 

and the drug sensitivity of malignant tumors.53–55 However, 

data are scarce regarding the relationship between GSTπ and 

clinical response to chemotherapy. Khrunin et al showed that 

104 patients with ovarian cancer with mutant-type GSTπ 

possessed longer progression-free survival compared to 

wild-type GSTπ.56 These results highlight the possibility that 

Table 1 Genetic polymorphisms of cytosolic GSTs

Class Chromosome Gene Exon 
count

Alleles Nucleotide variability Reference(s)

α

μ

π

θ

ω

δ

6p12.2

1p13.3

11q13.2

22q11.23

10q25.1

14q24.3

GSTA1

GSTA2

GSTM1

GSTM3

GSTM4

GSTP1

GSTT1

GSTT2

GSTO1

GSTO2

GSTZ1

7

8

8

9

10

7

6

5

7

10

12

GSTA1*A
GSTA1*B

GSTA2*A

GSTA2*B

GSTA2*C

GSTA2*D

GSTA2*e

GSTM1*A
GSTM1*B
GSTM1 null
GSTM1*1⋅2
GSTM3*A
GSTM3*B
GSTM4*A
GSTM4*B
GSTP1*A
GSTP1*B
GSTP1*C
GSTP1*D
GSTT1*A
GSTT1*B
GSTT1*null
GSTT2*A
GSTT2*B
GSTO1*A
GSTO1*B
GSTO1*C
GSTO1*D
GSTO2*A
GSTO2*B
GSTZ1*A
GSTZ1*B
GSTZ1*C
GSTZ1*D

wild-type
Promoter point mutation

Pro110;Ser112;Lys196;Glu210

Pro110, Ser112, Lys196, Ala210

Pro110;Thr112;Lys196;Glu210

Pro110;Ser112;Asn196;Glu210

Ser110;Ser112;Lys196;Glu210

Lys173
Asn173
Gene deletion
Duplication
wild-type
Protein unchanged
Tyr2517
T2517C frameshift
ile105;Ala114
val105;Ala114
val105;val114
ile105;val114
Thr104
Pro104
Gene deletion
Met139
ile139
Ala140;Glu155
Ala140
Asp140;Glu155
Asp140
Asn142
Asp142
Lys32;Arg42;Thr82
Lys32;Gly42;Thr82
Glu32;Gly42;Thr82
Glu32;Gly42;Met82

116

117, 118

119, 120

121

122, 123

124–128

124
129

130, 131

132, 133

134, 135

136–138

Abbreviation: GST: Glutathione S-transferase.
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genetic variation may have significant effects on suscepti-

bility toward cancer. In future, precise genetic polymorphic 

screening tests may play a more central role in determining 

chemotherapeutic treatment regimens for patients.

GSTπ inhibitors
GSTπ inhibitors reverse tumor resistance by means of sup-

pressing GSTπ activity and improving the chemotherapeutic 

drug sensitivity of tumor cells. Ethacrynic acid (EA) is a 

classic GSTπ inhibitor.57 However, due its aspecific phar-

macological properties in targeting GSTπ, the newer GSTπ 

inhibitors TLK117/TLK199 and NBDHEX may prove to be 

more promising. Antitumor agents targeting GSTπ in context 

are listed in Table 2.

eA and its analogs
EA represents the first clinical application of GSTπ inhibi-

tors. Previously, it was widely used for decades as a diuretic 

in clinical research. EA works to halt GSTπ activity through 

a number of mechanisms. First, it is able to bind directly to 

substrate-binding sites of isozymes to inhibit GSTπ. Second, 

it is able to induce the combination of α,β-unsaturated 

ketones and GSH through the nucleophilic addition reaction, 

depleting GSH and reducing the amount of GSH available 

to combine with chemotherapeutic agents, thus producing 

an overall GSTπ-inhibitory effect by sensitizing a cell to 

chemotherapeutic agents.57 However, the clinical applications 

of EA have been limited, due to its diuretic properties and 

lack of enzyme specificity, with long-term intake possibly 

risking water and salt imbalance.18

Zhao et al attempted to modify EA using thiazole deriva-

tives of uric acid to strengthen its GSTπ-inhibitory effects. 

The team demonstrated that these derivatives had higher 

GSTπ-inhibitory activity in comparison to unmodified EA 

when administered to acute myeloid leukemia parental cells 

(HL60).58 In addition, the combination of EA and GSH has 

also been proven to possess superior inhibitory activity 

over EA alone and is able functionally to inhibit many GST 

isoenzymes. However, this compound also possesses limited 

clinical viability, given its tendency toward dissociation 

by γ-glutamyltransferase.59 Burg et al synthesized modi-

fied peptidomimetic glutathione analogs of these EA–GSH 

compounds, which were hypothesized to be stabler against 

peptidase-mediated dissolution. Unfortunately, these analogs 

instead reduced its GSTπ-inhibitory activity, despite dem-

onstrating increased resilience toward γ-glutamyltransferase 

compared to the unmodified EA–GSH compounds.57 Taken 

together, EA and its analogs still represent novel avenues 

of research in the search for more efficacious antitumor 

drugs.

TLK117 and TLK199
Telintra (ezatiostat hydrochloride, TER199, TLK199) is 

a small-peptide, glutathione-analog molecule and was 

developed by Telik. Upon entering the body, TLK199 

undergoes esterase hydrolysis, which releases TLK117, 

its activated form that has anti-GSTπ activity. TLK199 is 

able to enhance the potency of various antineoplastic agents 

against various tumor cell lines. The agent is also able to 

inhibit MRAP1 and prevent the combination of GSTπ and 

JNK, resulting in high JNK production that triggers tumor-

cell apoptosis.60

Furthermore, clinical studies have found TLK199 to be 

able to promote the maturation of hematopoietic progenitor 

cells, induce cancer-cell death, and inhibit myeloproliferative 

diseases.61–63 In 2013, TLK199 successfully passed a US Food 

and Drug Administration audit and was approved to treat low- 

to intermediate-risk myelodysplastic syndrome. Long-term 

observation studies have highlighted the ability of TLK199 

to enhance bone-marrow maturation and cellularity.64

NBDHeX and its analogs
NBDHEX (6-[7-nitro-2,1,3-benzoxadiazol-4-ylthio]

hexanol) is a recently developed compound designed as a 

Table 2 Antitumor agents targeting GSTπ in context

Drugs Selected examples Functional significance References

GSTπ 
inhibitors

eA and its analogs Inhibiting detoxification activity, mainly by binding to 
substrate-binding sites of GSTπ

139, 140

TLK117/TLK199
NBDHeX and its analogs

Promoting tumor-cell apoptosis by preventing combination 
of GSTπ and JNK and then activating MAPK pathway

62, 141
142–145

GSTπ 
prodrugs

GSH or GSH derivatives (TLK286) Catalyzed by GSTπ to release nitrogen-mustard segment 
to induce tumor-cell apoptosis

146–148

NO prodrugs (JS-K) Catalyzed by GSTπ to release high-concentration NO to 
kill tumor cells directly

149

Abbreviations: GST, glutathione S-transferase; eA, ethacrynic acid; NO, nitric oxide.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2018:12 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3541

GSTπ in antitumor therapy

“mechanism-based inhibitor” that exerts potent effects on 

GSTπ. Since its first reports by the Tor Vergata University 

of Rome,65 numerous preclinical studies have shown that 

NBDHEX exerts high GSTπ-inhibitory activity across a wide 

range of tumor types. Pasello et al reported that this agent 

effectively reversed cisplatin resistance in osteosarcoma, 

alluding toward potentially improved clinical outcomes 

when using a combination of NBDHEX and cisplatin.66 

NBDHEX GSTπ-inhibitory effects have also been observed 

in HL60 cells and their chemotherapy-resistant phenotype 

HL60/DNR.67 Other cell lines that have demonstrated 

NBDHEX sensitivity include Ewing sarcoma,68 the human 

mesothelioma cell lines MPP89, MMB1, MSTO211H, and 

Mero48a,69 melanoma cell lines Me501 and A375,42 and 

the non-small-cell lung cancer cell line H69AR.70 Further 

research indicates that aside from inherent antimelanoma 

activity, NBDHEX also has the ability to enhance the func-

tion of temozolomide, with the two able to work synergisti-

cally to suppress tumor growth.71

NBDHEX employs several methods in combating 

malignant cells. First, it is able to accumulate specifically in 

tumor cells, remaining unaffected by MRP while maintaining 

good cell-membrane permeability. Second, this agent can 

decompose the GSTπ–JNK complex and promote activa-

tion of the apoptosis pathway.42,65,67,70–72 Further research has 

also suggested that TRAF2 plays a key role in facilitating 

NBDHEX-mediated apoptosis. NBDHEX simultaneously 

activates JNK and TRAF2, interfering with the effect of 

GSTπ via two different pathways, leading to cell-cycle arrest 

and cell death.34 Intriguingly, researchers have provided 

further evidence to demonstrate that NBDHEX can also act 

as an autophagy inhibitor in tumor cells.40

Despite NBDHEX’s promising anticancer activity, con-

sideration should be given to the relatively low GSTπ-target 

selectivity and poor water-solubility.73 In efforts to counter 

this limitation, a study group designed, synthesized, and 

screened 40 new NBDHEX analogs.74 The group added one 

or two oxygen atoms on the hydroxyl chain of the NBD bone, 

forming two NBDHEX analogs, MC3181 and MC3165, 

that were able to display higher selectivity and better exter-

nal activity by forming a stable σ-complex with the active 

site of GSTπ. After extensive experiments, MC3181 was 

deemed the more promising compound of the two, due to 

it having a 50-fold rise in aqueous solubility and higher 

selectivity toward GSTπ. This novel compound yielded 

positive results when administered to several distinct human 

melanoma cell lines, particularly when used in BRAFV600E-

mutation melanoma cells.75 Moreover, both intravenous and 

oral treatment of MC3181 in animals with different types of 

human melanoma xenografts resulted in astonishing cura-

tive effects and a satisfactory safety profile.75 In summary, 

we conclude that NBDHEX and its analogs may serve as 

potential treatment strategies in the management of patients 

with melanoma.

Prodrugs of GSTπ
Both conventional chemotherapeutic and targeted agents 

have well-established toxicity profiles, with a wide range of 

adverse effects, eg, bone-marrow suppression, gastrointes-

tinal toxicity, immunosuppression, gastrointestinal toxicity, 

hepatotoxicity, and cardiotoxicity.76 GSTπ prodrugs appear to 

have a more favorable adverse-event profile, given that they 

are ingested as an inactive compound and undergo breakdown 

to release cytotoxic metabolites only in the presence of high 

concentrations of enzymes that occur in the proximity of 

tumor cells, thereby reducing collateral damage to healthy 

cells.2 Additionally, tumor cells generally have heightened 

expression of GSTπ, providing ideal conditions for GSTπ-

activated prodrugs. There are two primary classes of GSTπ 

prodrugs. The first of these are GSH or GSH derivatives, 

such as canfosfamide (Telcyta, TER286, TLK286), which 

have cytotoxic drug segments. When catalyzed by GSTπ, 

the prodrug releases cytotoxic compounds. The other type, 

such as JS-K, consists of a similar structure, but without 

GST analogs. Upon being catalyzed by GSTπ, it forms an 

intermediate with GSH and releases its cytotoxic drug seg-

ments. Currently, prodrugs under research comprise TLK286, 

purine analogs,77 sulfonamides,78 and brostallicin.

TLK286
l-γ-Glutamyl-3-(bis[bis(2-chloroethyl)amino-phosphinyl]

oxy)ethylsulfonyl-l-alanyl-2-phenyl-[2R]-glycine hydro-

chloride salt (TLK286) represents the most promising 

GSTπ-prodrug candidate. It can generate a GSH analog 

and a phosphorodiamidate, the latter an active, alkylating 

agent.53 Following activation, the former competitively 

inhibits molecules that stimulate drug resistance, while the 

nitrogen-mustard segment induces apoptotic activity by 

influencing the activities of MAPK, p38 kinase, JNK, MKK4, 

and caspase 3.53,79–81

In vitro studies have revealed that the GSTP1-null cell 

lines show a different degree of resistance in response to 

TLK286 compared with GSTP1+/+ cells. These differences 

were abrogated by cotransfecting these cells with GSTπ. 

Similar findings were reflected in in vivo analyses with 

nude mice. These data support the rationale that tumors with 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2018:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3542

Dong et al

elevated GSTπ expression are more sensitive to the cytotoxic 

effects of TLK286.82

The promising mechanism of action of TLK286 and its 

positive preclinical data have sparked a series of clinical 

trials where the prodrugs have been applied alone or in 

combination with other standard chemotherapeutic agents. 

Completed Phase II and III clinical trials have indicated that 

the agent has a nonoverlapping toxicity profile and synergistic 

effects with carboplatin, paclitaxel, and anthracycline, has 

no cross-drug resistance and is well tolerated, with patients 

mostly reporting fatigue and nausea.83–88

A completed Phase I/IIA multicenter dose-ranging 

clinical trial that sought to assess the safety and efficacy of 

TLK286 found that the compound was highly efficacious. 

Patients who underwent TLK286 maintenance treatment 

experienced prolonged median survival of 16.8 months 

compared to the 8.8 months experienced by those who did 

not receive the agent.89 These clinical trials provide sound 

scientific evidence that supports the therapeutic efficacy of 

TLK286 in managing different types of malignancies.

Nitric oxide (NO) prodrugs
Another class of prodrugs are the NO prodrugs. These medi-

cations work by binding to intracellular GSTπ and under-

going GSTπ-mediated catalysis. This process releases NO 

molecules that go on to exert antitumor activity. NO is an 

ephemeral but pleiotropic molecule. It has been shown to 

have the capacity to affect several vital functions of the 

body.90 As such, this molecule has been investigated keenly 

for its role in carcinogenesis, tumor progression, invasion, 

angiogenesis, and other key biological processes.91 How-

ever, available experimental evidence suggests that NO is a 

double-edged sword when used to manage tumor diseases. 

NO itself is a source of cytotoxic molecules, and its deleteri-

ous effects are enhanced by its ability to concentrate locally 

around tumor cells and the tumor microenvironment.92 At 

modest concentrations, NO exerts a protumorigenic response 

that may benefit tumor growth and survival. Nevertheless, 

at fairly high concentrations, NO takes on antitumor-agent 

properties to accelerate tumor-cell death and to inhibit 

tumor-cell angiogenesis.93 Based on these observations, it 

is clear that NO has a role to play in combating tumor-cell 

resistance.

An example of an NO prodrug is O
2
-(2,4-dinitrophenyl)1-

[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate 

(JS-K), devised by Keefer et al from the National Cancer 

Institute.94 The antineoplastic properties of JS-K rest on two 

modes of action: first, it can combine with GSTπ and then be 

activated to release NO at a high concentration to directly kill 

tumor cells; second, it binds to cellular GST/GSH, depleting 

its intracellular content to weaken the efflux of chemotherapy 

drugs in tumor cells.95 Furthermore, other literature suggests 

that JS-K inhibits angiogenesis,96 induces cell apoptosis (a 

process related to PARP, caspase 8 and 9 cleavage, and cell 

differentiation),95,97 destroys double-stranded DNA,95,97–99 and 

is also able to interfere with the cell cycle and its respective 

signaling pathways.92,100–102 These mechanisms are highly 

codependent, and function in an integrated manner to exert 

antitumor effects.

Remarkably, flow-cytometry findings have shown that 

JS-K can improve the formation of acidic vesicle organelles, 

underscoring its ability to induce autophagy.102 Furthermore, 

electron-microscopy observations have indicated that JS-K 

induces autophagic death in cells.102 Nevertheless, JS-K 

was able to spare surrounding healthy mammary epithelial 

cells. JS-K has been shown to be effective in several types 

of cancers, of which leukemia and myeloma appear to be the 

most susceptible.92,96,100,103 In addition, it is also efficacious 

in the treatment of solid tumors, such as breast cancer,102,104 

lung cancer,97,103,105 glioma,103,106 prostate cancer,107 kidney 

cancer,108 bladder cancer,109 colon cancer,110 and hepatocel-

lular carcinoma.111 Furthermore, JS-K is tolerated well by 

healthy tissue. These data indicate that further investigation 

into JS-K as an alternative chemotherapeutic agent is much 

needed.102–104,109

It is worth noting that JS-K works synergistically with 

chemotherapy drugs, such as cytarabine,98 bortezomib,95 

cisplatin, and arsenic.112 JS-K acts as a dose-sparing agent 

when used with typical chemotherapeutic agents and is able 

to alleviate the severity of adverse effects as a consequence. 

While JS-K has been shown to be advantageous in treating 

cancer, its clinical use has been hindered with reports of poor 

solubility. Structural modification of JS-K is able to prolong 

its half-life, and combining JS-K with special nanoparticles 

can greatly improve its solubility and stability,103,113 further 

improving its prospects for clinical applications. JS-K and 

many other NO prodrugs represent an innovative biological 

approach in the development of anticancer therapeutics.

Conclusion
Multidrug resistance to chemotherapy drugs is one of the 

main obstacles in human cancer chemotherapy and has 

prompted intense research into discovering novel and innova-

tive mechanisms that can overcome this barrier.6,7,20 There is 

an intimate connection between abnormal GST expression 

and multidrug resistance, unequivocally implicating GSTπ, 
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a member of the GST family in tumor-drug resistance.4 

GSTπ inhibitors and prodrugs are crucial agents that can help 

reverse multidrug resistance in tumors and increase the thera-

peutic index of anticancer drugs, which collectively decreases 

the physical and economic burden of cancer patients. 

Nevertheless, while the rapid growth of research on develop-

ment of medication based on GSTπ inhibition has resulted 

in clinical studies on several compounds, the drugs that 

make it to commercial consumption are few. Realistically, 

fundamental issues that stand in the way of large-scale drug 

production include the vast number of biological GST family 

members, with each subtype having their own structural and 

functional differences, in addition to the existence of several 

genetic modifiers. The situation is further compounded by 

the presence of posttranslational modifying factors, such 

as kinase activities and S-glutathionylation. More in-depth 

research that clarifies the roles of these components of the 

GST-detoxification system are much needed, in order to 

produce compounds that have minimal side effects and high 

GSTπ selectivity. While modulation of the GSH-antioxidant 

system has provided promising preclinical results, some of 

these compounds demonstrate unacceptable toxicity profiles 

(eg, buthionine sulfoximine). Having said that, GSH-based 

medication has also been successfully employed to protect 

against cisplatin induced nephrotoxicity.114,115 The ongoing 

development of chemical genomics, computer-aided drug 

design, and more extensive molecular and cellular biology 

research will serve to be extremely useful in contributing 

toward the preclinical and clinical development of more 

efficient GSTπ-targeting drugs.
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