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Abstract: Sympathetic nervous system (SNS) is a part of the autonomic nervous system 

which involuntarily regulates internal body functions. It appears to modulate the processing 

of nociceptive information. Many orofacial pain conditions involve inflammation of orofacial 

tissues and/or injury of nerve, some of which might be attributed to SNS. Thus, the aim of this 

review was to bring together the data available regarding the peripheral sympathetic mechanisms 

involved in orofacial pain. A clearer understanding of SNS–sensory interactions in orofacial 

pain may provide a basis for novel therapeutic strategies for conditions that respond poorly to 

conventional treatments.
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Introduction
Sympathetic nervous system (SNS) arises from the spinal cord between the first 

thoracic vertebra and the second lumbar vertebra and travels to sympathetic ganglia, 

where it synapses with a postganglionic neuron. From there, the long postganglionic 

neurons extend across most of the body. The SNS, as a component of the autonomic 

nervous system, reaches most of the body’s internal organs to maintain homeostasis 

together with the para-SNS.1 The American Academy of Orofacial Pain (AAOP) 

defined the term “orofacial pain” as “pain conditions that are associated with the 

hard and soft tissues of the head, face, neck, and all the intraoral structures.”2 Oro-

facial pain sensation from the intraoral and extraoral structures of the head and 

face is relayed to the central nervous system (CNS) by trigeminal nerve system. 

Primary sensory fibers innervating the orofacial region derive from neurons of the 

trigeminal ganglion (TG). The central processes of TG enter directly into the pons, 

where they descend in the brainstem to synapse in the spinal trigeminal nucleus 

(STN).3,4 The secondary afferents from STN cross to the opposite side and project 

to higher center (Figure 1). SNS (visceral motor nerve) and the sensory nerves 

are generally regarded as discrete structures, but the efferent SNS and the afferent 

nociceptive interact in many ways. Activation of SNS can suppress or augment 

pain in pathological states, which might take place in the periphery or the CNS.5–7 

Considerable evidence has demonstrated that SNS might regulate peripheral sensi-

tized nociceptors, immune cells, and neuroactive molecules, which are potentially 

relevant for the pathophysiology of orofacial pain. The purpose of this study was 

to present different lines of evidence for the role of SNS in orofacial pain studied 

to date. Possible peripheral mechanisms regarding the connection between SNS 

and orofacial pain are discussed.
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SNS of orofacial region
The sympathetic innervation of the orofacial region originates 

in the most rostral intermediolateral horn cells of the spinal 

cord between segments T2 and T3. The axons of pregangli-

onic neurons pass through anterior roots of the spinal cord, 

ascend in connectives of the sympathetic chain, and synapse 

with postganglionic neurons in the superior cervical sympa-

thetic ganglion.8 The postganglionic axons then distribute to 

their target organs in the orofacial region (Figure 1). In the 

neurotransmission of the SNS, preganglionic neurons use 

acetylcholine as a neurotransmitter, whereas postganglionic 

neuron nerve fibers release norepinephrine (NE) as a key 

neurotransmitter. There are five types of adrenergic recep-

tors including α
1
, α

2
, β

1
, β

2
, and β

3
. Of these five subtypes, 

α
2A

- and α
2C

-adrenoreceptors are expressed in TG of intact 

animals.9 In fact, the neural transmission in the SNS involves 

the release of multiple neuroactive agents such as neuropep-

tide Y (NPY), calcitonin gene-related peptide (CGRP), and 

nitric oxide.10,11

Involvement of SNS in orofacial 
pain
Morphological study shows that primary sensory and sym-

pathetic fibers innervate the temporomandibular joint (TMJ), 

which suggests that sympathetic nerves could be responsible 

for allodynia or neuropathic pain caused by TMJ disorders.12 

Injury of the mental nerve, a branch of the trigeminal nerve, 

has been shown to result in sympathetic fiber sprouting 

in the upper dermis of lower lip skin, an area from which 

they normally are absent, and form close associations with 

sensory fibers.11,13–15 It suggests that some active molecules 

released by these ectopic sympathetic fibers may sensitize 

nociceptive nerve endings, contributing to orofacial pain. 

Clinically, pain dependent on activity in the SNS is known as 

sympathetically maintained pain (SMP), which in particular 

is noted in many cases of complex regional pain syndrome 

(CRPS, reflex sympathetic dystrophy, causalgia). In SMP, 

procedures that interrupt the function of the SNS can relieve 

the pain and hyperalgesia.8 In studies of traumatic neuralgias 

in the maxillofacial region, microsurgical exploration of 

injured trigeminal nerves in patients with neuralgia reveals 

that a sprouting of nerve collaterals from adjacent uninjured 

nerve could be responsible for SMP.16 In addition, cervical 

sympathetic electrical stimulation causes excitation or sup-

pression of cold-receptive cells in the trigeminal nucleus 

caudalis according to stimulation frequency.17 Similarly, 

sympathetic stimulation affects muscle spindle afferent 

sensitivity to stretch in rabbit jaw closing muscles.18 Clini-

Figure 1 Schematic diagram of the SNS and possible sympathetic mechanisms in orofacial pain.
Abbreviations: CGRP, calcitonin gene-related peptide; NE, norepinephrine; NGF, nerve growth factor; NPY, neuropeptide Y; SCG, superior cervical sympathetic ganglion; 
SNS, sympathetic nervous system; SP, substance P; STN, spinal trigeminal nucleus; TG, trigeminal ganglion.
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cally, cervical sympathetic block reduces some pain in the 

orofacial region.19–23 The data suggest that SNS is involved 

in modulating primary afferent neurons in orofacial region.

Possible sympathetic mechanisms in 
orofacial pain
Under normal conditions, sympathetic activity results in the 

release of NE at the peripheral receptor sites and does not 

affect primary nociceptive neurons. However, if the primary 

neurons have been sensitized by neuroplastic changes, NE 

released by normal activity of the postganglionic sym-

pathetic neurons can excite adrenergic receptors, which 

continue to excite these altered primary afferents and thus 

increase nociceptive input.24 The exact mechanism of this 

peripheral pronociceptive effect is not well known. In TMJ 

inflammatory pain models, local sympathomimetic amines 

contribute to the inflammatory TMJ hyperalgesia by activat-

ing β
2
-adrenoceptors,25–27 since β

2
-adrenoceptor antagonist or 

the depletion of NE in the sympathetic terminals can reverse 

this effect.25,26 These results suggest that inflammation may 

sensitize nociceptors to NE and/or increase the release of the 

sympathetic amines. Furthermore, there is a study showing 

that α
1
-adrenoceptor upregulation in the dorsal root ganglion 

(DRG) after spinal nerve ligation may play an important 

role in the development of adrenergic sensitivity in injured 

sensory neurons.28 Another study shows that after a chronic 

nerve constriction, DRG becomes a source of abnormal 

activity modulated by sympathetically released NE acting 

on α
2
-adrenoceptors in DRG somata. This neuropathic 

activity may contribute to cutaneous pain and hyperalge-

sia.29 In contrast, an in vitro study shows that activation of 

α
2
-adrenoreceptors can hyperpolarize TG neurons. The acti-

vation may have an inhibitory effect on nociceptive transmis-

sion in the trigeminal system.9 There is no information about 

α-adrenoceptor mechanism in orofacial pain models in vivo. 

It is worth to explore that which subtype of adrenoceptor in 

the periphery contributes to antinociception and which one 

to pronociception.

There is considerable evidence showing that the immune 

system plays an important role in pathophysiological pain 

conditions.30 Haug et al’s study shows that unilateral sym-

pathectomy induces a significant increase in immune cell 

density both in the inflamed and in the uninflamed dental pulp 

bilaterally. The change of immune cells may induce inflam-

mation and pain in teeth.31 Furthermore, immune cells express 

several types of adrenoceptors.32 Via these adrenergic recep-

tors, NE is able to regulate the level of immune cell activity, 

which often involves a change in the level of gene expression 

for cytokines and antibodies.33 For example, among the cyto-

kines produced by macrophages, the production and release 

of the inflammatory cytokine tumor necrosis factor-α is the 

primary cytokine that is regulated by the SNS.33 Interestingly, 

TMJ inflammation induced by complete Freund’s adjuvant 

activates resident macrophages in the TG,34 but the authors 

did not detect whether SNS is involved in the mechanical 

allodynia of inflamed TMJ. Cytokines are now recognized as 

important mediators of inflammatory and neuropathic pain 

at the level of both nociceptor and neuronal cell bodies of 

sensory ganglion.35–37 No data are obtained concerning how 

the peripheral NE acts on immune cells and then involves in 

orofacial pain, which needs to be investigated further.

Most nociceptive primary afferents are unmyelinated 

(C fibers) and subdivided into peptidergic and nonpepti-

dergic fibers. There is some evidence that neuropeptides 

have been implicated in the modulation and transmission 

of nociceptive input. Substance P (SP), CGRP, and NPY 

are thought to be important in nociceptive transmission.38–40 

The ectopic innervation of the upper dermis by sympathetic 

fibers occurs with SP fiber reinnervation following mental 

nerve injury.13 It suggests that sympathetic–sensory interac-

tions may be involved in the genesis of neuropathic pain. 

Under normal conditions, NPY resides in sympathetic 

postganglionic neurons but is absent from the cell bodies 

of sensory neurons. There are studies showing that NPY 

is upregulated in the TG neurons after chronic constric-

tion injury of the mental nerve11 or inferior alveolar nerve 

injury.41 The upregulation in the neurons may come from 

sprouted sympathetic fibers or production of TG neurons, 

which might alter nociceptive transmission of primary 

afferent fibers. Capsaicin can activate transient receptor 

potential vanilloid type 1 (TRPV1, a ligand-gated ion 

channel) that mediates activation of the sensory neurons. 

Capsaicin increases the release of CGRP from dental pulp 

biopsies in a concentration-dependent manner, which 

provides a novel tool to determine the effects of pharma-

cological compounds on human nociceptor sensitivity.42 

Hargreaves et al’s study demonstrates that NE inhibits 

capsaicin-evoked CGRP release in dental pulp, and the 

application of ɑ-adrenergic antagonist increases spontane-

ous release of CGRP. Since capsaicin-sensitive neurons are 

nociceptors, the result suggests that certain sympathetic 

neurotransmission may modulate pain.43 In addition, CGRP 

and SP increase significantly in the rat primary trigeminal 

sensory neurons after sympathectomy.31,44,45 The rise of 

CGRP and SP closely matches the process of the postsym-

pathectomy pain observed clinically.46 These findings lead 
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to the possibility that sympathetic terminals may modulate 

sensory peptidergic innervations and activity and then 

influence nociceptive processing, although in an in vitro 

study, NE influenced neither the basal release of CGRP 

nor the stimulated release of CGRP from the dura mater.47 

In the CNS, CGRP stimulates selectively noradrenergic 

sympathetic outflow.48 In the periphery, whether CGRP 

increases the release of NE and plays a role in orofacial 

pain remain to be determined.

Neurotrophins (NTs) such as nerve growth factor (NGF), 

NT-3, and brain-derived neurotrophic factor are required for 

the growth and survival of specific populations of sensory 

and sympathetic neurons.49 There is increasing evidence that 

NTs are peripheral pain mediators and involved in different 

pain states.50 In the periphery, NGF and NT-3 are produced 

by target tissues, internalized by the innervating sympathetic 

and/or sensory neuron and retrogradely transported to the 

cell body.51 At the same time, sympathetic input regulates 

NGF and NT-3 protein expression in peripheral targets.52 

Following nerve injury, satellite glial cells (glial cells 

surrounding each sensory neuron in the sensory ganglia) 

upregulate the synthesis of NTs acting both as promoters 

of sympathetic sprouting within the ganglion53 and as direct 

sensitizers of nociceptive neurons.54 Spinal nerve injury in 

rat induces a widespread sympathetic nerve outgrowth in 

affected DRGs.55,56 However, several studies have shown that 

there is no sympathetic sprouting in the rat TG following 

trigeminal nerve injury.57,58 Overexpressing NGF in TG, 

new sympathetic axons extend into the TG of transgenic 

mice and form perineuronal plexuses surrounding only 

those neurons immunostained for NGF.59 Intracerebroven-

tricular infusion of NGF increases sympathetic ingrowth 

to the TG.60,61 The data indicate that it is possible that there 

is no enough NGF in TG to induce sympathetic sprouting 

following trigeminal nerve injury. Overexpression of NGF 

and NT-3 in the skin induces novel sympathetic projections 

to primary sensory endings.62,63 The enhancement of inner-

vation may be regulated by both the low affinity (p75) and/

or high affinity (trkA) NGF receptors in sympathetic and 

sensory neurons.62–67 The increased NGF expression plays a 

Figure 2 The peripheral molecular mechanisms of SNS in orofacial pain.
Notes: After inflammation and/or nerve injury, adrenoceptors are sensitized. NE released by the normal activity of the sympathetic neurons can excite adrenergic receptors 
of afferent neurons and immune cell, which can alter some neuroactive molecule expression in neurons and peripheral tissues, and subsequently activates and sensitizes 
peripheral nociceptors further.
Abbreviations: CGRP, calcitonin gene-related peptide; NE, norepinephrine; NGF, nerve growth factor; NPY, neuropeptide Y; SCG, superior cervical sympathetic ganglion; 
SNS, sympathetic nervous system; SP, substance P; STN, spinal trigeminal nucleus; TG, trigeminal ganglion.
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role in the development of sympathetic hyperalgesia,63,68,69 

although sympathectomy does not affect the early ectopic 

discharge from myelinated fibers in inferior alveolar nerve 

neuromas.70 These results indicate that NGF may play a 

role in mediating the interactions between sympathetic 

nerve fiber and nociceptive fibers in orofacial pain. The role 

might be at the nociceptor level not neuronal soma, but the 

detailed mechanisms remain to be explored.

Conclusion
Although the sensory nerves and SNS are generally 

regarded as discrete structures, the interaction between the 

SNS and sensory nerves has been associated with orofacial 

pain (Figures 1 and 2). SNS is involved in many but not all 

cases of CRPS in orofacial region. The precise mechanisms 

of SNS in orofacial nociception so far have not been clear, 

especially in atypical facial pain, stomatodynia, atypical 

odontalgia, and some forms of masticatory muscle and 

TMJ disorders. Most investigators focus on the pain mecha-

nisms of SNS in spinal nerve system. However, much less 

is known about the sympathetic mechanisms in orofacial 

pain (trigeminal nervous system). The findings about the 

role of SNS obtained in the DRG could also be operative in 

the TG, which would be worthy to be confirmed, although 

the pathophysiology of the trigeminal nerve is in many 

ways different to that found in spinal nerves.71,72 A better 

understanding of SNS and the mechanisms of sympathetic–

sensory interactions could help us to treat orofacial pain 

more successfully in the future.
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