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Abstract: There are several types of mitochondrial cytopathies, which cause a set of disorders, 

arise as a result of mitochondria’s failure. Mitochondria’s functional disruption leads to develop-

ment of physical, growing and cognitive disabilities and includes multiple organ pathologies, 

essentially disturbing the nervous and muscular systems. The origins of mitochondrial cytopathies 

are mutations in genes of nuclear DNA encoding mitochondrial proteins or in mitochondrial 

DNA. Nowadays, numerous mtDNA mutations significant to the appearance and progress 

of pathologies in humans are detected. In this mini-review, we accent on the mitochondrial 

cytopathies related to mutations of mtDNA. As well known, there are definite set of symptoms 

of mitochondrial cytopathies distinguishing or similar for different syndromes. The present 

article contains data about mutations linked with cytopathies that facilitate diagnosis of dif-

ferent syndromes by using genetic analysis methods. In addition, for every individual, more 

effective therapeutic approach could be developed after wide-range mutant background analysis 

of mitochondrial genome.

Keywords: mitochondrial cytopathy, mitochondrial dysfunction, mtDNA mutation, mitochon-

drial gene mutation

Introduction
Mitochondria are organelles, descended from ancient Alphaproteobacteria around 

1.5–2 billion years ago.1,2 The presence of two membranes (the outer high-permeable 

membrane and the internal membrane, separating the matrix from the environment), its 

own ribosomes (with a smaller sedimentation coefficient than the cytoplasmic ones and 

divergent of its both composition and structure) and the circular double-stranded DNA 

in mitochondria is explained by their origin.3–7 One of the main mitochondrial functions 

is energy production, oxidative phosphorylation (OXPHOS) system generating ~90% 

of cellular energy.8 In addition, these organelles are involved in the maintaining of 

essential cellular processes: regulation of intracellular energy metabolism, play an 

important role in intracellular signaling, apoptosis, centrosome homeostasis and mitotic 

fidelity and chromosomal gene expression.8–11 In addition, they have a great importance 

in the process of development, differentiation and proliferation of cells and tissues 

both in normal and abnormal ways (for instance, tumorigenesis).8,10

Mitochondrial DNA is a double-stranded supercoiled ring molecule, which does 

not contain histones. It means that mtDNA is not packaged in the form of nucleosomes 

such as nuclear chromatin. However, this molecule forms a complex with .20 different 

proteins.12,13 Such a spherical nucleoprotein complex 100 nm in diameter is called a 

nucleoid and can contain one or more copy of mtDNA.13–15 MtDNA nucleoid contains 

two areas: core and peripheral regions that are formed by proteins such as TFAM, 
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mtSSB, POLRMT, POLG, Twinkle helicase, TFB1M/

TFB2M, TOP1M, mTERF, ATAD3, LONP1, ANT, PHB, 

Hsp60, M19 (MNF1) and others.12,13 Therefore, mtDNA 

nucleoid is anchored in the inner mitochondrial membrane 

by D-loop region of mtDNA, which constitutes a regulatory 

site for mtDNA replication and transcription.13

mtDNA is a polyploidy molecule, and each cell contains 

hundreds or thousands of nucleoids.16 Mammalian mitochon-

drial genome contains 16.5 thousand base pairs (it differs in 

various species), coding 37 genes, such as genes of subunits 

12S and 16S of ribosomal RNA, 22 transfer RNA genes 

and 13 genes of protein subunits, included in the enzyme 

complex OXPHOS.10,17 Among 13 genes of respiratory chain 

proteins, seven genes encode subunits of I complex, three 

genes encode subunits of IV complex, two genes encode 

subunits of V complex and one gene encodes subunit of III 

complex.10 It should be emphasized that the coding region 

of mitochondrial genome does not contain introns. However, 

there is an ~1 kb noncoding region (D-loop) in this genome, 

which consists of the control and two hypervariable parts.10,18 

Control parts of D-loop contain light strand promoter (LSP) 

and heavy strand promoter (HSP).13 The double strand of 

mitochondrial DNA subdivides to heavy and light strands 

(guanine and cytosine enriched, respectively).

In contrast to nuclear DNA, mitochondrial DNA is more 

susceptible to damages; although it has a mechanism of 

repair, the capacity of repair is limited.14,19 In the processes 

of mitogenesis, mitophagy, fusion and fission of mito-

chondria, the heteroplasmy level of mitochondrial genome 

mutations can decrease. For example, the combination 

of the mitochondrial genome mutation m.1494C.T with 

aminoglycoside stress led to mitophagy and the occurrence 

of oxidative stress in a cell.20 The association of mtDNA 

mutations with mitochondrial biogenesis was studied by 

Liu et al21 This research team analyzed lymphocyte cell 

lines obtained from patients with maternally inherited 

hypertension. These cells contained mitochondrial genome 

mutation m.4467C.A (MT-TM gene). It was found that in 

this cell line, containing mitochondrial genome mutation 

m.4467C.A (MT-TM gene), reactive oxygen species pro-

duction was 114.5% higher compared with that in control 

cell line, not containing this mutation. However, the level 

of ATP in this mutant cell line was 26.4% lower compared 

to that in the control cell line.

However, with age, mitochondria can accumulate muta-

tions that accelerate the aging process and degeneration.22 

According to the fact that mitochondrial genome is mater-

nally inherited, some mutations emerging in gametes can 

become hereditary.16,23 As noted earlier, mtDNA is a poly-

ploid that could lead to the arising of heteroplasmy. The 

coexistence of more than one mtDNA variants in the same 

cell is a heteroplasmy. Otherwise, cell mitochondrial genome 

is a homoplasmic.18,24 The penetrance of mtDNA mutations 

in each individual is determined by many factors, including 

the localization of the mutation, its type and size (number of 

affected nucleotides) and the level of heteroplasmy.18,25–27

It is well known that a large group of human diseases is 

characterized by the presence of defects in the mitochondrial 

activity. Such diseases can be both inherited and somatic. 

Mitochondrial diseases may be classified into two groups:

1. caused by mtDNA mutations and

2. occurring because of nuclear DNA mutations.28

Cytopathies associated with 
mitochondrial genome mutations
The present article focuses on mitochondrial cytopathies asso-

ciated with mtDNA mutations. According to the literature, 

mitochondrial genome mutations are associated with different 

mitochondrial disorders (mitochondrial cytopathies), which 

mainly affect nervous and muscular tissues.11 Molecular–

cellular and biochemical manifestations of mitochondrial 

cytopathies are associated with defects of polypeptide chains 

belonging to the enzyme complex OXPHOS, errors in the 

transcription process, caused by mutations in transfer and 

ribosomal RNAs of mitochondrial genome.27,29 Mitochon-

drial dysfunction can encourage leakage of electrons from 

the electron transport chain (ETC), and this subsequently 

leads to elevation of oxidative stress in mitochondria so as 

in other intracellular compartment.12,13 Decrease in ATP pro-

duction by OXPHOS could lead to increase in mitochondrial 

biogenesis (mitogenesis) or mitophagy if the mitochondrial 

quality control is not interrupted. Clinical manifestations of 

mutations in mitochondrial genome may be absent because 

of heteroplasmy. However, due to elevated mitogenesis 

for energy production or level of hypoxia reduction, the 

count of mutated mtDNA could be rised.30 The detection of 

mitochondrial genome pathologies happens at the moment 

when the number of copies of mutated mtDNA reaches a 

certain threshold at which the manifestation of the disease 

takes place.26,27

Symptoms associated with 
mitochondrial cytopathies
There is a certain range of character and symptoms, which 

can be used for the detection and diagnosis of mitochondrial 

cytopathies. It should be noted that such symptoms may be 
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absent in healthy patients or in carriers of mtDNA mutations 

in the asymptomatic period of the disease.11,16

The manifestation of the character and symptoms of 

mitochondrial cytopathies is associated with various organs 

and organ systems, such as11,31

•	 brain and nervous system (developmental disorders 

and mental disorders, dementia, cramps, migraines, 

stroke-like episodes, atypical cerebral palsy, weakness, 

areflexia, gastrointestinal disorders, fainting, disturbance 

of thermoregulation, vision loss and blindness, hearing 

disorders and deafness);

•	 muscles (weakness, hypotonia, seizures and muscle 

aches);

•	 heart problems (cardiomyopathy, cardiac arrhythmia), 

hepatic problems (hypoglycemia, liver failure) and kidney 

problems (atrophy of proximal tubule);

•	 endocrine (diabetes) and exocrine (pancreatic insuffi-

ciency) disorders and

•	 systemic problems (weight loss, stunting, fatigue, trouble 

breathing).

Various symptom combinations of disease onset are 

possible.11,16

Syndromes of mitochondrial 
cytopathies
Some groups of the most frequently occurring symptom 

combinations of mitochondrial cytopathies are combined 

into syndromes. Information on mtDNA mutations associated 

with mitochondrial cytopathies, a review of which is given 

below, is presented in Table 1.

Cardiomyopathy and encephalomyopathy
Mitochondrial cardiomyopathy is described as a state of the 

myocardium, characterized by abnormal structure of the heart 

muscle and its functions or both of these parameters. Typical 

manifestations of mitochondrial disease are hypertrophic and 

Table 1 mtDNA mutations associated with mitochondrial cytopathies

Syndrome/disease Gene/complex Mutation Position of mutant nucleotide/amino acid Cited article

MeLAS MT-TL1 m.3243A.G DHU Nucleotide 14, localized in the mTeRF binding site 3, 16, 18, 37–44

m.3256C.T Nucleotide 25, localized in the region of transcription 
termination of the stem of DHU loop

43, 44

m.3271T.C Nucleotide 40, localized in the stem of anticodon loop 18, 29, 41–44

MT-ND3, complex 1 m.10197G.A Amino acid 47: a substitution of A.T* 45

MT-ND5, complex 1 m.13042A.T Amino acid 236: a substitution of A.T* 43, 46, 47

MT-CYTB, complex 3 m.15533A.G Amino acid 263: a substitution of N.D* 48

CPeO/PeO MT-TV m.1658T.C Nucleotide 61, localized in the stem of T-loop 49, 50

MT-TL2 m.12315G.A Nucleotide 52, localized in the stem of T-loop 51–53

KSS Duplication of nucleotides (CCCCCTCCCC-tandem repeats at positions 305–314 and 956–965,  
which allows doubling a region in 652 bp)

54

A large deletion of mitochondrial genome at positions from 8,469 to 13,447 3, 29, 38

MiDD A large deletion of mitochondrial genome at positions from 4,308 to 14,874 55

A large deletion of mitochondrial genome at positions from 4,398 to 14,822 56

MT-TL1 m.3243A.G Nucleotide 14, localized in the mTeRF binding site 18, 40, 57, 58

MT-ND1, complex 1 m.3421A.G Amino acid 39: a substitution of v.i* 59

MeRRF MT-TK m.8344A.G Nucleotide 55, localized in the T-loop 3, 16, 18, 27, 29,  
37, 42, 45, 54

m.8356T.C Nucleotide 65, localized in the stem of T-loop 16, 18, 27, 38, 46

m.8363G.A Nucleotide 72, localized in the stem of acceptor 16, 27, 38, 46

MT-ND5, complex 1 m.13042A.T Amino acid 236: a substitution of A.T* 46, 47

NiDDM MT-RNR2 m.3200T.C Nucleotide 1529 57

MT-TL1 m.3242G.A Nucleotide 13, localized in the region of transcription  
termination of DHU loop

60

m.3252A.G Nucleotide 23, localized in the region of transcription  
termination of DHU loop

61, 62

m.3264T.C Nucleotide 33, localized in the anticodon loop 57, 63

(Continued)

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Therapeutics and Clinical Risk Management 2018:14submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1936

Ryzhkova et al

Table 1 (Continued)

Syndrome/disease Gene/complex Mutation Position of mutant nucleotide/amino acid Cited article

MT-ND1, complex 1 m.3316G.A Amino acid 4: a substitution of A.T* 57, 64

m.3394T.C Amino acid 30: a substitution of Y.H* 57, 65

MT-ND6, complex 1 m.14577T.C Reverse direction of synthesis: a substitution of i.v* 57, 66

MT-ND2, complex 1 m.4833A.G Amino acid 122: a substitution of A.T* 67

LHON MT-ND1, complex 1 m.3460G.A Amino acid 52: a substitution of A.T* 3, 16, 18, 27, 42, 68

MT-CO3, complex 4 m.9804G.A Amino acid 200: a substitution of A.T* 69

MT-ND4, complex 1 m.11778G.A Amino acid 340: a substitution of R.H* 3, 16, 27, 37, 42,  
68, 70

MT-ND6, complex 1 m.14459G.A Reverse direction of synthesis. Amino acid 72:  
a substitution of A.v*

42

m.14484A.G Reverse direction of synthesis. Amino acid 64:  
a substitution of M.v*

3, 16, 27, 42, 68

MT-CYTB, complex 3 m.15257G.A Amino acid 171: a substitution of D.N* 71

LS MT-ATP6, complex 5 m.8993T.C Amino acid 156: a substitution of L.P* 16, 23, 27, 29, 42,  
70, 72

MT-ATP6, complex 5 m.8993T.G Amino acid 156: a substitution of L.R* 3, 16, 25, 27, 42,  
70, 72–74

MT-ND3, complex 1 m.10197G.A Amino acid 47: a substitution of A.T* 45, 75

MT-ND5, complex 1 m.13513G.A Amino acid 393: a substitution of D.N* 76, 77

Aminoglycoside 
induced hearing 
disorders

MT-RNR1 m.1095T.C Nucleotide 448 78

m.1494C.T Nucleotide 847 78, 79

m.1555A.G Nucleotide 908 16, 79

m.961ins/delC Nucleotide 314, duplication/deletion C 78

NARP MT-ATP6, complex 5 m.8993T.G Amino acid 156: a substitution of L.R* 16, 18, 23, 27,  
29, 42

MT-ATP6, complex 5 m.8993T.C Amino acid 156: a substitution of L.P* 16, 23, 29, 42

Cardiomyopathy and 
encephalomyopathy

MT-RNR1 m.1541G.A Nucleotide 894 80, 81

MT-TV m.1634C.T Nucleotide 35, localized in anticodon 80

MT-TL1 m.3243A.G DHU nucleotide 14, localized in the mTeRF  
binding site

16, 40, 71

m.3260A.G Nucleotide 29, localized in the stem of anticodon loop 40, 71, 82

MT-TI m.4269A.G Nucleotide 7, localized in the stem of acceptor 40, 71

MT-CO2, complex 4 m.7587T.C Amino acid 1: a substitution of M.T* 83

MT-TK m.8296A.G Nucleotide 2, localized in the stem of acceptor 71, 82

m.8348A.G Nucleotide 59, localized in the stem of T-loop 84

m.8363G.A Nucleotide 72, localized in the stem of acceptor 40, 71

MT-CO3, complex 4 m.9957T.C Amino acid 1: a substitution of F.L* 26

MT-TG m.9997T.C Nucleotide 7, localized in the stem of acceptor 71

MT-TH m.12192G.A Nucleotide 59, localized in the stem of T-loop 85

MT-TL2 m.12297C.T Nucleotide 33, localized in the anticodon loop 40

MT-ND6, complex 1 m.14484A.G Reverse direction of synthesis. Amino acid 64:  
a substitution of M.v*

86

MT-CYTB, complex 3 m.15059G.A Amino acid 105: a substitution of G.R* 87, 88

Notes: *One letter amino acids designation: A, alanine; D, aspartic acid; F, phenylalanine; G, glycine; H, histidine; i, isoleucine; L, leucine; M, methionine; N, asparagine; 
P, proline; R, arginine; T, threonine; v, valine; Y, tyrosine.
Abbreviations: CPeO/PeO, chronic progressive external ophthalmoplegia syndrome/progressive external ophthalmoplegia; KSS, Kearns–Sayre syndrome; LHON, Leber 
hereditary optic neuropathy; LS, Leigh syndrome; MeLAS, mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes; MeRRF, myoclonic epilepsy 
associated with ragged red fibers; MIDD, maternally inherited diabetes and deafness; NARP, neuropathy, ataxia and pigmentary retinopathy; NIDDM, noninsulin-dependent 
diabetes mellitus.
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dilated cardiomyopathy, arrhythmia and extensive myocar-

dial infarction of left ventricle. Severe manifestations include 

cardiomyopathies, ventricular tachycardia and cardiac 

failure. The condition of patients with mitochondrial car-

diomyopathy could acutely deteriorate in metabolic crisis 

caused by physical factors such as febrile states.32,33

Encephalomyopathies, associated with mitochondrial 

mutations, are characterized by lesions of gray matter of the 

brain and spinal cord. This pathology is caused by disturbance 

of the energy supply of the nervous system cells, leading to 

a change in membrane polarization and, as a consequence, 

myoclonic seizures and epilepsy. Encephalopathy is char-

acterized by dementia, migraine-like pain, stroke episodes, 

sensorineural hearing loss, nerve atrophy, etc.34–36

Mitochondrial mutations, associated with cardio-

myopathy and encephalopathy, can be in both the protein-

coding sites and the RNA-coding portions of mtDNA. 

Encephalomyopathy and cardiomyopathy are some of the 

characteristics of certain symptom combinations of mito-

chondrial cytopathies, including mitochondrial myopathy, 

encephalopathy, lactic acidosis and stroke-like episodes 

(MELAS), myoclonic epilepsy associated with ragged red 

fibers (MERRF), chronic progressive external ophthal-

moplegia syndrome/progressive external ophthalmoplegia 

(CPEO/PEO) and Kearns–Sayre syndrome (KSS), as well 

as Alpers–Huttenlocher disease, childhood onset epilepsia 

partialis continua (EPC) and myoclonic epilepsy myopathy 

sensory ataxia (MEMSA).89,90

Aminoglycoside-induced hearing 
disorders
Hereditary disorders of hearing and deafness can be triggered 

by a conductive or sensorineural cause and also by their 

combination. As a rule, the prevalence of hearing disorders 

increases with age. However, if there is a genetic predisposi-

tion, deafness/hearing disorder can occur under the influence 

of a trigger factor. Such triggers can be antibiotics of amino-

glycoside group, inducing ototoxicity. The use of gentamicin, 

tobramycin, amikacin, kanamycin, or streptomycin, even 

once, can lead to a bilateral hearing loss of varying severity. 

Aminoglycoside-induced hearing disorder is caused by dam-

age to the auditory system, vestibular apparatus or by both 

of the reasons. These damages are the consequence of the 

cochlear hair cells’ death and the vestibular apparatus. It is 

well known that in individuals with aminoglycoside-induced 

ototoxicity, mitochondrial genome mutations, for example, 

m.1555A.G and m.1494C.T, are often detected.78,79,91

KSS
KSS is a special type of mitochondrial myopathy, occurring 

because of the large heteroplasmic deletion of mtDNA, size 

1.3–10 kb. The syndrome can be both maternally inherited 

and somatic. It occurs in the embryonic cells at the early 

stages of development.38 The disease is characterized by prox-

imal muscle weakness, retinopathy, cardiac arrhythmia and 

ataxia.92 The diagnostics of this disease syndrome is compli-

cated by the similarity of several syndromes of mitochondrial 

cytopathies: KSS, CPEO/PEO and ophthalmoplegia-plus 

syndrome. If the symptoms mentioned earlier appear in an 

individual prior to the age of 20 years, it may be affirmed 

that the patient has KSS. Diagnosis of these symptoms in an 

individual after 20 years or the diagnosis of three and less 

symptoms suggests that a patient has ophthalmoplegia-plus 

syndrome.16,93

CPeO/PeO
CPEO/PEO is symptomatically similar to KSS. It is 

distinguished by the presence of visual muscles’ myopathy 

and ptosis, pigmentary degeneration of retina (retinitis 

pigmentosa) and dysfunction of central nervous system 

(dementia, cerebral ataxia). The manifestation of the dis-

ease occurs in childhood. In addition, this syndrome is 

characterized by the development of endocrine symptoms 

(diabetes, growth disturbance because of the growth hormone 

deficiency, hypoparathyroidism), dysphagia, changes in bio-

chemical parameters and an increase in the level of lactate 

and protein of cerebrospinal fluid such as KSS.38,93

Leber hereditary optic neuropathy 
(LHON)
LHON is characterized by a sudden, complete, painless 

loss of central vision caused by optic nerve atrophy. Optic 

nerves changes in LHON develop sequentially; first, there is 

a loss of sight in one eye and then in the second eye. LHON 

symptoms may occur at any age; the average age of LHON 

manifestation varies from 15 to 35 years, while the propor-

tion of men and women for this pathology is 4:1.37 Some 

individuals, except the core symptoms, associated with the 

loss of central sight, were also diagnosed with cardiac con-

duction disorders, sensory and motor neuropathy, tremor, 

ataxia and damage of basal ganglia (LHON plus).94 It is 

supposed that the atrophy of nerves in LHON is associated 

with point mtDNA mutations in genes of polypeptide chains 

of the first complex of OXPHOS, leading to disruption of 

the complex and an increased oxidative stress in the nerve 

endings of cells.42
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MeLAS
MELAS is diagnosed in early childhood or in the juvenile 

period. The syndrome is characterized by dilated or hypertro-

phic cardiomyopathy, excitation of Hiss bundles of nervous 

fibers (preexcitation, bundle branch block), stroke-like epi-

sodes, seizures and diabetes. It is a neurodegenerative disease. 

In its course, the demyelination of the nerve fibers and the 

gradual death of neurons happen. In addition, the symptoms of 

MELAS are sensorineural hearing loss, ptosis, epilepsy, muscle 

fatigue and pain, generalized myopathy, myalgia and severe 

headache.41,95,96 MELAS is diagnosed if 1–30 casual point mito-

chondrial genome mutations are present, meanwhile in 80% of 

cases, mutation m.3243A.G of gene MT-TL1 is detected.43,44 

The above-noted mutation leads to destabilization of tRNA 

and, accordingly, to a reduction in synthesis of OXPHOS 

proteins and insufficiency of complexes I, III and IV.42,43

MeRRF
MERRF is a chronic neurodegenerative disease that manifests 

in both children and adults. This syndrome is accompanied 

by myoclonus, seizures and cerebellar ataxia. MERRF 

symptoms also consist of dementia, cardiomyopathy, cardiac 

arrhythmia, neuropathies, pyramidal insufficiency, optic 

atrophy and sensorineural hearing loss.55,96 The symptoms of 

this cytopathy are associated with mutations in complexes of 

NADH-CoQ reductase and cytochrome C-oxidase (COX), 

some polypeptide chains of which are encoded by mitochon-

drial genome. It was found that MT-TK gene mutations are 

the cause of MERRF; in 80% of cases, mutation m.8344A.G 

occurs; mutations m.8356T.C and m.8363G.A are detected 

less frequently.27,54

Maternally inherited diabetes and 
deafness (MiDD)
MIDD is characterized by sensorineural hearing loss and the 

development of diabetes in individuals in adulthood. MIDD 

includes insulin-dependent diabetes mellitus (IDDM) and 

noninsulin-dependent diabetes mellitus (NIDDM), which 

are associated with diabetes mellitus type 1 and type 2, 

respectively.7,58 Sometimes MIDD is accompanied by other 

symptoms of mitochondrial cytopathies: cardiomyopathy, 

myopathy, retinitis pigmentosa, ptosis, disorders of the renal 

tubules, and psychoneurological symptoms.97 Mitochon-

drial cytopathy MIDD can be caused by point mutations in 

mtDNA or large deletions, for example, nucleotide deletion 

at positions 4,308–14,874 or 4,398–14,822.55,56

Leigh syndrome (LS)
LS is an infantile subacute necrotizing encephalopathy. It is 

a progressive neurodegenerative disease affecting children. 

The first signs of this cytopathy are physical and mental 

developmental disorders and disruption of previously 

acquired skills. The clinical symptoms of LS include perinatal 

asphyxia, respiratory dysfunction, neuropathies of cranial 

nerves, ataxia, dystonia and hypotension, seizures and also 

disturbance of the reflex activity, in particular, sucking and 

swallowing reflexes. The course of the disease is progressing; 

it is rarely undulating.98 The causes of such symptoms are 

mutations and functional insufficiency of NADH-CoQ 

reductase and cytochrome COX and also other enzymes of 

energy metabolism, including the ATPase, pyruvate decar-

boxylase and pyruvate dehydrogenase. Inheritance of LS may 

be recessive, linked to the X-chromosome or an autosome, 

and mitochondrial.70 The point nucleotide substitution of 

mtDNA at position 8,993 of gene of the sixth protein subunit 

of ATPase is linked with the development of LS. Moreover, 

if the level of heteroplasmy for this mutation is .90%, LS 

develops in the individual, and if heteroplasmy for this muta-

tion is detected within 70%–90%, neuropathy, ataxia and pig-

mentary retinopathy (NARP) syndrome develops. Symptoms 

may not manifest in patients with the heteroplasmy level of 

this single nucleotide substitution ,70%.16,27,42

NARP syndrome
NARP as a rule manifests in the second decade of life. In con-

trast to LS, the disease progresses much slower. The charac-

teristic symptoms of NAPR are proximal neurogenic muscle 

weakness, sensory neuropathy, ataxia, cardiomyopathy, 

developmental delay and learning problems and degen-

eration of the retina. In addition, dementia and seizures are 

diagnosed.99,100

Pathogenetic mechanism of 
mitochondrial genome mutations
According to the literature cited in this article, the mtDNA 

mutations associated with mitochondrial cytopathies lead to 

damage in the protein subunits of mitochondrial respiratory 

chain enzymes or transport RNA defects (Table 1). In the 

first case, the synthesis of ATP decreases as a result of the 

dysfunction of respiratory chain complexes. This leads to 

an energy deficit in the mitochondria and cells of the body. 

In particular, the pathogenic mechanism of mitochondrial 

genome mutation m.8249G.A (MT-CO2 gene complex 4), 

leading to mitochondrial myopathy, was described in an 

article by Mkaouar-Rebai et al101 In the second case, tRNA 

dysfunction occurs, leading to reduction in the amount of 

protein subunits of mitochondrial respiratory chain enzymes. 

This also leads to a decrease of the energy level in human 

cells and tissues. For example, the molecular mechanism of 
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mutation m.3243A.G (MT-TL1 gene) pathogenesis, leading 

to renal disease and acute kidney injury, was described in 

the article by Emma et al.102 Pathogenesis of m.5521G.A 

(MT-TW gene) associated with mitochondrial myopathy was 

described in the article by Mkaouar-Rebai et al.101 Unfortu-

nately, the molecular mechanisms of mitochondrial genome 

mutations that lead to the occurrence and development of 

mitochondrial cytopathies by the world’s scientists have 

not been sufficiently studied. Therefore, they require further 

research and specification.

Relationship between nuclear DNA 
and mtDNA in mitochondrial 
disease
Mitochondrial diseases can be caused by mutations and 

polymorphisms in both the mitochondrial and nuclear 

genomes. Most of mitochondria proteins are coded by nDNA 

(~1,500 proteins: OXPHOS, TIM/TOM complexes, nucleoid 

proteins, matrix proteins, channels proteins etc.) including 

proteins regulated mitophagy, mitogenesis, fusion, fission, 

signaling proteins. Such nuclear genome mutations can 

cause instability in the mitochondrial genome, including 

the occurrence of large deletions and point mutations of 

mtDNA.103 For example, the combination of polymorphisms 

of the nuclear genomes rs6493454 and rs7182946 (locus 

TRPM1, chromosome 15) with mitochondrial genome 

mutation m.4917A.G (MT-ND2 gene) increased the risk 

of age-related macular degeneration (AMD). A similar 

effect was observed when mtDNA mutation m.12771G.A 

(gene MT-ND5) was combined with polymorphisms of 

nuclear DNA rs4932478, rs4932480, rs11459118, rs875390, 

rs875391, rs2351006, rs144871045 and rs2070780 (loci 

ABHD2/RLBP1, chromosome 15).104 In the research work 

by Meng et al,105 it was shown that the combination of the 

nuclear modifier allele A10S in the TRMU gene with mito-

chondrial genome mutation m.1555A.G (MT-RNR1 gene) 

increased the risk of deafness.

It should be noted that the number of studies investigating 

how a combination of mutations of the mitochondrial and 

nuclear genome affects the occurrence and development of 

diseases is now very less.

MtDNA mutations and therapy 
of cytopathies
Molecular–cellular mechanisms of genesis and develop-

ment of mitochondrial cytopathies are still not sufficiently 

understood and require further investigation. Therefore, 

treatment of mitochondrial disorders consists of symptomatic 

treatment, cofactor supplementations, NO precursors and 

exercise.11,106

Mitochondrial genome mutations can be used for creat-

ing models to investigate the molecular–cellular mecha-

nisms of cytopathies. Such models are already created for 

the study of pathologies such as MELAS, LHON, LS and 

MERRF.42,73,107–109

In addition, the analysis of the manifestations of 

mitochondrial genome mutations associated with cytopathies 

will allow carrying out a differentiated medical therapy for 

patients, choosing the very medication that would affect 

individuals carrying a particular mtDNA mutation.96 For 

example, an approach to the treatment of patients with 

MELAS, having mutation m.3260A.G in gene MT-TL1, is 

developing. Researchers believe that this mutation leads to 

mitochondrial dysfunction and energy deficiency in cells. For 

MELAS therapy, ketogenic diet and magnesium were used. It 

has been discovered that such treatment may lead to improve-

ment of the function of respiratory chain complexes.110 A 

group of scientists from Germany made an attempt to treat 

a patient with mutation m.11778G.A, which was diagnosed 

with LHON and multiple sclerosis. The man was assigned 

an immunosuppressive therapy with mitoxantrone. In 

12 months, the patient’s condition improved.111

Modern way for mitochondrial cytopathy therapy is 

gene therapy development. Several different approaches are 

possible in gene therapy. The first method is a heteroplasmy 

shifting or reduction of mutant mtDNA, the second is a 

transfer of normal mtDNA polypeptides into the mitochon-

drion and the third is direct medication of the mtDNA.106 

In addition, there aroused interest in the technology of 

using donor mitochondria in the process of fertilization for 

prevention of maternally inherited mitochondrial disorders. 

The recent research had shown that the interaction between 

donor mitochondria and host cell nucleus is normal in tran-

scriptomic and energetic profiles. Moreover, targeted treat-

ment of mitochondrial diseases can be achieved via nanotube 

transmission of mtDNA from one cell to another.112,113

Conclusion
The manifestation of most mitochondrial syndromes of 

cytopathies has similar parameters.11,16 The use of only the 

biochemical and clinical research methods may not be suf-

ficient for the appropriate diagnosis. In this case, a necessary 

step is the application of genetic analysis methods. If there 

is clear evidence of hereditary cytopathies, it is necessary to 

analyze mitochondrial genome mutations, for which, accord-

ing to the literature, an association with the studied disease 

was found. It is important to note that in the development of 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Therapeutics and Clinical Risk Management 2018:14submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1940

Ryzhkova et al

the disease, not only a specific mutation and its heteroplasmy 

level are important but also a general mutant background 

formed by all mutant alleles of mitochondrial genome. At the 

same time, the symptoms of mitochondrial cytopathies in 

patients can occur only after reaching a certain threshold of 

total mutation burden of the organism.

Mitochondrial genome mutations, detected during the 

analysis of the literature, can be used for creating models to 

investigate molecular–cellular mechanisms of cytopathies. In 

addition, the analysis of the manifestations of mitochondrial 

genome mutations associated with cytopathies will allow devel-

oping cellular models for choosing drug therapy for individuals 

having these pathologies. These cellular models will contain 

mutations associated with certain types of cytopathies.
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