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Abstract: Evidence-based medicine has become associated with a preference for  random-

ized trials. Randomization is a powerful tool against both known and unknown confounding. 

However, due to cost-induced constraints in size,  randomized trials are seldom able to provide 

the subgroup analyses needed to gain much insight into effect modification. To apply results 

to an individual patient, effect modification needs to be considered. Results from  randomized 

trials are therefore often difficult to apply in daily clinical practice. Confounding by indica-

tion, which randomization aims to prevent, is caused by more severely ill patients being less 

or more likely to be treated. Therefore, the prognostic indicators that physicians use to make 

treatment decisions become confounders. However, these same prognostic indicators are also 

effect modifiers. This is in fact exactly why they are relevant to decision-making. We use simple, 

fictive numerical examples to illustrate these concepts. Then we argue that if we would record 

all relevant variables, it would simultaneously solve the problem of confounding by indication 

and allow quantification of effect modification. It has previously been argued that it is practi-

cally more feasible to “simply”  randomize treatment allocation, than to adequately correct for 

confounding by indication. We will argue that, in the current age of evidence-based medicine 

and highly regulated  randomized trials, this balance has shifted. We therefore call for better 

observational clinical research. However, careless acceptance of results from poorly performed 

observational research can lead clinicians seriously astray. Therefore, a more interactive approach 

toward the medical literature might be needed, where more room is made for scientific discus-

sion and interpretation of results, instead of one-way reporting.

Keywords: treatment, personalized, effectiveness, effect modification, risk factors, confound-

ing by indication

Introduction
Randomized trials are considered the gold standard for establishing effectiveness of 

treatments.1 Therefore it is tempting to consider all other types of clinical research as 

“what you’re stuck with if a randomized trial is impossible.” To determine whether 

this, somewhat derogative, attitude toward observational research is justified, we should 

first consider why a randomized trial provides such highly reliable evidence. Proper 

consideration of the strengths of randomized trials will provide clear guidance on 

when a randomized trial is absolutely indicated. Conversely, it will also hint at when 

a randomized trial could be either unnecessary or even contraindicated.

It has previously been reasoned that confounding by indication, which random-

ized trials aim to prevent, could also be corrected for in data analyses if treatment 
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allocation decisions could be adequately modeled.2,3 This 

was, however, considered very difficult. Therefore it was 

considered more practically feasible to avoid confounding 

by indication all together, by performing a randomized 

trial. Furthermore, it was proposed that allocation of treat-

ment is likely to be subject to some latent processes (ie, 

unrecognized or unmeasurable: “gut-feeling”). It was sug-

gested that confounding by indication, therefore, cannot 

be measured directly and fully but only tangentially, if it is 

recognized at all.4

However, since then, 40 years have passed and four major 

developments have shifted this balance dramatically. First, 

two and a half decades after the introduction of evidence-

based medicine,5,6 physicians find themselves obligated 

to explore the rational arguments that must motivate each 

treatment decision. Therefore, the role of the immeasurable 

“gut-feeling” should be diminished completely. Second, 

increasing diagnostic testing and digitalization of test results 

has made the information physicians use for treatment deci-

sions more readily available to researchers. Third, increas-

ing regulation of randomized trials including monitoring, 

auditing, and traceability demands has greatly increased the 

logistical challenges of randomized trials. With these logis-

tical challenges, the cost also increases and consequently, 

the size of trials must be minimized to maintain economic 

viability. Fourth, it has been increasingly recognized that 

individualization of the evidence base for treatment deci-

sions is needed.7

The difficulties in applying results from randomized trials 

to individual patients have been described in some detail.8–10 

This problem is largely related to the limitations in size of tri-

als, as it could be solved by sufficiently subgrouping patients 

in the analyses. The potential impact of subgroup differences 

has been quantified by comparing the risk difference between 

high- and low-risk patients in 32 large randomized trials.11 

In these analyses, all but one showed a significant difference 

in treatment effectiveness between the highest and lowest 

risk quartiles.11

Here we present fictive numerical examples concerning 

blood transfusion in the ICU to illustrate conceptual consid-

erations instrumental to understanding both the power and the 

limitations of randomized trials. We argue that, in the current 

setting, randomization often comes at the price of a loss of 

personalization of medicine. In other words, randomization 

can be a powerful tool to help prove that a treatment can 

provide benefit to some, but it may also be what’s keeping 

us from proving in whom it will do so.

Why we randomize: confounding by 
indication
Every field of clinical medicine has some well-known 

examples of published observational research showing 

associations between treatment and outcome, which can be 

blamed on baseline incomparability between the treated and 

untreated groups.12 It is the problem of comparing apples 

and oranges. Patients with worse prognosis are either more 

or less likely to be treated and the observed outcome is in 

spite of treatment, rather than due to treatment. This is the 

problem of confounding by indication.12,13 Confounding by 

indication is the reason we randomize.1,14–16

Figure 1 illustrates the assumed true causal relation 

between blood transfusion and mortality in a fictive ICU 

 population. In Figure 1, the entire population is depicted in 

two mutually exclusive situations, both nontransfused (left 

panel) and transfused (right panel). This is called a coun-

terfactual representation of causality, because it is always 

“counter to the facts” (ie, it is impossible to observe in real 

life).17–19 Counterfactual comparisons are considered theoreti-

cally ideal for establishing causality, because they compare 

every individual in the treated situation to himself or herself 

in the untreated situation.17–19 Although even counterfactual 

theory has its limitations,20 it roughly corresponds to our 

intuitive understanding of causality (ie, would the same out-

come have occurred with treatment as without or vice versa).

For the simplified example in Figure 1, the population is 

divided into three different, equal-sized groups. The risk of 

death differs between these groups. If each group contains 

200 patients and the entire population was left nontransfused, 

we assume the following risks of death for the three groups 

considered: 20% for patients with cardiovascular disease, 

40% for patients with active bleeding, and 80% for patients 

with both cardiovascular disease and active bleeding. The true 

causal effect of blood transfusion is set at an absolute risk 

reduction of 10% for all patients for each of the three groups. 

This also corresponds to an average risk reduction of 10% 

for the entire population, in spite of a difference in baseline 

risk of death between the groups. This baseline difference 

in itself is insufficient to cause confounding by indication.

Confounding by indication arises from the combination of 

this difference in prognosis and a different treatment preva-

lence. Figure 2 illustrates both how confounding by indication 

can distort the true causal relation and how a randomized trial 

can estimate this relation correctly.

In panel A of Figure 2, the choice to treat or not to treat is 

left to the physician and the physician is more likely to trans-
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fuse patients with worse prognosis: 50 of 200 patients (25%) 

with cardiovascular disease, 100 of 200 (50%) with active 

bleeding, and 180 of 200 (90%) with both are transfused. 

These groups still also experience the previously assumed 

death risks of 20%, 40%, and 80% in the nontransfused 

patients. Although the absolute risk reduction for mortality 

is still assumed to be 10% for any of the three groups, the 

crude average risk difference for the total population is now 

an increase of 17%. This reversal of the true beneficial effect 

of blood transfusions into an increased risk of death occurs 

because the deaths from the higher risk groups (ie, active 

bleeding or both cardiovascular disease and active bleeding) 

weigh more heavily among the transfused patients, since 

the prevalence of transfusions is higher in these groups. In 

other words, the transfused group contains more seriously ill 

patients and is therefore not exchangeable with the nontrans-

fused group.17–19 The table under the graph also shows how 

the true effect can be correctly estimated through statistical 

correction, which takes a weighted average of the stratum-

specific risk reductions (ie, each stratum-specific absolute 

risk reduction is 10%, making the average also the true causal 

risk reduction of 10%, irrespective of the relative weights 

of the different strata). This approach creates what in coun-

terfactual theory is called conditional exchangeability.17–19 

Conditional on having a certain disease, the transfused and 

nontransfused patients are considered exchangeable, in terms 

of prognosis. Put differently, there is no confounding within 

strata of the three measured confounders.

In this simplified example, correction for the prognosis 

of the patient is straightforward. Conversely, in real life, con-

founding by indication is notoriously difficult to adequately 

correct for.13 Many different factors determine a patient’s 

prognosis and if any of these also influence a physician’s 

decision to prescribe a certain treatment, these will cause 

confounding by indication. If we do not know exactly which 

factors a physician weighted in his or her decision to treat 

a patient, we cannot measure these factors. If we have not 

measured these factors, it will be impossible to apply a sta-

tistical correction.

Panel B of Figure 2 shows how randomization can fix 

the problem of confounding by indication, without the need 

for statistical correction. As mentioned above, confounding 

by indication only occurs if the prevalence of treatment dif-

fers between groups of patients with different prognosis. By 

randomly assigning patients to be either treated or nontreated, 

the probability of being treated is made independent of prog-

nosis. Therefore, the prevalence of treatment is made equal 

between the groups of different prognosis. In the example 

Figure 1 True causal relation between blood transfusion and mortality in a fictive ICU population, which is either completely nontransfused or completely transfused.
Notes: Schematic representation of the hypothetical effects of blood transfusion in patients with different risk factor profiles. Three different profiles are considered: 
the presence of cardiovascular disease, active bleeding, or both. Solid gray bubbles represent nontransfused patients and patterned bubbles represent transfused patients. 
height of the position of the bubbles indicates the risk of death (%) and the size of the bubble represents the actual number of deaths. the table under each graph shows 
the represented numbers. the average risk of death (ie, the risk for the total population) can be calculated by dividing the total number of deaths (ie, added from all three 
subgroups) by the total population size. the risk of death differs between the groups. the effect of blood transfusion is a risk reduction of 10% for each of the three groups. 
As can be seen from the table under the graphs, this also corresponds to an average risk reduction of 10% (ie, from 47% to 37%). this average risk difference is not affected 
by the difference in baseline risk of death between the groups.
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Figure 2 Causal relationship distorted by confounding by indication and correctly estimated in a randomized trial.
Notes: Schematic representation of the hypothetical effects of blood transfusion in patients with different risk factor profiles. Three different profiles are considered: the 
presence of cardiovascular disease, active bleeding, or both. Solid gray bubbles represent nontransfused patients and patterned bubbles represent transfused patients. height 
of the position of the bubbles indicates the risk of death (%) and size of the bubble represents the actual number of deaths. the table under each graph shows the represented 
numbers. In panel A, in an observational study, there is confounding by indication. the true effect of transfusion (ie, a risk reduction of 10%) can still be estimated by statistical 
correction, but the crude analysis shows a risk increase of 17%. In real life, full statistical correction for confounding by indication is often impossible. In panel B, confounding 
is removed by randomization. therefore, the crude analysis correctly estimates the true effect of blood transfusion.
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they each contain 100 transfused and 100 nontransfused 

patients. This corresponds almost perfectly to the two situa-

tions depicted in Figure 1, except that all groups are half the 

size. We had to divide our population into two and transfuse 

only one half, because in real life, we cannot study the entire 

population in two mutually exclusive situations (ie, both 

nontransfused and transfused, such as depicted in Figure 1). 

Randomization is the closest we can possibly get to a real 

counterfactual situation.

The above example illustrates the reason we randomize. 

We do so to avoid confounding in situations where we cannot 

correct for it.1,14,15 Often, we attempt to correct for confound-

ing by indication but are unsure if we fully succeeded in doing 

so. In these situations, randomization will, on average, over 

many studies, provide valid evidence of the effectiveness of 

a treatment without the danger of incompletely corrected 

confounding by indication.

A problem randomization just can’t fix: 
effect modification
In spite of the tremendous power of randomized trials to pro-

vide us with highly reliable evidence of treatment effective-

ness, there remains a problem that randomization just cannot 

fix. In all of the previous discussions, we have assumed the 

effect of blood transfusions to be the same for all three patient 

groups considered. This is of course highly improbable.21 In 

fact, an expected difference in effectiveness is precisely what 

causes confounding by indication. A physician is more likely 

to transfuse a patient whom he or she thinks is more likely 

to benefit from that transfusion. In other words, if 90% of 

patients with both cardiovascular disease and active bleeding 

are transfused and only 25% of patients with cardiovascular 

disease alone, the physician apparently expects that patients 

with both cardiovascular disease and active bleeding are 

much more likely to benefit from receiving a transfusion. 

This expectation is based on something—if not on an actual 

well-documented, systematically gathered and identifiable, 

and objectively verifiable evidence base, then at least on 

extensive clinical experience.22

Whatever the exact basis for the clinical decision to 

transfuse one patient and not the other is, it is likely that 

the effect of transfusion will really be different between two 

patients. The effect will then be modified by the patient’s risk 

profile.21 Although the presence of effect modification does 

not necessarily detract from the validity of the conclusion of 

a randomized trial, it is important to be aware of how it can 

influence the results.23 To appreciate how effect modification 

influences the results of a randomized trial, we continue our 

simplified example with the three patient groups in Figure 3.

Panel A of Figure 3 shows a more realistic outcome of 

the randomized trial also depicted in panel B of Figure 2 (ie, 

an outcome showing effect modification across subgroups of 

patients). In this example transfusion has no effect on mortal-

ity in patients with cardiovascular disease alone. In patients 

with active bleeding, transfusion reduces the absolute risk 

of death by 10% and in patients with both cardiovascular 

disease and active bleeding, the absolute risk of death is 

reduced by 30%. Since this is a randomized trial, we assume 

no confounding. Therefore, both the crude and corrected 

effects give valid estimates of the true effect in this popula-

tion. This true effect is a population average reduction in 

risk of death of 13%.

Panel B of Figure 3 shows the target population to which 

the results of the randomized trial in panel A are going to 

be applied. As can be seen from the table under the graph, 

the absolute risk differences for each of the three groups are 

the same as observed in the randomized trial, reaffirming 

the validity of our estimates from that trial. For clarity we 

have assumed no confounding by indication in this target 

population. This can also be checked in the table under the 

graph where it is shown that all the three groups have 50% 

of their patients transfused. Therefore, prognosis and treat-

ment prevalence are again independent, and there can be no 

confounding by indication.

There is only one difference between the target population 

and the randomized trial in Figure 3. The risk factor distribu-

tion is different. There are more patients with cardiovascular 

disease alone and fewer with both cardiovascular disease and 

active bleeding in the target population. Therefore, there are 

more patients experiencing no effect at all and fewer patients 

experiencing the maximum effect of 30% reduction in the risk 

of death. As a consequence, the population average effect is 

much smaller. This effect is a 5% instead of a 13% reduction 

in the absolute risk of death. This is probably one of the most 

important reasons why treatments applied in daily clinical 

practice can have disappointingly little effect compared to 

expectations raised in randomized trials.

It also illustrates what important information is typically 

missing from the interpretation of results from randomized 

trials. Subgroup analyses would have told us to transfuse only 

patients with active bleeding, whether alone or in combina-

tion with cardiovascular disease. However, subgroup analyses 

are generally discouraged on the basis of a lack of power and 

the presumed danger of post hoc analyses. To allow subgroup 
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Figure 3 In the presence of effect modification, a randomized trial provides a completely valid effect estimate, which is, nonetheless, irrelevant for a target population with 
different risk factor distribution.
Notes: Schematic representation of the hypothetical effects of blood transfusion in patients with different risk factor profiles. Three different profiles are considered: the 
presence of cardiovascular disease, active bleeding, or both. Solid gray bubbles represent nontransfused patients and patterned bubbles represent transfused patients. height 
of the position of the bubbles indicates the risk of death (%) and size of the bubble represents the actual number of deaths. the table under each graph shows the represented 
numbers. There is effect modification by subgroup. There is no confounding by indication (ie, the crude and corrected risk differences are the same). Still it is clear that the 
distribution of patients over the subgroups is crucial. In panel A, a randomized trial was performed and the estimated risk difference was –13%. Panel B shows the target 
population (still without confounding by indication), the real risk difference in that population would be –5%. however, these are both estimates of the average risk difference. 
What we really want to know is that transfusing patients with cardiovascular disease alone would be useless, while transfusing patients with both cardiovascular disease and 
active bleeding would result in a risk difference of –30%. the only way to know this is to perform subgroup analyses.
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analyses, they have to be prespecified, which in turn means 

that a trial has to be sufficiently powered. This power should 

allow for three considerations. First, each subgroup should 

be of sufficient size, meaning the required trial size is inflated 

by a factor roughly equal, but usually bigger than the number 

of intended subgroup categories. Second, the power to show 

a difference in effect size between groups is usually smaller 

than the power to show the presence of an effect within a 

group. This even holds true if no effect is expected in one 

of the groups, because this lack of effect is estimated with 

a margin of uncertainty, while normal hypothesis testing 

takes the null hypothesis as a fact without uncertainty. This 

means a further inflation of trial size. Third, some kind of 

allowance will have to be made for multiple testing. All in 

all, the correct implementation of subgroup analyses in a 

randomized trial will cause the trial to be at least several 

times and often orders of magnitude larger than a similar 

trial without subgroup analyses. The way randomized trials 

are currently performed, including all regulations that have 

to be complied with, usually makes a trial that is sufficiently 

powered for extensive subgroup analyses financially impos-

sible. Subgroups, in conclusion, are things better not meddled 

with in randomized trials. Subgroups, unfortunately, are also 

exactly what we need to allow clinically meaningful inter-

pretation of trial results.

If randomized trials are poorly suited for addressing 

effect modification and clinical decision-making needs reli-

able information on effect modification, can observational 

studies provide the necessary evidence? This question brings 

us back to our initial problem: confounding by indication.

Real-life situation: confounding by 
indication and effect modification
In real life, we are stuck with a seemingly intractable com-

bination of two problems. First, we need an estimate free of 

the distortive effect of confounding by indication. This is the 

reason we do randomized trials. Second, we need to estimate 

subgroup-specific effects. For reasons of practicality, this is 

effectively impossible in randomized trials. We therefore 

seem to have arrived at an impasse.

However, the fact that the only reason to randomize is 

to avoid confounding in no way implies confounding by 

indication to be solvable only by randomization. As can be 

seen from Figure 4, there is no confounding by indication 

Figure 4 The most likely real-life situation: both confounding by indication and effect modification influence the results.
Notes: Schematic representation of the hypothetical effects of blood transfusion in patients with different risk factor profiles. Three different profiles are considered: the 
presence of cardiovascular disease, active bleeding, or both. Solid gray bubbles represent nontransfused patients and patterned bubbles represent transfused patients. height 
of the position of the bubbles indicates the risk of death (%) and size of the bubble represents the actual number of deaths. the table under each graph shows the represented 
numbers. There are both confounding by indication and effect modification. This is the most likely scenario for most clinical situations. It is clear (from the relative positions 
of the bubbles and the risk differences in the table) that within strata of subgroup, this situation is comparable to the situation in Figure 3. To estimate the influence of effect 
modification, we need to perform subgroup analyses. If we perform subgroup analyses, confounding by indication becomes irrelevant, because within subgroup analyses risk 
difference is unaffected by this confounding (see also panel A of Figure 2).
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within subgroups. Obviously, in this dramatically simplified 

example, it is easy to identify all three relevant subgroups, 

while in real life, there may be dozens of unknown confound-

ers. However, as argued before, all these confounders are 

confounders because, and only because, the physician expects 

them to be effect modifiers. The physician is more likely to 

treat a patient in which he or she expects the biggest treatment 

benefit. In this way she turns prognostic indicators, which 

are associated with expected benefit (ie, expected effect 

modifiers) into real confounders. A critical physician should 

then demand evidence of this effect modification, since this 

is instrumental to informed clinical decision-making. It 

would be impossible to practice any form of evidence-based 

medicine without asking oneself “why should I treat this 

particular patient while I do not treat that other one?” This 

means effect modification has to be quantified and to do so, 

these confounders have to be identified, because we need 

subgroup analyses for each and every one of them. Once these 

confounders have been identified, such subgroup analyses 

are much more efficiently carried out in observational than 

in randomized trials. Simply because observational research 

can be carried out at much lower financial and ethical costs. 

Further, since these subgroup analyses will also solve the 

problem of confounding by indication, randomization is no 

longer needed anyway. Finally, identification of confounders 

relies entirely on physicians making explicit why they chose 

to treat one patient and not the other.

It may seem like a daunting task to identify all patient 

characteristics weighted in a treatment decision, but in this 

age of evidence-based medicine it is the only way to per-

sonalize our treatments. Without personalization, almost all 

patients will be overtreated or undertreated.22 It may therefore 

well be time to finally start seriously working at this daunting 

task, as it is the only way to truly personalize medicine in an 

evidence-based way.

Discussion
In the above, we have argued that, although randomization is 

an immensely powerful tool against confounding by indica-

tion, personalization of medicine requires the quantification 

of effect modification by different risk groups, rather than 

effects averaged over multiple risk groups. Further, the 

required subgroup analyses necessitate a sample size that 

would make most randomized trials prohibitively expensive. 

Therefore, we should seriously consider making a start at 

identifying and measuring all possible effect modifiers in 

observational research, or risk never making any meaning-

ful progress in the personalization of medicine. The obvious 

limitation in our “call to observational clinical research” lies 

in the effectiveness of the proposed approach to really deal 

with all relevant confounding by indication and provide us 

with valid estimates of the effects of treatments.

To validly estimate the effects of treatment, we need to 

establish conditional exchangeability.17–19 We will arguably 

never be entirely sure whether we achieved this goal or 

not.17–19 However, this is in its essence not different from a 

randomized trial, in which we assume all prognostic factors to 

be equally distributed by chance, but get no guarantee.24 This 

is the reason we always include a “Table 1” with all important 

prognostic indicators. We know that, by chance alone, the 

prognosis can be different between the treated and untreated, 

and there will not be exchangeability. We can only be sure of 

the absence of confounding by coincidence over an infinite 

number of trials, which again is a theoretical impossibility.24 

There are two main considerations in achieving conditional 

exchangeability in observational research. First, have we 

identified and accurately measured all relevant confounders? 

Second, have we modeled them correctly?

The first consideration we have briefly hinted at already. 

In many fields of epidemiology, confounding can never be 

expected to be solved completely, due to the presence of 

unmeasured or unmeasurable confounders.25,26 However, in 

clinical epidemiology, confounding is caused by a physician’s 

decision to treat a patient. Therefore, it is theoretically impos-

sible to have truly unknown and unknowable  confounders. 

The physician has to know; otherwise the variable can never 

influence the decision. Unmeasured genetic variants, for 

example, could be effect modifiers and interesting targets for 

further research, but are not a concern as possible confound-

ers, because they cannot influence the physician’s decision. By 

the same token, measurement error cannot result in residual 

confounding. As long as we assure that we correct with the 

same measurement error that the physician used in his or her 

decision, we are still correcting completely for the confounding 

that the physician introduced. If the physician knows, it should 

be possible, with the help of that physician, to record the con-

founding variable with the same accuracy the physician used.

The second consideration has to do with the modeled form 

of the relation among the confounder, the treatment, and the 

outcome.27,28 We have not discussed this issue yet and have 

assumed statistical correction to be perfect throughout. This 

is a simplification of reality, but not one that could invalidate 

our conclusion that more observational research is needed. 

To be able to more accurately correct for a confounder, more 

data are needed. This is actually the main reason we consider 

observational research preferable for the quantification of 

effect modification: in observational research, it is easier (ie, 

cheaper) to gather more data.
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Personalization of medicine

In conclusion, the personalization of medical decision-

making could greatly be enhanced by using more observa-

tional clinical research. However, great care should always be 

taken with respect to confounding by indication, and conclu-

sions from observational research should never be accepted 

lightly. Appropriate appreciation of the evidence provided 

by different observational studies might require much more 

active discussion in the medical literature, instead of the cur-

rent, often limited interaction between authors and readers.
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