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Abstract: The p21 activated kinase-1 (Pak1) is a serine-threonine protein kinase directly 

activated by Cdc42 and Rac1. In cardiac myocytes, Pak1 activation leads to dephosphorylation 

of cTnI and C-protein through upregulation of phosphatase-2A (PP2A). Pak1 activity is directly 

correlated with its autophosphorylation, which occurs upon binding to the small GTPases and 

to some small organic molecules as well. In this report, we describe a novel method for rapid 

purifi cation of endogenous Pak1 from bovine ventricle muscle. The method is simple and easy 

to carry out. The purifi ed Pak1 demonstrated autophosphorylation in vitro that was enhanced 

by D-erythro-sphingosine-1, N-acetyl-D-erythro-sphingosine (C
2
-ceramide), and N-hexanoyl-

D-erythro-sphingosine (C
6
-ceramide). Dihydro-L-threo-sphingosine (saphingol) also had some 

effect on Pak1 autophosphorylation. The method we developed provides a useful tool to study 

Pak1 activity and regulation in the heart. Moreover, our results indicate a potential role of the 

sphingolipids as unique signaling molecules inducing a direct activation of Pak1 that may 

modulate different cardiac functions.
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Despite strong evidence indicating an important role of p21 activated kinase (Pak) in 

various tissues, detailed understanding of its signaling mechanisms remains poorly 

understood (Zhao and Manser 2005). An important step in identifying these mecha-

nisms is the development of methods for purifi cation of the enzyme. We describe here 

a novel approach that we developed for isolation of Pak1 from ventricular myocardium, 

which will also be useful in other tissues.

Pak1 belongs to a family of serine/threonine protein kinases directly activated by 

small GTPases, Cdc42 and Rac1. In the heart, Pak1 is abundant and localizes to cell 

and nuclear membranes, intercalated discs and to Z-discs in ventricular myocytes. 

The active form of Pak1 in cardiomyocytes increases Ca2+ sensitivity of myofi lament 

force development through activation of PP2A (Ke et al 2004) and in SA nodal cells, 

Pak1 inhibits isoproterenol stimulated activation of L-type Ca2+ channel and delayed 

rectifi er potassium channels (Ke et al 2007a). Other studies have shown that in endo-

thelial cells, Pak1 activation induces dephosphorylation of myosin regulatory light 

chain and inhibition of thrombin-induced barrier dysfunction (Ke et al 2007b) and 

in HeLa cells, expression of constitutively active Pak1 induces loss of stress fi bers 

and dissolution of focal adhesion complexes (Manser et al 1997). These studies sug-

gest a role of Pak1 in cytoskeletal function and reorganization. In transgenic mice 

expressing an active Rac1 in the heart, hypertrophy developed followed by dilated 

cardiomyopathy with altered intracellular partitioning of Pak1 in the ventricle myocytes 

(Sussman et al 2000).
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A prominent post-translational modifi cation of Pak1 is 

autophosphorylation, which is correlated with its activity 

(Manser et al 1997; Zhao et al 1998). Pak1 is autophosphory-

lated at seven serine/threonine sites most of which occur at 

the N-terminal half of the kinase. Substitution of threonine 

423, the last autophosphorylation site, with glutamic acid 

renders the kinase constitutively active (Manser et al 1997). 

Although there is abundant expression of Pak1 in cardiomyo-

cytes, smooth muscle and endothelial cells, the function of 

Pak1 in the cardiovascular system remains poorly understood 

(Sheehan et al 2007). Moreover, potential modifi cations in 

autophosphorylation of native Pak1 in failing heart and in 

other pathological conditions have not been defi ned.

Studies in skeletal muscle have shown that Pak1 activity 

was responsive to insulin treatment (Tsakiridis et al 1996) 

suggesting that Paks are also phosphorylated by tyrosine 

kinase (Bagheri-Yarmand et al 2001; He et al 2004; Yang 

et al 2004). Tyrosine phosphorylation of Pak1 may also play 

an important role in regulation of cardiac function. However, 

little is known about any tyrosine kinase signaling mecha-

nism that may play a role in Pak activity.

In order to further study Pak1 function in the heart, we 

developed a novel affi nity chromatography method to purify 

endogenous Pak1 from heart muscle homogenate. A synthetic 

peptide derived from Pak1 protein with an HA tag that binds 

to HA matrix specifi cally retains Pak1 in the matrix and thus 

enriches Pak1 from tissue homogenate. A clear, single Pak1 

protein band was detected from the eluant. The purifi ed Pak1 

demonstrated autophosphorylation that was stimulated by 

sphingosine and sphingosine derivatives.

Methods
Preparation of muscle sample
Frozen bovine ventricle muscle (200 g) was cut into small 

pieces and homogenized in a blender containing 1 liter 

homogenization buffer (50 mM Tris base, 5 mM EDTA, 

2 mM EGTA, 1 mM DTT, 0.5 mM benzamidine, 0.1 mM 

PMSF, pH 7.2). The homogenized muscle sample was centri-

fuged at 4500 g for 30 minutes. The supernatant fraction was 

saved and precipitated with ammonium sulfate (NH
4
)

2
SO

4
 

at concentration 25% and 50% (w/v). Precipitates formed 

by (NH
4
)

2
SO

4
 addition between concentration 25% (w/v) 

and 50% (w/v) were saved and dialyzed against the homog-

enization buffer. After dialysis, the sample was fi ltered and 

lyophilized. For purifi cation of Pak1 from smaller amounts 

of sample, the tissues or cells were homogenized in mam-

malian extraction buffer (50 mM Tris, pH 7.5; 150 mM NaCl; 

0.1% Nonide P40; Complete Protease inhibitor cocktail 

tablets [Roche Diagnostics, cat # 11 873 580 001]). The 

ratio of tissue:buffer was about 1:5 (v/v). The homogenate 

was centrifuged in a bench-top centrifuge at 4 °C. The 

supernatant fraction was saved for direct application onto 

the affi nity column.

Peptide synthesis and the matrix
The peptides were synthesized in the University of Illinois 

at Chicago protein core facility. The decoy peptide 

(YNSKKTSNSQKYMSFTDKSAYPYDVPDYA) contained 

the Pak1 sequence from amino acids 131 to 150 linked to a 

9 amino acid of infl uenza hemagglutinin (HA) epitope. The 

peptide derived from the N-terminal region of Pak1 with the 

sequence MSNNGLDIQDKPPAPPMRNTSTYPYDVPDYA 

was also used in some purifi cation. The Anti-HA Affi nity 

Matrix (Cat. No. 1 815 016) was purchased from Roche 

Applied Science (Indianapolis, IN, USA). The affinity 

matrix contains antibody specifi cally bind to HA sequence 

in protein or peptide.

Affi nity chromatography
The column was fi rst washed with 20 ml equilibration buffer 

(20 mM Tris, pH 7.5; 0.1 M NaCl; 0.1 mM EDTA). Decoy 

peptide (3 mg) was applied to the column to saturate the 

matrix with the peptide. The muscle sample (the lyophilized 

extract) was dissolved in buffer (20 mM Tris, pH 7.5; 0.1 M 

NaCl; 0.1 mM EDTA) containing protease inhibitor cocktail 

tablets. The sample was loaded onto the affi nity column 

and then washed with 20 ml washing buffer (20 mM Tris, 

pH 7.5; 0.1 M NaCl; 0.1 mM EDTA; 0.05% Tween-20). The 

Pak1 bound to the gel was eluted with equilibration buffer 

containing HA peptide (YPYDVPDYA) at 1 mg/ml. HA 

peptide was removed from the sample by dialysis in buffer 

containing 20 mM HEPES, 5 mM NaCl, pH 7.2. The bound 

Pak1 could also be eluted with 5 ml glycine buffer, pH 2.5 

(50 mM glycine-HCl; 0.1 % Triton X-100; 0.15 M NaCl).

Kinase assay
Pak1 kinase activity was assayed in the following reaction 

buffer: 50 mM HEPES, pH 7.3, 10 mM MgCl
2
, 1 mM DTT, 

0.05% Triton X-100) with 10 μCi of [γ32P] ATP (Perkin 

Elma. [γ-32P]-Adenosine 5`-triphosphate, Specifi c Activity: 

3000Ci (111TBq)/mmole, 50 mM Tricine (pH 7.6), Con-

centration: 5 mCi/mL, Catal NEG502H250UC) at 37 °C 

for 2 h. The kinase reaction was stopped by adding SDS 

sample buffer followed by boiling for 5 min. Agonists added 

to the buffer were as described in the Results section and 

the fi gure legends. Agonists from Calbiochem included the 
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following: C
2
 ceramide (N-acetyl-D-erythro-sphingosine), 

C
6
 ceramide (N-Hexanoyl-D-erythro-sphingosine) and safi n-

gol (Dihydro-L-threo-sphingosine). D-sphingosine (S 6879), 

and sphingosine 1-phosphate (S 9666) were purchased from 

Sigma (St. Louis, MO, USA). Sphingosines were dissolved 

in dimethyl sulfoxide. The total reaction volume was 20 μl. 

Dimethyl sulfoxide (2 μl) was included in each reaction 

including the control.

Results
Cellular localization and purifi cation 
of Pak1
Figure 1 show results of immuno-histochemical studies in 

rat ventricular myocytes demonstrating high and localized 

expression of Pak1. The bleb in the image of Figure 1A 

(upper panel) indicates sarcolemmal localization. Pak 1 also 

localized to the nuclear membrane, Z-discs and intercalated 

discs (Figure 1A). To isolate the cardiac Pak1, we used bovine 

ventricle muscle as the source as described in the Methods. 

About 800 mg of muscle protein extract was obtained from 

200 g of the frozen ventricle muscle. Therefore, the yield of 

muscle extract from the frozen tissue is about 0.4%. Figure 1B 

illustrates the approach we used for affi nity purifi cation of the 

Pak1 as described in the Methods. The peptide linked affi nity 

column was loaded with 5 mg of the protein extracted from 

the muscle sample. Data in Figure 2A demonstrate that Pak1 

is the major component in the eluted fraction as indicated by 

the resolution of the samples by SDS-PAGE with Coomassie 

brilliant blue staining (Figure 3A, lane 3). Ammonia sulfate 

fractionation decreased amount of some proteins with the 

molecular weight larger and smaller than Pak1 (Figure 3A). 

Western blotting analysis (Figure 2B) using an antibody 

(sc-881) identifi ed the bands shown in Figure 2A as Pak1. 

The affi nity purifi cation procedure yielded about 200 μg of 

total protein from the 5 mg muscle protein extract prepared 
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C
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Figure 1 A. Pak1 is abundant and has defi ned intracellular localizations in adult rat ventricle myocytes. Localization and expression of Pak1 in rat ventricle myocytes were detected 
by immuno-fl uorescence and confocal microscopy. Pak1 was stained with fl uorescein Isothiocyanate (FITC) (green).  Actin was stained with phalloidin (red). Pak1 is localized to 
the Z-discs (indicated by the yellow stripes showing overlap of the red and green stains), intercalated discs, nuclear and cell membranes and at the sarcolemmal membrane as 
emphasized by a bleb in the bottom panel.  The myocytes were isolated from rat ventricle as described previously (Ke et al 2004). B. Schematic representation of purifi cation 
of Pak1 from cardiac muscle. The purifi cation procedure can be divided into three steps. Step 1.  The decoy peptide derived from Pak1 autoinhibitory region linked to infl uenza 
hemagglutinin (HA) epitope was bound to HA matrix. Step 2. Pak1 was bound to the peptide. The matrix was washed with washing buffer. Step 3.  The peptide was eluted out 
from the matrix by glycine at pH 2.5 or by HA peptide. See text for details. C.  The decoy peptide is derived from the autoinhibitory region of Pak1.  The autoinhibitory domain 
of Pak1 is downstream of p21 binding domain (PBD) and by dimerization domain (DI).  The vertical bars represent the proline rich sequences in Pak1.
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Figure 3 A. Autophosphorylation of Pak1 is stimulated by sphingosine-phosphate in vitro.  The in vitro reaction was carried out at 37 °C for two hours.  The same amount of 
Pak1 protein (4 μg) was included in each reaction. Sphingosine phosphate was added to each reaction at concentrations 0, 25, 50, 100, and 200 μM. B. Autophosphorylation of 
Pak1 is stimulated by D-erythro-sphingosine in vitro.  The in vitro reaction was carried out at 37 °C for two hours. 4 μg of Pak1 protein was included in each reaction. Increasing 
amounts of D-erythro-sphingosine were added at 0, 25, 50, 100, and 200 μM.  The smaller band below 68 kD Pak1 signal is about 48 kD and is a Pak1 degradation product.
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Figure 2 Purifi ed native Pak1 From cardiac muscle. A. Purifi cation of endogenous Pak1 from cardiac muscle. 1. Cardiac muscle extracts resolved on a SDS page. 2. The 
cardiac muscle extract after fractionation by 25% and 50% (NH4)2SO4 precipitation. 3. Pak1 purifi ed from the fractionated muscle sample. 4. The molecular weight markers. 
B. Detection of purifi ed Pak1 by Western blotting analysis. Pak1 was detected as a single band with an antibody from Santa Cruz (sc-881). C. Purifi ed Pak1 detected by mass 
spectrometry. Peaks match the Pak1 peptides produced by theoretical trypsin digestion. The positions of amino acids of each peptide from Pak1 were denoted in quotation: 
LSAIFR (490–495), ELLQHQFLK (514–522), SVIEPLPVTPTR (204–215), KELIINEILVMR (309–320), ECLQALEFLHSNQVIHR (372–388).
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from the frozen ventricle with a yield of 4%. Therefore, the 

yield of fi nal affi nity purifi cation product from the frozen 

ventricle is about 0.016% (w/w). Pak1 bound to the matrix 

was eluted with 3 mg of HA peptide that displace the decoy 

peptide from the matrix. The HA peptide in the eluant was 

separated from Pak1 protein by use of dialysis tubing per-

meable to proteins smaller than 12–14 kD (Figure 1B). The 

bound Pak1 can also be eluted with Glycine (0.1 M, pH2.0). 

However, elution with glycine sometimes produces an extra 

protein bands with molecular weight of 16 kD. Mass spec-

trometry analysis indicated that the major MS peaks from the 

digested protein purifi ed matches with Pak1 peptides after 

trypsin digestion (Figure 2C).

In vitro autophosphorylation
Autophosphorylation of Pak1, which correlates with its activ-

ity and that we assessed with an in vitro assay, provided a 

measure of Pak-1 enzyme function. Initial studies (data not 

shown) indicated that autophosphorylation of the wt Pak1 

was much weaker than the constitutively active Pak1 as 

shown by others (Manser et al 1997). In all the in vitro assays, 

we used 4 μg of Pak1 protein. The smaller band (∼48 kD) that 

could be Pak1 degradation products was also phosphorylated. 

The purifi ed Pak1 also demonstrated kinase activity towards 

the decoy peptide (YNSKKTSNSQKYMSFTDKSA). The 

decoy peptide contains Pak1 autophosphorylation sites. 

The two serine residues that are autophosphorylated are 

situated at the end of the autoinhibitory sequence. The decoy 

peptide slightly inhibited autophosphorylation of Pak1. 

However, it was also phosphorylated and there was a slight 

increase of the total kinase activity in the presence of the 

decoy peptide (data not shown).

In view of data reporting a sphingosine-1 induced increase 

in Pak1 and Pak2 activity in vitro (Bokoch et al 1998; Roig 

et al 2001), we also tested the effect of sphingosine and 

sphingosine-1 phosphate on Pak1 autophosphorylation 

(Figure 3A). Incorporation of 32P from gamma 32P into 

Pak1 was directly detected by autoradiography after resolving 

the in vitro reaction products on SDS PAGE. Interestingly, 

sphingosine-1 phosphate had no signifi cant effect on auto-

phosphorylation of Pak1 at 25 and 50 μM. When the sphin-

gosine phosphate concentration increased to 100 and 200 μM, 

there was an increase in Pak1 autophosphorylation. In purifi ed 

Pak1 sample, a 48 kD Pak1 degradation products can some-

times be detected (Figure 1A, lane 3). When Pak1 activity 

increased, phosphorylation of the degradation products 

increased accordingly (Figure 3). Our results indicated that 

autophosphorylation of Pak1 purifi ed from cardiac muscle was 

highly responsive to C
2
 and C

6
 ceramide (Figure 4A and B). 

Autophosphorylation of the purifi ed Pak1 increased in the 

presence of 50 and 100 μM of D-sphingosine-1 (Figure 3B), 

but saphingol (dihydro-L-threo-sphingosine) only slightly 
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C2 ceramide 0            50        100        200  μM
Pak1  4             4      4 4    μg

C6 ceramide 0               50        100        200    μM
Pak1  4                4         4 4      μg

Saphingol 0              25    50           100 200     μM
Pak1                     4           4              4 4             4        μg

Figure 4 A and B. Autophosphorylation of Pak1 is stimulated by C2 (left) and C6 ceramide (right) in vitro. C2 and C6 ceramide was added to the reaction at different 
concentrations at 0, 50, 100, and 200 μM. Pak1 protein (4 μg) was included in each reaction. In C, autophosphorylation of Pak1 is regulated to a lesser extent by saphingol 
(dihydro-sphingosine). Saphingol was added to each reaction at concentrations of 0, 25, 50, 100, and 200 μM.
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regulated Pak1 autophosphorylation (Figure 4C). By gel 

fi ltration, the purifi ed Pak1 demonstrated a single major peak. 

The same experiments were repeated three times each.

Discussion
Our data demonstrating a simple method for purifying native 

Pak1 from cardiac muscle provide signifi cant new informa-

tion important in advancing understanding of the Pak-1 

signaling in the heart. Moreover, to our knowledge, our data 

also provide the fi rst evidence demonstrating regulation of the 

activity of Pak1 by C
2
 and C

6
 ceramide. Our understanding 

of Pak1 function in myocardial cells is still in its infancy, 

and we think the method reported here is an important step 

in defi ning these functions and their mechanisms. Signal-

ing molecules such as Pak1 are often extensively modifi ed 

by post-translational mechanisms, and in many cases these 

modifi cations are associated with pathophysiological condi-

tions. Our method is suitable for study of post-translational 

modifi cations of Pak1 in response to different extracellular 

signals and in pathological conditions such as heart failure, 

arrhythmias, and ischemia. The Pak1 kinase purifi ed by this 

method can also be used for in vitro kinase assay to identify 

novel activators or inhibitors. Moreover, the method can be 

adapted for use in purifi cation of Pak isoforms from mam-

malian tissues other than heart.

The purifi ed Pak1 retained low catalytic activity as dem-

onstrated by autophosphorylation in vitro. The constitutively 

active Pak1 (T423E) has a much higher level of autophos-

phorylation than the endogenous Pak1 under the same con-

ditions. We found that autophosphorylation of the purifi ed 

Pak1 is enhanced by D-sphingosine-1, N-acetyle-sphingosine 

(C
2
 ceramide) and by hexanoyl-sphingosine (C

6
 ceramide). 

This is consistent with an earlier observation that the activi-

ties of Pak1 and Pak2 are activated by sphingosine (Bokoch 

et al 1998; Roig et al 2001). Our fi nding that active Pak1 

induces dephosphorylation of cTnI and C-protein through 

activation of PP2A (Ke et al 2004) provides a plausible 

mechanism for induction of protein dephosphorylation by 

sphingosine. For example, C
2
-ceramide is a known activator 

of PP2A (Dobrowsky et al 1993) and may be involved in Bcl2 

dephosphorylation (Ruvolo et al 1999). In different types of 

cells, L-type Ca2+ channel activity was demonstrated to be 

depressed by C
2
 ceramide by an unknown mechanism (Chik 

et al 1999, 2004). C
2
 ceramide also inhibited proliferation of 

T-cells stimulated by growth signals (O’Byrne and Sansom 

2000). Moreover, C
2
 ceramide has preconditioning effects 

in heart, which has been attributed to generation of reac-

tive oxygen species (Furuya et al 2001; Lecour et al 2006). 

Our data indicate that other mechanisms for C
2
 ceramide 

involving activation of Pak1 and PP2A need to be consid-

ered. To our knowledge, this is the fi rst time demonstration 

that Pak1 is directly stimulated by C
2
 and C

6
 ceramide. 

The mechanism whereby Pak1 is activated by sphingosine 

analogs is still not clear. Our studies indicate that C
2
 and C

6
 

ceramide had stronger effect than sphingosine-1 activating 

Pak1. Saphingosine only had a small stimulatory effect on 

Pak1 autophosphorylation. Zenke and colleagues (1999) 

suggest that sphingosine activates Pak through the P21 bind-

ing domain (PBD). However, in another study, Cdc42 and 

sphingosine-1 appears to have a cooperative effect activating 

the kinase (Chong et al 2001). We plan to employ a molecular 

biology approach to map the amino acid sequence on Pak1 

that interacts with sphingosines.

The peptide used to decoy native Pak1 from cardiac 

muscle is derived from the autoinhibitory region of Pak1 

(Manser et al 1997) (Figure 1C). The autoinhibitory region 

is both downstream of and partially overlaps with the P21 

binding domain (PBD) (Zhao et al 1998). A peptide derived 

from the N-terminal region (the fi rst 21 amino acids of Pak1) 

that binds to Nck in vitro (Bokoch et al 1998; Zhao et al 

2000) also effi ciently retained Pak1 in the column (data not 

shown). The peptide interacts with the catalytic center of the 

kinase and may regulate the conformation of the catalytic 

center as demonstrated by NMR studies (Pirruccello et al 

2006). Expression of the peptide plus the P21 binding region 

produced many cellular changes including inhibition of cell 

cycle progression (Thullberg et al 2007). The autoinhibitory 

region was also deleted in GST-Pak1 which was used for in 

vitro kinase studies (Polverino et al 1995).

Pak1 is autophosphorylated at multiple serine/threonine 

sites. There are at least six autophosphorylation sites at 

the N-terminal half of Pak1 (Manser et al 1997). Auto-

phosphorylation at the N-terminus of Pak1 may change its 

intracellular localization or/and activity (Zhao and Manser 

2005). It is unclear at which site autophosphorylation occurs 

fi rst in the activation of Pak1. Furthermore, uncertainty still 

remains as to whether autophosphorylation is through inter- 

or intramolecular kinase reactions. Since Pak1 dimer has an 

antiparallel conformation, autophosphorylation sites at the 

N-terminal half of one Pak1 are therefore placed in proximity 

to the catalytic domain of the other Pak1 (Lei et al 2000). 

This suggests that intermolecular autophosphorylation may 

occur at the N-terminal autophosphorylation sites.

Pak1 contains a few proline-rich sequences at its 

N-terminus. The proline-rich sequences interact with pro-

teins, such as Nck and Pix. A prominent feature of these 
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proline-rich sequences in Pak1 is that they are followed 

by autophosphorylation sites. Peptide decoy was first 

designed to identify proteins that interact with the proline 

rich sequences in the heart. It turned out Pak1 is the only 

major protein that binds to the decoy peptides, including 

the peptide containing 22 amino acids (MSNNGLDIQD-

KPPAPPMRNTST) at the N-terminal region of the kinase 

which contains an autophosphorylation site at Serine 21. 

Substitution of the serine residue for aspartic acid abolished 

Nck binding to the peptide in vitro (Zhao et al 2000). In vivo, 

phosphorylation at the autophosphorylation sites could be a 

mechanism to release the “autosubstrate” from the catalytic 

center of the kinase.

Interaction between lipids and a protein kinase may have 

profound effect on cellular functions (Argraves et al 2002). 

The purifi ed Pak1 is stimulated by more than one sphingosine 

species. It is likely that some other sphingosine related lipids 

may also regulate Pak1 activity. Modifi cation of the side 

chain and the polar groups of sphingosines may produces 

agonists or antagonists that have even more potent effect on 

Pak1 autophosphorylation.
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