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Introduction: Observational studies of interventions are at risk for confounding by indication. 

The objective of the current study was to define the circumstances for the validity of methods 

to adjust for confounding by indication in observational studies.

Patients and methods: We performed post hoc analyses of data prospectively collected from 

three European and North American traumatic brain injury studies including 1,725 patients. 

The effects of three interventions (intracranial pressure [ICP] monitoring, intracranial operation 

and primary referral) were estimated in a proportional odds regression model with the Glasgow 

Outcome Scale as ordinal outcome variable. Three analytical methods were compared: classi-

cal covariate adjustment, propensity score matching and instrumental variable (IV) analysis in 

which the percentage exposed to an intervention in each hospital was added as an independent 

variable, together with a random intercept for each hospital. In addition, a simulation study was 

performed in which the effect of a hypothetical beneficial intervention (OR 1.65) was simulated 

for scenarios with and without unmeasured confounders.

Results: For all three interventions, covariate adjustment and propensity score matching resulted 

in negative estimates of the treatment effect (OR ranging from 0.80 to 0.92), whereas the IV 

approach indicated that both ICP monitoring and intracranial operation might be beneficial 

(OR per 10% change 1.17, 95% CI 1.01–1.42 and 1.42, 95% CI 0.95–1.97). In our simulation 

study, we found that covariate adjustment and propensity score matching resulted in an invalid 

estimate of the treatment effect in case of unmeasured confounders (OR ranging from 0.90 to 

1.03). The IV approach provided an estimate in the similar direction as the simulated effect (OR 

per 10% change 1.04–1.05) but was statistically inefficient.

Conclusion: The effect estimation of interventions in observational studies strongly depends on 

the analytical method used. When unobserved confounding and practice variation are expected 

in observational multicenter studies, IV analysis should be considered.

Keywords: confounding, observational studies, traumatic brain injury, instrumental variable 

analysis, comparative effectiveness research

Introduction
RCTs have long been considered the cornerstone of evidence-based medicine.1 They 

are, however, not always feasible due to financial, ethical and practical constraints,2 

and are criticized for the lack of external validity.1 Observational studies constitute 

the main alternative. A key challenge in observational studies of interventions is con-

founding by indication, a phrase that refers to a situation where patient characteristics, 

rather than the intervention, are independent predictors of outcome.3 As a consequence, 

patients exposed and not exposed to a particular intervention might not be comparable, 
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 hampering causal inference. World’s leading experts in this 

field have stressed the need for further development and test-

ing statistical methods to handle confounding by indication.4–6

The epidemiological and statistical literature describes 

several analytical methods to account for confounding, 

among which covariate adjustment and propensity scores 

are probably the most commonly applied. In covariate 

adjustment, measured confounders are added as indepen-

dent variables to the analytical model. This results in a 

risk-adjusted effect estimate.7,8 In propensity scores, the 

chance (“propensity”) of being exposed to the intervention, 

based on measured patient characteristics, is added as a 

covariate to the model or used to match patients exposed 

and not exposed.8 Propensity scores aim to balance factors 

influencing management decisions7,9,10 and are especially to 

be considered when there are few outcome events.8 These 

commonly applied methods, however, cannot adequately 

correct for unmeasured confounders. For example, a surgeon 

may decide to perform an operation because of his clinical 

intuition. Clinical intuition might be related to the patient’s 

prognosis but may not be adequately captured in the clinical 

data and thereby may leave residual confounding.3,11,12 A rela-

tively new method to adjust for confounding is IV analysis. 

In IV analysis, a substitute variable, “the instrument” (e.g. 

hospital), is used as level of analysis. IV analysis is becom-

ing more popular in CER and can theoretically adjust for 

unmeasured confounders.7,8,13 However, its validity depends 

on the degree to which the following three assumptions are 

met: The instrument should be strongly associated with the 

intervention under study (assumption 1), not related to the 

confounders (assumption 2) and not independently associated 

with the outcome under study (assumption 3).7,8,13

Clinical practice in patients with TBI is generally hypoth-

esized to be prone to confounding by indication because 

treatment choice and outcome are highly dependent on injury 

severity and clinical status. In addition, the combination of a 

low evidence base and strong (cultural or eminence-based) 

beliefs of best practice leads to large practice variation 

between hospitals;14 for example, some hospitals have the 

general policy to treat TBI patients (regardless of patient 

characteristics) with a specific intervention, whereas this 

intervention may only be rarely used in other centers.15,16 This 

combination makes IV analysis of observational studies in 

TBI a promising approach. For the purpose of the current 

study, we selected three interventions that have been shown 

to be effective according to best available evidence and 

expert consensus meetings,17–21 with guidelines advocating 

these strategies,22–27 but have also shown extensive practice 

variation: ICP placement for ICP-directed therapies versus 

serial clinical and radiological assessment,28 to operate or 

not in mass lesions16 and primary versus secondary referral 

to specialized care.27

The objective of the current study was to define the 

circumstances for the validity of methods to adjust for con-

founding by indication using three selected interventions in 

TBI patients and a simulation study.

Patients and Methods
study populations and interventions
Three TBI datasets were used. The POCON dataset consists 

of 557 consecutive patients with moderate and severe TBI 

(GCS score 3–13) from five level I trauma centers in the 

Netherlands (between 2008 and 2009). Detailed information 

on data collection, procedures and patients has been described 

previously.29 From the POCON dataset, we extracted 266 

patients with an indication for ICP monitoring according 

to the 2007 Brain Trauma Foundation guidelines,30 that is, 

patients with a GCS score ≤8 and a CT Marshall score ≥2, 

or patients with a GCS score ≤8, CT Marshall score <2 

and at least one of the following risk factors: 1) age >40 

years; 2) hypotensive episode (systolic blood pressure <90 

mmHg); and 3) motor score ≤3 (unilateral or bilateral motor 

posturing).

We further used the IMPACT dataset, which consists of 

data from prospective studies and Phase III trials in patients 

with moderate and severe TBI.31 The International and North 

American Tirilazad trial (86 hospitals, between 1992 and 

1994) was selected from the IMPACT dataset because it 

comprises the requisite data to estimate the effectiveness of 

intracranial operations (craniotomy or craniectomy). From 

the 2,159 patients included in this trial, data of 677 patients 

with severe TBI, a mass lesion and a six-month outcome 

assessment were extracted.

We additionally selected the EBIC study (67 hospitals, in 

1995) from the IMPACT dataset, which contains information 

on referral status of 822 patients. Referral and outcome were 

assessed in 782 patients, who were subsequently extracted. 

Detailed information on the IMPACT dataset has been 

comprehensively described in previous publications.31–33 

The POCON, Tirilazad and EBIC studies were approved by 

the institutional review boards of the participating centers, 

and all patients provided informed consent. Data were made 

available for the current study after an agreement with the 

principal investigators of these studies.
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Data collection
Collected patient variables in all datasets included age, sex, 

GCS (motor) score, pupillary reactivity (both pupils reactive, 

one pupil reactive, no pupil reactivity), hypoxic episode (at 

injury scene or emergency department), hypotensive epi-

sode (at injury scene or emergency department), admission 

glucose level (mmol/L) and admission Hb level (g/L). In all 

datasets, the initial CT scan was assessed using the Marshall 

score,34 and the presence of tSAHs and EDHs were scored.

To summarize patient characteristics, we calculated the 

probability of survival and favorable outcome (GOS score 

≥4) for each patient based on the IMPACT laboratory model35 

with all the above-mentioned demographic and clinical fac-

tors as predictors. These prognostic scores reflect chances 

on respectively survival and favorable outcome based on 

baseline characteristics.

Six-month outcome was assessed using the GOS-

Extended in the POCON dataset and the GOS in the EBIC 

and Tirilazad trial datasets. Both scales were collapsed into 

a four-point ordinal scale: 1 = death or persistent vegetative 

state; 2 = severe disability; 3 = moderate disability; and 4 = 

good recovery.

statistical analyses
Missing values in patient characteristics were imputed using 

single imputation. To assess differences in patient charac-

teristics between patients exposed and not exposed to the 

interventions in the imputed datasets, we compared these 

characteristics in terms of clinical relevancy.

To examine the effectiveness of interventions, we used 

proportional odds logistic regression models with the four-

point ordinal GOS as outcome variable. A proportional odds 

model increases statistical power in comparison to a conven-

tional logistic regression model with a binary outcome.36 The 

OR derived from a proportional odds regression model could 

be interpreted as the average shift over the GOS caused by 

the intervention under study.36

As a reference, we estimated unadjusted effects of the 

interventions with patient (exposed to the intervention, yes/

no) as the unit of analysis. To adjust for confounders, we 

performed covariate adjustment, propensity score matching 

and IV analysis. In the covariate-adjusted model, the variables 

from the IMPACT prognostic model35 (age, GCS motor score, 

pupillary reaction, hypoxia, hypotension, CT classification, 

tSAHs, EDHs, glucose and Hb) were added as independent 

variables. In a propensity score model, the propensity of being 

exposed to the intervention was computed using multivari-

able logistic regression with the intervention under study as 

dependent variable and all IMPACT variables as predictors. 

Propensity score matching was used to match patients who 

were exposed to the intervention to patients who were not 

exposed to the intervention with a maximum difference of 

0.10 between propensity scores. An advantage of propen-

sity score matching is that patients with nonoverlapping 

propensity scores are omitted from the analyses, increasing 

the comparability of those exposed and not exposed.7,9 In 

addition, propensity score matching is relatively robust and 

relies on fewer assumptions than other propensity score-based 

methods (e.g. propensity score adjustment).37

We used fixed-effect models for all patient-level analyses. 

The ORs and 95% CIs were obtained from the models, and 

the ORs indicated the odds of a more favorable outcome for 

patients who were exposed to the intervention compared to 

patients not exposed.

For the IV analyses, we entered the percentage exposed 

to the intervention in each hospital (the instrument) as an 

independent variable to the analyses, together with a random 

intercept for hospital to correct for other between-hospital 

differences than the intervention under study or between-

hospital differences that existed by chance. All IMPACT 

prognostic variables were added as covariates to increase 

statistical power.38 To minimize the influence of chance, we 

only included hospitals with data on at least 20 patients in 

the IV analyses. The ORs were obtained from the models, 

and the corresponding 95% CIs were calculated using boot-

strapping with 500 samples. The ORs indicated the odds of 

a more favorable outcome for a 10% increase in exposure 

to the intervention in a particular hospital. Assumptions of 

the IV approach were checked by calculating the partial F 

statistic, in line with recommendations.39 In addition, we 

checked associations with measured confounders by calcu-

lating Spearman’s correlation coefficients between the IVs 

and the prognostic scores of survival and favorable outcome. 

The third assumption (the IV is not independently associated 

with outcome) cannot be empirically verified but is captured 

in the random-effect model that we used.

The proportional odds analyses were performed in R 

(version 3.1.2) using the ordinal package.40 Other analyses 

were performed using the Statistical Package for the Social 

Sciences version 21.

sensitivity analyses
As sensitivity analyses, we explored alternative methods for 

propensity score matching and IV analysis. Since propensity 

score matching may result in a nonrepresentative sample7 

and a loss of statistical power,41 we also used propensity 
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score adjustment and IPW to estimate the treatment effect. 

For propensity score adjustment, the linear predictor of the 

propensity score was added as a covariate to the proportional 

odds regression models. In IPW, the outcome of patients 

exposed to the intervention is extrapolated to the nonexposed 

patients with similar propensity scores; for every patient 

exposed with a probability of 0.20, there are four patients with 

the same probability who were not exposed. The outcome of 

the exposed patient is subsequently extrapolated to all other 

four patients with the same propensity score.42 We used stan-

dardized weights in which we divided the unadjusted chance 

of receiving the intervention in the total study population by 

the propensity score.43 Since this still resulted in large SEs, 

we winsorized our cohort by 95%; that is, patients below 

the 2.5th and above the 97.5th percentile received the scores 

belonging to the 2.5th and 97.5th quartile, respectively.

As an alternative to the IV approach used in this study, we 

divided hospitals into two groups based on their preference 

for the intervention. The mean percentage exposed to each 

intervention was calculated, and hospitals scoring above these 

means were classified as having a high preference, whereas 

hospitals scoring below the means were classified as having 

a low preference.

Since the percentage patients exposed to the interven-

tion in each hospital can still be based on case mix (e.g. in a 

hospital with more severely injured patients, the percentage 

patients receiving aggressive interventions might be higher) 

and could also exist by chance, we estimated a random 

intercept for hospital from a model predicting exposure to 

the intervention (yes/no) adjusted for the IMPACT variables. 

This random intercept for exposure represents the chance of 

receiving the intervention in a specific hospital corrected for 

case mix and chance, and was subsequently used instead of 

the percentage exposed in the IV analyses. A disadvantage of 

this method is that the estimate obtained is hard to interpret 

and very uncertain due to the shrinkage of the between-

hospital variation by the random-effects model.

simulation study
In empirical data, “true” effects are never known, and as a 

consequence, estimating the validity of analytical methods 

remains difficult. Therefore, we performed a simulation study 

in which a true treatment effect was simulated in the data. 

The simulation study was built around the POCON dataset, 

which was inflated to 133,000 patients from 20 hospitals. 

We simulated a hypothetical intervention with a beneficial 

effect of OR = 1.65. For the association between the hypo-

thetical intervention and confounders, we used the observed 

associations between ICP monitoring and confounders in the 

POCON dataset. We used six-month survival (yes/no) as out-

come variable, which was generated based on a combination 

of the prognostic effect of the confounders and the effect of 

the hypothetical intervention.

We simulated four different scenarios and estimated the 

treatment effect using covariate adjustment, propensity score 

matching and IV analysis. In the first scenario, there were 

only measured confounders. We used motor score and pupil-

lary reactivity as representing the measured confounders. In 

the second scenario, both measured and unmeasured charac-

teristics comprised confounders. Marshall CT scores and the 

presence of a tSAH were used as unmeasured confounders. 

For both the first and second scenario, no between-hospital 

variation existed, which is comparable to a single-center 

study. The third and fourth scenarios were similar to the first 

and the second but included between-hospital variation in 

how often the hypothetical intervention was performed. Since 

the observed variation of ICP monitoring among hospitals 

ranged from 17% to 58%, every hospital received a random 

percentage within this range. The simulations were performed 

in R statistical software using the rms44 and lme445 packages.

Results
Patient characteristics
In the POCON dataset (n = 266), used for exploring the 

effects of ICP monitoring, patients who received an ICP 

monitor (n = 110) were generally younger, more often male, 

had a lower GCS motor score, less pupillary reactivity, 

less often hypoxia and hypotension and more often a mass 

lesion. In addition, patients receiving an ICP monitor more 

often had tSAHs and EDHs, and had on average a higher 

glucose level. These baseline differences resulted in a worse 

a priori prognosis for patients who received an ICP monitor 

compared to patients who did not receive an ICP monitor 

(n = 156; chance on survival 39% and 58%, respectively). 

Observed outcome was also less favorable in patients who 

received an ICP monitor.

In the Tirilazad dataset (n = 677), used for exploring the 

effects of intracranial surgery, patients who did (n = 579) 

and did not (n = 98) receive an intracranial operation did 

not differ in baseline characteristics except for hypotension 

(14% versus 21%) and the presence of an EDH (31% versus 

10%), nor did the observed outcome differ.

In the EBIC dataset (n = 782), used for exploring the 

effects of referral policy, patients who were primary referred 

(n = 334) had higher blood glucose levels (8.1 versus 7.9 

mmol/L) and more often a tSAH (47% versus 38%) compared 
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to patients who were secondary referred (n = 448). There 

were no other clinically meaningful differences between 

groups (Table 1).

Covariate adjustment and propensity 
score matching
Unadjusted analyses showed that patients receiving an ICP 

monitor in the POCON dataset had a worse outcome than 

patients not receiving an ICP monitor (OR 0.51, 95% CI 

0.32–0.81; Table 2). For intracranial operation and primary 

referral, as analyzed in the Tirilazad and EBIC datasets 

respectively, only minor differences were found between 

treated and non-treated patients. Covariate adjustment and 

propensity score matching resulted in imprecise estimates 

below 1, indicating that exposure to the interventions might 

have either a negative or no effect on outcome.

iV analysis
In the POCON dataset, the percentage of patients who 

received an ICP monitor ranged from 17% to 58% between 

participating hospitals. All five hospitals included at least 20 

patients (range 37–51 patients). For intracranial operation, 

only seven hospitals from the Tirilazad dataset included 

more than 20 patients, encompassing 172 patients. The 

percentage of patients receiving an intracranial operation 

ranged from 67% to 100% between hospitals. For primary 

referral, 12 hospitals from the EBIC dataset included more 

than 20 patients, reducing the sample size to 350 patients. 

Table 1 Baseline, clinical and outcome characteristics of patients exposed and not exposed to three interventions

Characteristic POCON dataset Tirilazad dataset EBIC dataset

ICP+  
(n = 110)

ICP−  
(n = 156)

Intr. 
Operation+  
(n = 579)

Intr. 
Operation−  
(n = 98)

Primary  
Ref.  
(n = 334)

Secondary  
Ref.  
(n = 448)

age (median, iQr) 45 (27–57) 58 (35–70) 35 (24–47) 33 (25–47) 33 (22–53) 41 (26–60)
Male sex 79 (72%) 99 (64%) 463 (80%) 78 (80%) 245 (73%) 337 (75%)
gCs motor score (median, iQr) 1 (1–1) 1 (1–3) 4 (3–5) 4 (3–5) 5 (2–6) 5 (2–6)
Pupillary reactivity

Both pupils reactive 48 (44%) 93 (60%) 346 (60%) 57 (58%) 213 (64%) 298 (66%)
One pupil reactive 13 (12%) 14 (9%) 106 (18%) 18 (18%) 30 (9%) 44 (10%)
no pupil reactive 49 (44%) 49 (31%) 127 (22%) 23 (24%) 91 (27%) 106 (24%)

hypoxia (yes or suspected) 24 (22%) 50 (32%) 115 (20%) 25 (26%) 93 (28%) 132 (30%)
hypotension (yes or suspected) 22 (20%) 55 (35%) 80 (14%) 21 (21%) 87 (26%) 104 (23%)
CT classification*

normal 2 (2%) 26 (16%) na na 49 (15%) 46 (10%)
Diffuse ii 25 (23%) 64 (41%) na na 102 (31%) 125 (28%)
Diffuse iii/iV 19 (17%) 15 (10%) na na 45 (14%) 52 (12%)
Mass lesion 64 (58%) 51 (33%) 579 (100%) 98 (100%) 138 (41%) 225 (50%)

tsah 70 (64%) 77 (49%) 319 (55%) 56 (57%) 156 (47%) 168 (38%)
EDh 19 (17%) 10 (6%) 178 (31%) 10 (10%) 30 (%) 44 (10%)
glucose (mmol/l) (median, iQr) 9.0 (7.3–11.1) 8.3 (6.7–11.0) 8.4 (6.9–10.8) 8.4 (6.5–10.8) 8.1 (6.8–10.9) 7.9 (6.4–9.6)
hemoglobin (g/dl) (mean, iQr) 7.5 (6.3–8.3) 7.6 (6.6–8.5) 12.8 (11.0–14.3) 13.2 (11.1–14.8) 12.7 (11.0–14.4) 12.9 (11.3–14.3)
Psurvival6

‡ 0.39 (0.15–0.77) 0.58 (0.12–0.92) 0.74 (0.52–0.86) 0.75 (0.47–0.85) 0.75 (0.38–0.92) 0.79 (0.44–0.93)
Pfav6

‡ 0.16 (0.06–0.41) 0.40 (0.05–0.78) 0.49 (0.23–0.72) 0.53 (0.19–0.71) 0.49 (0.19–0.76) 0.53 (0.22–0.78)
gOs

Death 60 (54%) 73 (47%) 190 (33%) 37 (38%) 116 (35%) 146 (32%)
Persistent vegetative state 2 (2%) 0 (0%) 36 (6%) 3 (3%) 11 (3%) 7 (2%)
severe disability 20 (18%) 16 (10%) 77 (13%) 8 (8%) 46 (14%) 68 (15%)
Moderate disability 22 (20%) 26 (17%) 85 (15%) 20 (20%) 70 (21%) 85 (19%)
good recovery 6 (6%) 41 (26%) 191 (33%) 30 (31%) 91 (27%) 142 (32%)

Notes: This table presents values after data imputation. Values are presented as n (%) unless otherwise specified. P-values represent the differences between patients 
receiving and not receiving the intervention. *CT classification is based on the Marshall classification: diffuse II refers to CT abnormalities without swelling or shift; diffuse III 
refers to CT abnormalities with swelling (compressed cisterns); and diffuse iV refers to CT abnormalities with a shift. ‡Psurvival6 is the probability of six-month survival; Pfav6 is 
the probability of six-month favorable outcome (gOs score ≥4). The probabilities are based on the variables in the iMPaCT lab model:35 age, gCs motor score, pupillary 
reaction, hypoxia, hypotension, CT classification, tSAHs, EDHs, glucose and hemoglobin.
Abbreviations: CT, computed tomography; EBiC, European Brain injury Consortium; EDh, extradural hematoma; gCs, glasgow Coma scale; gOs, glasgow Outcome 
scale; iCP+, patients receiving intracranial pressure monitoring; iCP−, patients not receiving intracranial pressure monitoring; iMPaCT, international Mission for Prognosis 
and analysis of Clinical Trials; intr. Operation+, patients receiving intracranial operation (craniotomy or craniectomy); intr. Operation−, patients not receiving intracranial 
operation (craniotomy or craniectomy); iQr, interquartile range; na, not applicable; POCOn, Prospective Observational Cohort neurotrauma; ref., referral; tsah, 
traumatic subarachnoid hematoma.
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The percentage primary referrals ranged from 17% to 83% 

between hospitals.

The instruments (percentage of patients exposed to 

the intervention in each hospital) were associated with the 

interventions under study (partial F statistic 6.96–65.9). 

In addition, correlations between the instruments and con-

founders were generally small (Table S1), indicating that the 

assumptions for IV analyses are met.

Using IV analysis, we found that patients treated in 

hospitals that performed 10% more ICP monitors had a 1.17 

(95% CI 1.01–1.42) higher odds of favorable outcome, com-

pared to patients treated in hospitals where ICP monitoring 

was less often employed (Table 2). For intracranial opera-

tion, a 10% increase resulted in higher odds of a favorable 

outcome, but this estimate was rather imprecise (OR 1.42, 

95% CI 0.95–1.96). For primary referral, centers admitting 

more primary referred patients and less secondary referred 

patients had a slightly worse outcome (OR 0.91, 95% CI 

0.81–1.03). More primary referrals and consequently less 

secondary referrals are indicative of less specialized neu-

rocritical care, and therefore, an OR <1 was in line with 

expectations.

sensitivity analyses
Propensity score adjustment and IPW resulted in similar 

effect estimates compared to covariate adjustment and 

propensity score matching (Table S2). The alternative 

hospital-level approaches resulted in effect estimates in the 

same direction as the IV analyses. CIs were however large, 

indicating a decrease of statistical efficiency.

simulation study
The unadjusted analyses resulted in ORs ranging from 0.69 to 

1.02 for the four different scenarios (Table 3). In the scenarios 

where the associations between intervention and outcome 

were influenced by measured confounders only (scenarios 1 

and 3), covariate adjustment and propensity score matching 

resulted in ORs in the range of 1.46–1.67, broadly in line with 

the simulated effect (OR = 1.65). However, in the scenarios 

where unmeasured confounders also influenced the associa-

tion between intervention and outcome (scenarios 2 and 4), 

the adjusted ORs in multivariable analyses were all close to 

the point of no effect (OR 0.99 and 1.03), whereas the ORs 

in the propensity score matching models were negatively 

directed (OR 0.90 and 0.94). IV analysis resulted in a positive 

and statistically significant effect (OR 1.04–1.05 per 10% 

change), indicating that patients admitted to hospitals that 

more often performed the hypothetical intervention had better 

odds of survival than patients admitted to hospitals where the 

intervention was less often performed. When transforming 

these ORs to a 100% change (meaning that all patients in a 

center would receive the hypothetical treatment), the effect 

estimate (OR = 1.05^10 = 1.63) is highly comparable to the 

simulated treatment effect. The SEs of the hospital-level 

analyses (SE 0.07) were however far larger than the SEs of 

the patient-level analyses (SE 0.01), indicating a substantial 

reduction in statistical efficiency (Table 4).

Discussion
We compared analytical methods to adjust for confounding 

by indication in observational studies using three empirical 

Table 2 Comparing analytical methods to adjust for confounding by indication in proportional odds logistic regression models with 
the glasgow Outcome scale as outcome

Approach POCON dataset
ICP monitoring
OR (95% CI)

Tirilazad dataset
Intracranial operation
OR (95% CI)

EBIC dataset
Primary referral
OR (95% CI)

Unadjusted model 0.51 (0.32–0.81) 1.04 (0.70–1.54) 0.85 (0.66–1.10)
Covariate adjustment* 0.91 (0.48–1.74) 0.92 (0.59–1.42) 0.85 (0.64–1.15)
Propensity score matching** 0.80 (0.42–1.54) 0.89 (0.53–1.50) 0.89 (0.76–1.18)
Hospital-level approach*** 1.17 (1.01–1.42) 1.42 (0.95–1.97)ⱡ 0.91 (0.81–1.03)Ⱡ

Notes: *Model was adjusted for the following confounders: age, GCS motor score, pupillary reaction, hypoxia, hypotension, CT classification, tSAHs, EDHs, glucose and 
hemoglobin. **A propensity score was calculated based on the following variables: age, GCS motor score, pupillary reaction, hypoxia, hypotension, CT classification, tSAHs, 
EDhs, glucose and hemoglobin. For iCP monitoring, matching resulted in 67 patients receiving the intervention (propensity score 0.47, probability on survival 0.46, probability 
on favorable outcome 0.28) and 67 patients not receiving the intervention (propensity score 0.46, probability on survival 0.43, probability on favorable outcome 0.32). For 
craniotomy, matching resulted in 96 patients receiving the intervention (propensity score 0.83, probability survival 0.63, probability favorable outcome 0.42) and 96 patients 
not receiving the intervention (propensity score 0.83, probability survival 0.63, probability favorable outcome 0.42). For primary referral, matching resulted in 312 patients 
being primary referred (propensity score 0.46; probability survival 0.65; probability favorable outcome 0.49) and 312 patients being secondary referred (propensity score 
0.47, probability survival 0.65, probability favorable outcome 0.48). ***Per 10% change; model was adjusted for the following confounders: age, GCS motor score, pupillary 
reaction, hypoxia, hypotension, CT classification, tSAHs, EDHs, glucose and hemoglobin. ⱡanalyses in seven centers with a total of 172 patients. Ⱡanalyses in 12 centers with 
a total of 350 patients.
Abbreviations: CT, computed tomography; EBiC, European Brain injury Consortium; EDhs, epidural haemorrhages; gCs, glasgow Coma scale; iCP, intracranial pressure; 
POCOn, Prospective Observational Cohort neurotrauma; tsahs, traumatic subarachnoid hemorrhages.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Epidemiology 2018:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

847

Confounding by indication in observational studies

case studies and a simulation study. The estimated effects 

strongly depended on the analytical method applied. As 

expected, the presence of unmeasured confounders makes 

covariate adjustment and propensity score matching invalid. 

IV analysis, although statistically inefficient and relying on 

strong assumptions, may then provide more valid estimates 

of the effectiveness of interventions.

Covariate adjustment and propensity 
score matching
Covariate adjustment and propensity score matching are 

commonly used in observational studies of interventions. We 

found that these methods could provide an unbiased estimate 

of the effect of the intervention, on the condition that all rel-

evant confounders are measured and adjusted for. Covariate 

adjustment and propensity score matching cannot adjust for 

unmeasured confounders.3,7,11,12,41 In our simulation study, 

for example, the beneficial interventions appeared harmful 

or ineffective when analyzed with covariate adjustment or 

propensity score matching, due to residual confounding by 

indication.

iV analysis
IV analysis resulted in better estimates of the effect of inter-

ventions in our simulation study; the direction of the effect 

was congruent with the simulated effect. In our empirical 

case studies, the directions of effects were in line with how 

patients should be treated according to guidelines for TBI22–26 

and best available evidence.17,26,27,46

IV analysis is becoming more popular in TBI research. 

Several recently published TBI studies analyzed effectiveness 

at the hospital level,47–50 and a large European CER study is 

planning to use hospital-level analysis to assess effective-

ness of many TBI interventions.51 Previous studies typically 

divided hospitals into groups (e.g. tertiles47 or quartiles48) 

based on the percentage of patients treated. The percentage 

treated in each hospital can also be used as a continuous 

variable, which increases statistical power.

Nevertheless, IV analysis also has limitations that war-

rant comment. First, IV analysis is statistically inefficient 

compared to conventional analytical methods. Since the 

analyses are performed at the level of the hospital, the effec-

tive sample size decreases. As a consequence, a large number 

of centers and patients and substantial variability in exposure 

to interventions across centers are needed to reach a precise 

estimate in case of a true beneficial effect. The conduct of IV 

analysis might therefore be relatively expensive and resource-

intensive. However, when compared to clinical trials, IV 

analysis of observational data is probably more economical 

since many research questions could be addressed using the 

same data.

Second, the interpretation of the OR differs from the 

conventional analyses. Rather than an estimate of the effect 

of interventions in individual patients, IV analysis provides 

Table 3 Comparing analytical methods to adjust for confounding by indication in a simulation study with six-month survival as binary 
outcome

Approach Scenario 1*
OR (95% CI)

Scenario 2*
OR (95% CI)

Scenario 3*
OR (95% CI)

Scenario 4*
OR (95% CI)

Unadjusted model 1.02 (1.00–1.04) 0.69 (0.68–0.71) 0.96 (0.93–0.98) 0.72 (0.70–0.74)
Covariate adjustment 1.67 (1.63–1.71) 0.99 (0.97–1.02) 1.52 (1.47–1.56) 1.03 (1.00–1.06)
Propensity score matching 1.46 (1.43–1.50) 0.90 (0.88–0.92) 1.46 (1.41–1.50) 0.94 (0.91–0.97)
Hospital-level approach** na na 1.05 (1.04–1.07) 1.04 (1.02–1.05)

Notes: *Scenario 1 = observed confounders, no hospital variation; scenario 2 = observed and unobserved confounders, no hospital variation; scenario 3 = observed 
confounders, hospital variation (17%–58%); scenario 4 = observed and unobserved confounders, hospital variation (17%–58%). **Per 10% change.
Abbreviation: na, not applicable.

Table 4 Characteristics of analytical methods to adjust for confounding by indication based on our simulation and validation study

Approach Adjustment  
for measured 
confounders 

Adjustment for  
unmeasured  
confounders

Statistical  
efficiency

Relying on  
strong 
assumptions

Interpretation

Unadjusted model − − + − +
Covariate adjustment + − +/−* − +
Propensity score matching + − − − +
instrumental variable analysis + +‡ − + −

Notes: *Statistical efficiency depends on the number of covariates and the number of patients with the outcome of interest (“events”). ‡in theory, instrumental variable 
analysis can correct for unmeasured confounders.
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information on whether patients’ outcome will improve 

when hospitals change their policy with respect to a specific 

intervention.7,9 The issue of interpretation is prominent for 

primary referral. Although primary referral on the patient 

level might be associated with more specialized neurocritical 

care, at the hospital level, a larger number of primary referrals 

and thus a lower number of secondary referrals are indica-

tive of less specialized care. Therefore, for primary referral, 

a negative association between the instrument “percentage 

primary referrals” and outcome was expected, which was 

indeed found in the EBIC data. Third, the success of IV 

analysis depends on whether the underlying assumptions are 

met.9,52,53 Thus, IV analysis might not always be defendable. 

Between-hospital variation, caused by other variables than 

those in the model, could theoretically be captured by the 

random-effect model. Nevertheless, when correlations are 

strong (e.g. centers that often perform a particular interven-

tion are all from the same geographic region that differs from 

other regions in many aspects), the statistical model will be 

unable to separate the effect of the intervention from the effect 

of the confounder. In these situations, one should consider 

other analytical methods or conclude that it is not possible 

to analyze the effectiveness of the particular intervention in 

the dataset.

strengths and limitations
A major strength of our study is that we included both 

empirical case studies and a simulation. The TBI exam-

ples show how the various analytical methods worked 

with actual patient data and demonstrated the influence 

of analytical method on effect estimate. The simulation 

study subsequently provided insight into the underlying 

mechanisms and thereby indicated which methods pro-

vided valid estimates of the treatment effect in different 

situations. A limitation of our simulation study is that we 

only examined four scenarios while there are many more 

possible interactions between treatment and confounders 

that might be of interest. A second limitation is that we used 

the observed range from one dataset (POCON), whereas 

the actual range might differ. Future simulation studies 

could address alternative scenarios and should further 

investigate how statistical power can be optimized when 

using IV analysis. Another limitation of the simulation 

study is that we included two variables as presenting the 

measured confounders and two variables as presenting the 

unmeasured confounders. As a consequence, the predictive 

value of our predictors is relatively modest which may have 

resulted in unstable estimates.

Our case studies also have several limitations. The data 

are relatively outdated (data were collected between 1992 and 

2009) and analyzed post hoc. Therefore, the current study 

cannot be used to draw conclusions about the effectiveness of 

interventions. In addition, each intervention was measured in 

only one dataset, while it would be more interesting to dem-

onstrate the different analytical methods for each intervention 

over different datasets. This was not possible in our study 

since not all interventions were measured in all three datasets. 

Furthermore, specific concerns exist in the data with regard 

to the three interventions. An ICP monitor is a diagnostic 

procedure and cannot influence outcome on itself, while it can 

cause complications. The actual comparison is between ICP-

driven therapies versus clinical/radiological-driven therapies. 

With regard to the variable intracranial operation, the clinical 

applicability is unclear since the exposure and intervention 

in these data are not defined specifically (What kind of 

mass lesions? What intracranial operation?). More granular 

information on these interventions was unavailable inherent 

to the post hoc setup. For primary referral, we assumed that 

more primary referrals are associated with less specialized 

care. However, an alternative explanation would be that many 

primary referrals in a center are indicative that this center has 

a central location. Another limitation is that all three datasets 

were relatively modest in terms of number of hospitals and 

number of patients. The POCON dataset had only five hospi-

tals, while the Tirilazad and EBIC datasets had only seven and 

12 hospitals that included at least 20 patients, respectively. 

Therefore, differences among hospitals might also exist by 

chance; for instance, if a hospital included only 20 patients, 

these patients might not be representative for the general 

policy in the particular hospital. Therefore, we recommend 

future studies using IV analyses in TBI to include a larger 

number of hospitals and a large number of patients in each 

hospital. In addition, since the “percentage treated” in each 

hospital is based on data of the included patients, it might 

still be subject to confounding by indication. Alternatively, 

policies with regard to an intervention might be identified 

by (former) registry data or by an independent survey study 

completed by all the participating hospitals. Such an approach 

will be used in an ongoing TBI study.51 A further limitation 

may have been the use of an ordinal outcome measurement. 

Although ordinal outcome measurements are highly recom-

mended in TBI research due to an increase of statistical 

power and precision,36 it is uncertain whether the results of 

this study are also generalizable to binary and continuous 

outcomes. Finally, it should be recognized that all covariates 

included in this study are measured only at admission, while 
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the clinical situation of a patient may change over time (e.g. 

the GCS score may deteriorate), resulting in a different risk 

profile and also influencing treatment decisions. Allowing 

time-varying aspects may probably improve the predictive 

value of covariates and thereby may also improve the valid-

ity of patient-level analyses. This should be studied in future 

investigations, although it should be noted that only covari-

ates that are known before the treatment decision is made 

are relevant, to avoid over adjustment.

implications
IV analysis is emerging as an analytical method in many 

research fields, including oncology,54 cardiovascular dis-

ease55 and pharmaco-epidemiology.56 We demonstrated 

that IV analysis might provide a more valid estimate of 

the treatment effect compared to conventional analytical 

methods. In addition, IV analysis is not only suitable for 

analyzing the effectiveness of individual interventions but 

can also be applied to estimate the effectiveness of systems 

of care; for instance, Pezzin et al57 studied the influence of 

volume on breast cancer mortality using IV analysis. We 

showed that the percentage treated in each hospital might 

be a valid instrument. Notwithstanding, for interventions 

that show mainly between-region or between-country varia-

tion rather than between-hospital variation, for example 

prehospital trauma care, one might choose to analyze the 

results on the level of the region or country rather than the 

level of the hospital. Since all methods for causal infer-

ence have their strengths and limitations, it is nevertheless 

not desirable to regard one method as “correct”.58 Instead, 

alternative methods should be used simultaneously.58 In case 

alternative methods provide similar results, the credibility of 

the findings may strengthen. However, if findings are non-

concordant, one has to determine which method is the most 

credible. Laborde-Casterot et al59 developed a flow chart to 

determine which method (IV versus patient-level methods) 

may provide the most valid results. Factors that could be 

taken into account when analyzing non-concordance of 

result include the risk of confounding by indication, the 

strength of the instrument, the validity of the instrument, 

the statistical power and concordance with RCTs on the 

same intervention (if available).59

Conclusion
The effect estimation of interventions in observational stud-

ies strongly depends on the analytical method used. When 

unobserved confounding and practice variation are expected 

in observational multicenter studies, IV analysis should be 

considered.
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Table S1 assumptions for instrumental variable analysis

ICP monitoring Intracranial operation Primary referral

assumption 1: instrument must be strongly associated with the intervention itself
Partial F statistic 22.4 7.0 65.9

assumption 2: substitute variable is not associated with any of the prognostic factors
spearman’s rho correlation with Psurvival −0.09 0.17 0.06
spearman’s rho correlation with Pfavorable outcome −0.18 0.14 0.07

Note: Psurvival = the probability of six-month survival; Pfavorable outcome = the probability of six-month favorable outcome (gOs >3).
Abbreviation: iCP, intracranial pressure.

Table S2 results of sensitivity analyses: alternative methods to adjust for confounding by indication

Approach POCON dataset
ICP monitoring
OR (95% CI)

Tirilazad dataset
Intracranial operation
OR (95% CI)

EBIC dataset
Primary referral
OR (95% CI)

alternative propensity score adjustment approaches
Propensity score adjustment† 0.80 (0.66–0.96) 0.86 (0.57–1.28) 0.92 (1.28–0.65)
inverse probability weighting‡ 0.73 (0.45–1.17) 1.11 (0.73–1.70) 0.90 (0.70 –1.16)

alternative hospital-level adjustment approach
random-effect preference-based approachⱡ 1.45 (0.81–2.97) 1.95 (0.67–4.56) 0.63 (0.37–1.06)

random-effect model with random intercept for the interventionⱠ 2.35 (0.76–8.84) 6.61 (0.21–142.7) 0.64 (0.35–1.24)

Notes: †The natural logarithm of the propensity score was added to the analytic model. ‡results are presented for a 95% winsorized cohort. ⱡhospitals were divided into 
two groups (high preference for the intervention versus low preference for the intervention) based on the mean percentage of patients receiving the intervention. The Or 
represents the odds of a higher score on the gOs for high-preference hospitals in comparison to low-preference hospitals adjusted for observed patient-level confounders to 
increase statistical power. ⱠFor each center, the random intercept of exposure to the intervention was estimated in a random-effect model with the intervention of interest 
as outcome variable and all iMPaCT variables and a random intercept for center as predictors. The random intercepts were subsequently added as predictors, together with 
the iMPaCT variables, to increase statistical power. results are presented for a 10% change.
Abbreviations: EBiC, European Brain injury Consortium; gOs, glasgow Outcome scale; iCP, intracranial pressure; iMPaCT, international Mission for Prognosis and 
analysis of Clinical Trials; POCOn, Prospective Observational Cohort neurotrauma.
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