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Abstract: Human adenovirus (HAdV) is a ubiquitous virus that infects the mucosa of the 

eye. It is the most common cause of infectious conjunctivitis worldwide, affecting people of 

all ages and demographics. Pharyngoconjunctival fever outbreak is due to HAdV types 3, 4, 

and 7, whereas outbreaks of epidemic keratoconjunctivitis are usually caused by HAdV types 

8, 19, 37, and 54. Primary cellular receptors, such as CAR, CD46, and sialic acid interact with 

fiber-knob protein to mediate adenoviral attachment to the host cell, whereas adenoviral penton 

base–integrin interaction mediates internalization of adenovirus. Type 1 immunoresponse to 

adenoviral ocular infection involves both innate immunity mediated by natural killer cells and 

type 1 interferon, as well as adaptive immunity mediated mainly by CD8 T cells. The result-

ing ocular manifestations are widely variable, with pharyngoconjunctival fever being the most 

common, manifesting clinically with fever, pharyngitis, and follicular conjunctivitis. Epidemic 

keratoconjunctivitis, however, is the severest form, with additional involvement of the cornea 

leading to development of subepithelial infiltrates. Because there is currently no US Food and 

Drug Administration-approved treatment for adenoviral ocular infection, current management is 

palliative. The presence of sight-threatening complications following ocular adenoviral infection 

warrants the necessity for developing antiadenoviral therapy with enhanced therapeutic index. 

Future trends that focus on adenoviral pathogenesis, including adenoviral protein, which utilize 

host receptors to promote infection, could be potential therapeutic targets, yielding shorter active 

disease duration and reduced disease burden.
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Introduction
Human adenovirus (HAdV) is a ubiquitous virus that infects various mucoepithelial 

cells of the body. Primary targets of HAdV infection are eyes, the genitourinary 

tract, respiratory tract, and gastrointestinal tract.1 In fact, HAdV is the most common 

cause of infectious conjunctivitis and red eye worldwide, accounting for up to 75% 

of all conjunctivitis cases and affecting people of all ages and demographics.2 Due 

to its high frequency and many infected patients not seeking medical attention, the 

incidence is difficult to ascertain.3 The majority of adenoviral ocular infections are 

subclinical, with some being mildly symptomatic and self-limiting.4,5 HAdV infec-

tion in immunocompetent individuals is usually subclinical in nature; however, there 

is likely to be increased ocular morbidity and disease burden in individuals with 

compromised immune systems.3 Morbidity is higher in the pediatric population than 

the adult population with immunocompromised status.3,6 Risk factors for invasive 
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and disseminated HAdV include solid-organ or stem-cell 

transplant and severe immunosuppression. T-cell depletion 

can result in development of inadequate or lack of cellular 

immunoresponse to AdV. Depletion of T cells associated with 

stem-cell transplant, use of long-term immunosuppressants, 

and absence of T cells associated with congenital immuno-

deficiency constitute a significant risk for a persistent and 

severe course of HAdV infection.6

The mode of transmission of AdV-associated ocular 

infection include direct contact with infected fomites, water, 

and fecal oral contamination.7 It is noteworthy that AdV can 

survive on a fomite, with the contaminated fomite acting as a 

medium for transmission.5 Pharyngoconjunctival fever (PCF) 

outbreak is due to HAdV types 3, 4, and 7.8–10 Outbreaks of 

epidemic keratoconjunctivitis (EKC) are usually caused by 

HAdV types 8, 19, 37, and 54.11–14 Periodic outbreaks of 

AdV ocular infections occur in crowded communities, with 

children playing a prominent role in maintaining and trans-

mitting the virus to others in their immediate environment.15 

Its highly contagious nature, long incubation period, and 

lack of gold standard testing or treatment cause adenoviral 

conjunctivitis to be a significant global economic burden.16 

Besides medical costs secondary to nosocomial infections, 

the failure to diagnose this condition in a timely and accurate 

fashion leads to an increased number of affected individuals, 

resulting in excess time away from work and future loss of 

earning potential due to disability. Misdiagnosis addition-

ally increases health-care spending, due to failure to initiate 

proper prevention methods, the need for more frequent phy-

sician follow-up, and inaccurate prescription of therapeutic 

agents.16 The focus of this review is on the viral pathogenesis 

of HAdV, clinical ocular manifestations that develop in 

response to host–defense mechanisms, current laboratory 

diagnostic methods, and therapeutic approaches to manage 

these ocular infections.

Adenoviral pathogenesis
AdV is a lytic, nonenveloped double-stranded DNA virus, 

with a 36 kb genome encoding more than 40 structural and 

nonstructural proteins.17 AdV is 90 nm in diameter with an 

icosahedral capsid that contains 240 trimers of hexon protein 

and 12 pentamers of penton base proteins. Fiber protein pro-

trudes from the penton base and consists of an N-terminal tail 

in contact with penton base protein and a C-terminal knob 

domain that serves as a binding site for host cellular recep-

tors.1 Classification of AdVs into seven groups (A–G) is on 

the basis of their hemagglutination properties, tissue tropism, 

serology, DNA homology, and host-receptor usage.7,18–22 The 

Human Adenovirus Working Group proposed the character-

ization and typing of HAdVs on the basis of whole-genome 

sequence analysis.23 To date, there have been 86 types of 

HAdV reported by this group.24 HAdV belongs to the genus 

Mastadenovirus and family adenoviridae.18

Major structural proteins of AdV include a homopenta-

meric penton base that mediates AdV internalization into 

the host,25 a homotrimeric fiber protein that plays a role in 

viral attachment to host cellular receptors,26 and hexons that 

are recognized by neutralizing antibodies.5,7,18 Minor capsid 

proteins include proteins VI, III, VIII, and IX. Core proteins 

of HAdV include IVa2, V, VII, MU and terminal protein.18,27 

Primary cellular receptors, such as CAR,28 CD46 (membrane 

cofactor protein),29 sialic acid,30 desmoglein 2,31 heparin 

sulfate proteoglycans,32 CD80, CD86,33 and GD1a,34 interact 

with fiber-knob protein to mediate adenoviral attachment to 

host cells.1,35

The presence of AdV on the ocular surface is associated 

with activation of ocular surface epithelial cells secreting 

interleukin 8 (IL8), which binds to its chemokine receptors 

CXCR1 and CXCR2. The subsequent phosphorylation of 

downstream molecules culminates in the translocation of 

CAR and α
v
β

3
 integrin from the basolateral surface of the 

polarized epithelial cell to the apical surface to enable inter-

action of AdV fiber knob with CAR on the apical surface 

of the epithelial cell.19,35,36 Because CD46 is located above 

the tight junction, it is considered a suitable receptor for 

mediating adenoviral entry.37 It is noteworthy that each of 

the RGD (arginine–glycine–aspartate) loops on the penton 

protein serves as a binding site for integrins.37 RGD-loop 

spatial arrangement promotes the signaling process involved 

in internalization of AdV into the host cell; however, it does 

not provide efficient binding site for neutralizing antibodies.18 

Many epithelial cells express vitronectin-binding integrins 

(α
v
β

3
 and α

v
β

5
) that promote internalization of AdV, depend-

ing on the RGD sequence in the penton base protein.25,35,38–40 

Most HAdVs have the RGD peptide in their penton base, 

except HAdV-F40, HAdV-F41, and HAdV-D60.4,35

Following adenoviral attachment, internalization of 

AdV into an endosome is mediated by the interaction of 

the homopentameric penton base and vitronectin-binding 

integrin.18,25,37 Penton base–integrin interaction activates an 

intracellular signaling cascade that culminates in the inter-

nalization of AdV into clathrin-coated vesicles.18,37,39,41–43 

Following internalization of the adenoviral nucleocapsid 

into the endosome, acidification of the endosome is required 

to initiate several steps involved in the uncoating of AdV. It 

is of note that the acidic pH of the endosome triggers the 
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AdV-uncoating process and penetration of the endosome.37,44 

These steps facilitate the release of the viral DNA genome 

into the nucleus. The first step is vertex dissociation from 

the adenoviral capsid, a temperature-dependent process that 

occurs at or near the plasma membrane. Removal of the 

vertex is followed by further uncoating of the virus in the 

endosomal pathway, which is linked to endosomal penetra-

tion. There is loss of peripentonal hexons, pIIIa, pVIII, and 

pIX, as well as the release of pVI, a minor capsid protein 

required for disruption of the endosomal membrane18,37,45–47 

and facilitation of nuclear importation through movement 

in a microtubule- and dynein-dependent mechanism and 

dock at the nuclear pore complex, a proteinaceous channel 

that mediates movement of the nucleocapsid viral genome 

into the nucleus, where viral replication takes place.18,37,48,49 

The replication cycle of AdV consists of an early stage 

and a late stage.50 The early stage of adenoviral replication 

is characterized by the generation of adenoviral E1A protein 

(encoded by the E1A gene) that transactivates other early 

genes E1B, E2, E3, and E4, which play important roles in 

the early stage of the AdV replication cycle.1,50–54 Adenoviral 

DNA replication is dependent on viral DNA polymerase, 

preterminal protein, and DNA-binding protein.55–58 The 

E2 gene encodes adenoviral DNA polymerase, precursor 

terminal protein, and DNA-binding protein, which play an 

important role in viral DNA replication.52,59,60 The E3 gene 

encodes the E3 gp19K protein (E3 Mr 19k glycoprotein), 

which prevents the display of viral antigen complexed to 

MHC class 1 molecules on the surface of virally infected 

cells.61,62 The E4 gene encodes E4 proteins, which shut off 

of host-cell protein synthesis.1,63,64 Additionally, this gene is 

required for the expression of late genes during adenoviral 

DNA replication.65 The late stage of adenoviral replication 

ensues when late genes encode the adenoviral structural pro-

teins.65–67 Adenain (23k cysteine protease), encoded by the L3 

gene, promotes maturation and generation of progeny DNA 

that is packaged in virions.1,37,59 Newly generated genome 

duplexes of AdV may either enter further replication rounds 

or undergo processing and encapsidation into virions.59

Host response to adenovirus
The human immune system consists of many levels of 

defense against invasion by pathogens, including viruses. 

The epithelium of the ocular surface provides a physi-

cal barrier to invasion by viruses and constitutes the first 

level of defense against pathogens, including AdVs. The 

chemical barrier, along with the physical barrier, prevents 

viruses from gaining access to the subepithelial layers of 

the conjunctiva and cornea. Antimicrobial proteins found 

in the tear film and expressed by the ocular surface epithe-

lia are innate immune molecules that provide an effective 

chemical barrier to invading microbes. Defensin is a major 

antimicrobial protein that possesses antiviral activity.68 

Nguyen et al69 demonstrated that human α-defensin blocks 

the uncoating of AdVs, thereby inhibiting adenoviral infec-

tion. In addition to the partial disassembly of the virus, it has 

been shown that human α-defensin inhibits HAdV-mediated 

endosomalysis.70 However, a breach of the physical and 

chemical barrier results in the initiation of cellular innate 

immunoresponse and subsequent generation of antiviral 

immunoresponse.68

Innate immunoresponse to adenoviral ocular infection is 

mediated by natural killer (NK) cells, monocytes, and type 

1 interferon (IFN). Adaptive immunity is mediated by IgA, 

CD8 T cells, and T-helper 1 (T
H
1) cells. Type 1 IFNs are 

innate antiviral cytokines, whereas IFNγ plays a major role 

in antiadenoviral adaptive immunoresponse.7,71 Additionally, 

plasmacytoid and conventional dendritic cells participate in 

immunoresponse to AdV.38 Viral proteins and nucleic acid 

are virus-associated molecular patterns that bind to pattern-

recognition receptors on macrophages and dendritic cells, 

which in turn results in the activation of macrophages to 

release proinflammatory cytokines, such as IL1β, IL6, IL8, 

IL12, and TNFα.19 The activated dendritic cell traffic to 

regional secondary lymphoid tissue to activate naïve T cells 

to generate effector T cells, such as CD8 cytotoxic T cells and 

T
H
1 cells.71–73 Adenoviral infection of plasmacytoid dendritic 

cells result in adenoviral DNA interacting with TLR9, which 

results in the production of type 1 IFN.74 Additionally, NK 

cells respond to viral infection by promoting and regulating 

the adaptive immunoresponse via cross talk with dendritic 

cells and T cells, as well as via production of IFNγ and 

TNFα.75 It is of note that IFNγ secreted by NK cells promotes 

the upregulation of costimulatory molecules on conventional 

dendritic cells, priming them for efficient T-cell activation. 

NK cells are activated by IL12 and type 1 IFN to release 

IFNγ, TNFα, perforin, and granzyme.75

Antibody-mediated response to adenoviral ocular infec-

tion is mediated by neutralizing antibodies directed against 

hexon to prevent hexon–host cell interaction, complement-

mediated lysis of AdV-infected cells, and antibody-dependent 

cell-mediated cytotoxicity via NK cells.76 Sumida et al77 

demonstrated that neutralizing antibodies are directed against 

the hexon protein of AdV. Perforin and granzyme released by 

cytotoxic T lymphocytes (CTLs) and NK cells are responsible 

for cell-mediated cytotoxicity of AdV-infected cells, whereas 
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IFNγ and TNFα released by T
H
1 cells and CTLs also play a 

pivotal role in clearance of adenoviral ocular infection.72,78,79

Although cell-mediated immunity is necessary for limit-

ing viral growth, AdV is able to persist in the host via the 

use of immunoevasive strategies, such as inhibiting antiviral 

response mediated by IFNs, preventing cytolysis of AdV-

infected cells by TNFα, promoting intracellular survival by 

blocking apoptosis of infected cells and evading CTL-medi-

ated cytolysis of infected cells by preventing the display of 

viral peptide complexed to major histocompatibility complex 

(MHC) class I molecules on the surface of virally infected 

cells.80–84 Leonard and Sen83 demonstrated that adenoviral 

E1A protein inhibits expression of IFNγ-inducible genes, 

which translates to E1A protein-mediated inhibition of IFNγ 

expression. Additionally, EIA protein has an inhibitory effect 

on IFNα, a potent innate antiviral cytokine.83 Lesokhin et 

al85 demonstrated that adenoviral E3 protein can inhibit the 

ability of TNFα to induce the secretion of chemokines, such 

as IL8 and MCP1. Adenoviral E3 protein (E3-14.7K) blocks 

the ability of TNFα to induce the apoptosis of AdV-infected 

cells.86,87 Adenoviral virus-associated-inducible RNA antago-

nizes the activation of IFN-induced dsRNA-activated protein 

kinase, a protein that plays an important role in mediating 

the antiviral action of IFN.88

NK cells are one of the first responding lymphocytes of 

the innate immune system in cases of viral infection of muco-

sal surfaces, such as the conjunctiva, which are responsible 

for cytokine production, apoptosis, and engaging the cell-

mediated immunoresponse.75,89 Studies have reported that 

AdVs retain the ability, through the use of multiple pathways, 

to inhibit the NK response in the early and acute stages of the 

conjunctivitis. This is able to occur through the upregulation 

of inhibitory ligand human leukocyte antigen E, in addition 

to the downregulation of several ligands that are responsible 

for the initiation of NK-cell-activating receptors.90 Addition-

ally, concomitant downregulation of human leukocyte antigen 

A/B/C expression is a strategy used by the virus to modulate 

MHC class I expression in infected conjunctival epithelium. 

Group D HAdV evades immunomediated cytolysis by 

downregulating expression of ligands (CD112 and CD155) 

for activating NK cell receptor DNAM1/CD226, which in 

turn translates to impairment of NK-cell-mediated immunity 

against AdV. This allows the virus to remain active on the 

conjunctival surface and give rise to persistent infection.75

Viral and tissue tropism
Adenoviral tropism is related to affinity of host cellular recep-

tors for fiber knob for viral entry and penton base for viral 

internalization.5 Binding affinity for host cellular receptors 

plays a role in viral tropism, with broadening of viral tropism 

linked to degree of binding affinity.35 As such, affinity between 

virus and cellular receptors is likely to be high if few receptor 

molecules are adequate to produce an infection. If binding 

sites on cellular receptors are masked or many receptor mol-

ecules required to cause infection, such affinity of the interac-

tion between virus and cellular receptor is low.35 HAdVA, -C, 

-D, -E, and -F species use CAR,91 whereas HAdVB species 

use CD4692–94 or membrane glycoprotein desmoglein 231 as 

cellular receptor for viral attachment. Species HAdVD37 

utilizes sialic acid30 and GD1a34 as cellular receptors to infect 

the eye, whereas species HAdVD8 and -D19 utilize CAR and 

sialic acid as cellular receptors to cause ocular infection.20,91 

Tissue tropism of AdV is dependent on the affinity between 

viral attachment proteins and host cellular receptors, as well 

as adenoviral grouping. It is of note that HAdVD species have 

affinity for ocular tissues, and as such they are implicated in 

adenoviral ocular surface infections.5

Clinical manifestations
Clinical manifestation of adenoviral ocular infection is 

usually lytic in nature, with persistent infection attributed 

to latent AdV infection.5,95 Lytic infection occurs upon 

completion of the viral replicative cycle in permissive cells, 

with release of up to 1 million progeny viruses per cell, of 

which up to 5% of virions are capable of causing infection.5,7 

Chronic or latent AdV infection is characterized by produc-

tion of small amounts of virus, which serves as a source 

for nosocomial spread of AdV in hospitals, chronic-care 

facilities, and day-care centers.7 PCF is caused by HAdV 

types 1, 2, 3, 4, 5, and 7 and is associated with swimming in 

insufficiently chlorinated pools and lakes (Table 1).5,76,96 In 

contrast, EKC is a highly contagious ocular infection caused 

by AdV types 8, 19, 37, 53 and 54. EKC usually occurs as 

an outbreak emanating from eye clinics with contaminated 

instruments and solutions (Table 1).5,7,97

Table 1 Overview of ocular involvement and clinical manifestations 
with specific adenoviral serotypes2,8–10,12–14,37,41,99,100,106,110

Ocular structure Clinical manifestations Subtypes involved

Adnexa Eyelid edema, lacrimal gland 
enlargement, nasolacrimal 
duct inflammation

1–5, 7, 8, 19, 37, 
53, 54

Conjunctiva Follicles, hyperemia, edema, 
petechial hemorrhages, 
pseudomembranes

1–5, 7, 8, 19, 37, 
53, 54

Cornea Multifocal punctate keratitis, 
subepithelial infiltrates

8, 19, 37, 53, 54
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The ocular manifestations of HAdV infections are widely 

variable. PCF is the most common presentation, primarily 

affecting children.98 Conjunctival entry of AdV has been 

investigated using microarray technology, which demon-

strated that nuclear localization of the virus occurred about 

1.5 hours following infection, inducing early transcription 

followed by late transcription hours later.80 PCF manifests 

clinically with fever, pharyngitis, rhinitis, follicular conjuncti-

vitis, and regional lymphoid hyperplasia. Replication of AdV 

in the conjunctiva is associated with follicular hypertrophy, 

edema, hyperemia, and petechial hemorrhages.5,8,10,99,100 

Conjunctival hyperemia and edema are attributed to acute 

inflammation induced by innate immunoresponse to AdV 

in the conjunctiva. Proinflammatory cytokines, such as 

TNFα released during the innate immunoresponse, induce 

conjunctival vasodilation and capillary leakage, which results 

in conjunctival hyperemia and edema, respectively. Petechial 

hemorrhages are due to AdV-induced vasculitis, which is 

associated with persistent AdV-induced conjunctival inflam-

mation, in which dilated conjunctival capillaries become 

compromised and fragile with consequential increased cap-

illary permeability and rupture of conjunctival capillaries 

(Figure 1).72,101 The appearance of follicular response, which 

appears as avascular, round, or oval clusters of lympho-

cytes, depends on the patient’s immunoresponse to the AdV 

infection.72 Pseudomembranes are likely due to exudation of 

serum, fibrin, and leukocytes from dilated capillaries in the 

conjunctiva and follicular reaction in the inflamed palpebral 

conjunctiva.2,101 Pseudomembranes consist of leukocytes, 

necrotic epithelial tissue, and fibrin on the inflamed surface 

of the palpebral conjunctiva.  Pseudomembranes could poten-

tially form a conjunctival scar and symblepharon if they are 

not removed.2,102 Pseudomembranes are always present in 

the more symptomatic eye (Figure 2).103 PCF is typically 

self-limiting and will resolve in 2–3 weeks.2

EKC is the most severe form of ocular HAdV infec-

tion.2,104,105 Patients will often report redness, tearing, 

foreign-body sensation, and photophobia. They may also 

have flu-like symptoms, such as generalized fever, malaise, 

and myalgia.3,100 Magnetic resonance imaging in EKC reveals 

that there is even deeper penetration of ocular tissue, with 

evidence of associated eyelid edema and lacrimal gland 

enlargement. It is also often accompanied by nasolacrimal 

duct inflammation, giving rise to excessive symptomatic 

tearing in these patients.100,106 It is noteworthy that AdV infec-

tion of the ocular surface primarily affects the conjunctival 

surface, but in EKC, AdV may also gain entry into the cornea, 

inducing innate and cell-mediated immunoresponses.75,80

The most unique characteristic of this type of conjuncti-

vitis is its ability to gain entry into the cornea, resulting in a 

Figure 1 Slit-lamp photography of superior palpebral conjunctiva with petechial hemorrhages (black arrow) in a patient with adenoviral keratoconjunctivitis.
Note: Courtesy of DeGaulle I Chigbu.
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severe inflammatory response that often leads to detrimental 

visual disturbance.106 This inflammatory response is as a 

result of several factors. It is well documented that the corneal 

stroma houses a significant number of cells, including fibro-

blasts, dendritic cells, and macrophages. As such, these cells 

respond greatly in cases of infection or insult, resulting in the 

production of chemokines that facilitate leukocytic infiltra-

tion.74 The entry of AdV into the cornea begins with its entry 

to the cell membrane following initial infection. Next, cell 

binding occurs as the virus makes its way to the cytoplasm, 

yielding intracytoplasmic accumulation and subsequent clini-

cally evident stromal inflammation shortly thereafter.107,108 

It is of note that the process through which the virus enters 

the host is clathrin-mediated endocytosis. Caveolae, lipid 

rafts that allow entry into the plasma membrane, contain the 

membrane protein caveolin 1, a ubiquitous protein in several 

cell types, mainly fibroblasts. AdVs use this pathway to gain 

access into the cornea.41

Corneal involvement may begin as early as 2–3 days fol-

lowing initial clinical presentation. Changes to the corneal 

tissue that occur following the immunoresponse are seen 

clinically as keratitis, often associated with adenoviral 

keratoconjunctivitis. Multifocal punctate keratitis is usually 

due to replication of the AdV in the corneal epithelium, 

and this gradually develops into focal areas of epithelial 

opacities.109 Approximately 7–10 days following the initial 

clinical manifestation of EKC, multiple, focal subepithelial 

infiltrates (SEIs) arise in the anterior stroma of the cornea.13 

Interaction of adenoviral virus-associated molecular patterns 

with pattern recognition receptors on superficial keratocytes 

is associated with infection and activation of keratocytes in 

the anterior corneal stroma, with consequential upregulation 

of proinflammatory mediators, such as chemokines. IL8 

and MCP1 are chemokines released by AdV-infected kera-

tocytes that mediate leukocyte infiltration in AdV-infected 

corneal stroma. IL8 recruits neutrophils, whereas MCP1 

recruits monocytes and T cells. Accumulation of lympho-

cytes, macrophages/monocytes, and activated fibroblasts in 

response to AdV-infected corneal keratocytes is a hallmark 

histopathological feature of subepithelial (stromal) corneal 

Figure 2 Slit-lamp photography of inferior palpebral conjunctiva with pseudomembrane (black arrow) in a patient with adenoviral keratoconjunctivitis.
Note: Courtesy of DeGaulle I Chigbu.
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infiltrates.110–113 These opacities may persist for up to several 

weeks to years and have the tendency to result in visual 

decrease, glare, photophobia, and irregular astigmatism.3,110 

Kaye et al114 used primers for AdV hexon genes to amplify 

extracted adenoviral DNA from ocular samples of patients 

who had a history of AdV. These researchers were able to 

demonstrate the presence of amplifiable adenoviral DNA in 

ocular samples, such as tears, indicating that the presence 

of adenoviral DNA was associated with chronic papillary 

conjunctivitis. As such, chronic or recurrent papillary con-

junctivitis in patients with previous AdV-related keratocon-

junctivitis is associated with the persistence of adenoviral 

DNA in the tear film and conjunctiva.114

Laboratory diagnostic methods
The diagnosis of ocular HAdV infection is mainly based on 

clinical examination. However, some laboratory tests are 

available to aid in the confirmation of the diagnosis. The 

first method of identification is the isolation of the virus in 

cell cultures, using HEK cell cultures, or through the use of 

complement fixation test.115,116 In HEK cell cultures, samples 

are obtained from the conjunctiva of affected patients and 

inoculated into HEK cells to analyze structural changes to 

host cells from viral invasion. Complement fixation test 

methods involve blood samples tested for the detection of 

antibodies related to AdV infection. Side-by-side compari-

son of these two methods indicates superior sensitivity with 

HEK cell culture testing.115 The limitation is the timing of 

laboratory testing, in that it takes ~1–2 weeks for results to 

be made available.116

Polymerase chain reaction assays offer a timely and more 

sensitive approach to laboratory diagnosis of HAdV when 

compared with cell cultures. This method utilizes the extrac-

tion of conjunctival samples with polymerase chain reaction 

amplification and full characterization with gel electropho-

resis to identify the presence of HAdV. The drawback of this 

procedure, however, is that is not usually able to be performed 

on-site and transport of cell samples are necessary.2,22

Most recently, the US Food and Drug Administration 

(FDA) approved rapid antigen-detecting kits that can be 

used chairside as a point-of-care test to diagnose adenoviral 

conjunctivitis.117 The Rapid Pathogen Screening AdenoDe-

tector utilizes lateral flow immunochromatography, which 

identifies the hexon protein portion of HAdV to diagnose 

quickly and accurately the presence of AdV on the ocular 

surface.118,119 The procedure for this test involves collecting 

a tear sample from multiple areas of a patient’s conjunctiva 

during his or her active disease. The sample is then placed in a 

buffer solution, where it sits for 10 minutes, finally indicating 

a positive test denoted by one blue control line and one red 

test line or a negative test denoted by only the blue control 

line.120 It is able to detect 53 types of HAdV with an 88% 

sensitivity and 91% specificity.2,118

Clinical management
Clinical management of ocular AdV infections is targeted to 

provide relief of symptoms, as well as shorten the duration of 

infection. Although adenoviral conjunctivitis is a self-limiting 

condition typically lasting 2–3 weeks, treatment options have 

been investigated to alleviate symptoms or shorten time of 

infection. Patients with adenoviral ocular infection are highly 

contagious for the first 2 weeks after onset of symptoms. 

Because AdV is an nonenveloped virus, it can survive on 

inanimate objects for several weeks after contamination.121,122 

Outbreaks of adenoviral ocular infection have been linked to 

transmission of AdV from contaminated ophthalmic equip-

ment, environmental surfaces, multipurpose eyedrops, and 

contaminated hands of health-care workers.121 As such, it is 

important to institute appropriate levels of infectious disease 

control measures to reduce the ability of contaminated instru-

ments in the eye clinic to serve as a source of transmitting 

the viral infection to other patients.121,122 Infection control 

measures include reeducating health-care workers on the 

importance of personal hygiene via handwashing before 

and after patient contact, high-level disinfection of shared or 

reusable equipment that come into contact with patient eyes 

or bodily fluids being immersed in 3% hydrogen peroxide 

for a minimum of 10 minutes, designating an examination 

room for triaging patients with suspected adenoviral ocular 

infections, and use of disposable tonometer tips and single-

dose eyedrops in the eye clinic (Figure 3).121,123 Surfaces 

within the examination room should be cleaned and dis-

infected as a means of reducing transmission of HAdV to 

other patients.124 Tonometry and other procedures requiring 

contact with ocular surfaces should be postponed. Patients 

should be instructed to reduce transmission risk via avoid-

ance of eye touching and sharing such items as towels and 

pillowcases.125 Patients should also be advised to stay isolated 

during the infective phase, as well as thoroughly educated 

on the normal course of the disease to prevent the need for 

frequent office follow-ups.123

There is currently no FDA-approved treatment for ocular 

HAdV. However, antiviral drugs, such as ganciclovir and 

cidofovir, have demonstrated promise in the treatment of 

various HAdV types with in vitro studies.53 Cidofovir is a 

nucleoside analog that was developed to fight against DNA 
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viruses, as it directly passes the cell membrane and targets the 

DNA polymerase of the virus to halt replication.126 Topical 

application to the ocular surface reduces time and exposure 

of viral shedding. The utilization of cidofovir for the treat-

ment of HAdV is controversial, as studies have not exhibited 

a statistically significant improvement in the amelioration 

of symptoms or course of the disease.2,53 It has also been 

demonstrated to cause substantial ocular toxicity, even at low 

doses, making it of little clinical value.127,128

Ganciclovir is also a synthetic nucleoside analog inhib-

iting DNA polymerase and effective against several DNA 

viruses, most notably the herpes family.53,129 The marginal 

efficacy of ganciclovir in treating adenoviral keratocon-

junctivitis could be attributed to the lack of viral thymidine 

kinase in AdV.6,129,130 It has been suggested that valganciclovir, 

a prodrug of ganciclovir, inhibits DNA replication of AdV 

via blockade of adenoviral DNA polymerase and induction 

of intracellular modification of purine–pyrimidine nucleo-

tide balance.131,132 In an in vitro-based study, Huang et al 

demonstrated the dose-dependent antiadenoviral effect of 

ganciclovir on HAdV3, -4, -8, -19, and -37 species associated 

with ocular adenoviral keratoconjunctivitis. They suggested 

that commercially available ganciclovir ophthalmic gel 0.15% 

may be therapeutically beneficial.129 A small-scale study has 

indicated the potential of ganciclovir in the inhibition of the 

formation of SEIs; however, larger scale data are lacking.119,133

Topical immunoglobulin (Ig) also has exhibited antiviral 

activity, specifically with HAdV, in both in vitro and in vivo 

studies by successfully neutralizing the virus on the ocular 

surface. Ig shows promise in that it can act in the early phases 

of infection, aiding in viral clearance for earlier resolution of 

clinical symptoms and prophylaxis against future infection, 

as it is known also to demonstrate broad-spectrum antimicro-

bial characteristics. Though studies have displayed success 

with Ig as a potential treatment for EKC and AdV-related 

conjunctivitis, the availability of it from serum donors as a 

topical solution is questionable, due to issues with product 

consistency.134 Also, despite success with animal in vivo 

studies, human data are lacking.2

Because the course of HAdV infection in immunocom-

promised patients is usually severe and persistent, antiad-

enoviral chemotherapy and cellular immunotherapy would 

be therapeutically beneficial. Antiviral chemotherapy have 

shown promise in treating immunocompromised individuals 

with adenoviral infection. Cidofovir and ganciclovir have 

been used as antiviral pharmacotherapy in immunocompro-

mised individuals with adenoviral infection. Brincidofovir 

is a lipid conjugate of cidofovir with reduced propensity to 

cause nephrotoxicity usually associated with cidofovir. It is 

more orally bioavailable than cidofovir. Brincidofovir has 

demonstrated significant antiadenoviral activity.6,135 Grimley et 

al136 demonstrated the antiadenoviral activity of brincidofovir 

in immunocompromised pediatric and adult patients. Toth et 

al137 demonstrated the antiadenoviral efficacy of combination 

therapy of brincidofovir and valganciclovir, which translated 

to reduced dose and duration of therapy. This could be a very 

Virucidal disinfection,
hygienic measures,
isolation of patient

Protective
measures

Povidone–iodine 5%

Management
of SEIs

Irrigation with
povidone–iodine 5%
solution in office at
initial presentation

0.05% and 2%
cyclosporine, 0.03 %
tacrolimus, and various
corticosteroids postinfection
to reduce SEIs

Figure 3 Flowchart highlighting management efforts for EKC patients.2,121–123,127,141,143

Abbreviations: EKC, epidemic keratoconjunctivitis; SEIs, subepithelial infiltrates.
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beneficial therapeutic strategy for immunocompromised 

patients. Adoptive transfer of HAdV-specific T cells is a 

beneficial cellular immunotherapeutic strategy for treating 

adenoviral infections in immunocompromised individuals, 

such as recipients of hematopoietic stem cell transplants.6,138 

The adoptive transfer of HAdV-specific T cells boosts antiad-

enoviral cellular immunity. Zandvliet et al139 demonstrated that 

HAdV hexon-specific T cell-adoptive immunotherapy resulted 

in the generation of CD8+ and CD4+ T-cell immunoresponse 

that cleared adenoviral infection in immunocompromised 

patients. The use of adoptive HAdV-specific T-cell transfer is 

an effective immunotherapeutic protocol and is an alternative 

to the use of antiviral chemotherapy to treat adenoviral infec-

tion in immunocompromised individuals.140

Povidone–iodine, an antiseptic often used for steriliza-

tion prior to general and ocular surgery, has broad-spectrum 

antimicrobial properties to inhibit various bacteria, viruses, 

fungi, and other organisms.127 As such, its potential use in the 

treatment of HAdV has been and is currently still under inves-

tigation. Povidone–iodine 5% solution alone is often used in 

clinical practice as in-office irrigation to decrease viral spread. 

Potential efficacy with povidone–iodine in conjunction with 

a topical corticosteroid is also favorable, in that the steroidal 

component provides symptomatic relief while the povidone–

iodine destroys the virus.2,127,141 Phase II clinical trials are under 

way for a combination povidone–iodine 0.4%–dexamethasone 

0.1% ophthalmic suspension, showing promise as a future 

treatment approach to ocular AdV.141 Most recently, a con-

trolled randomized study utilizing povidone–iodine 1.0% and 

dexamethasone 0.1% eyedrops concluded that patients placed 

on this regimen had nearly complete recovery of signs and 

symptoms of adenoviral infection in as little as 5 days.142 Using 

this combination four times per day was superior to patients 

using artificial tears only or those using dexamethasone 0.1% 

only. This was likely due to the fact that the povidone–iodine 

inhibited viral replication, exhibiting antiviral effects, while 

the dexamethasone component served as an anti-inflammatory 

component and alleviated patient symptoms. It was also high-

lighted that patients treated too early with a corticosteroid 

alone, such as the dexamethasone-only control group, may 

actually show in increased viral replication and prolonged viral 

shedding, a mechanism that is counteracted with the adjunct 

use of povidone–iodine (Figure 3).142

Despite the self-limiting nature of ocular AdV, SEIs 

may remain well after the infection subsides. Topical cor-

ticosteroids alone are implicated in their treatment in the 

capacity that they may aid in clearance of these often visu-

ally significant opacities. The drawbacks of corticosteroid 

use in these cases are many, in that the SEIs often return 

following discontinuation.2 Treating with corticosteroids in 

the active phase of the infection may also be detrimental in 

that it has been shown actually to prolong viral shedding and 

inhibit immunoclearance.119,127 This is apart from the other 

known negative side effects of prolonged corticosteroid 

use: glaucoma and cataract formation. Due to the negative 

effects of corticosteroids, 0.05% and 2% cyclosporine, as 

well as tacrolimus 0.03% agents, may instead be beneficial in 

clearance of SEIs without the damaging potential outcomes 

(Figure 3).127,143

Conclusion
The presence of sight-threatening complications postocular 

adenoviral disease warrants the necessity of developing 

antiadenoviral therapy with enhanced therapeutic index 

and safety profile.21 As such, adenoviral genes and proteins 

involved in the process of adenoviral pathogenesis could 

serve as potential therapeutic targets for developing antiviral 

therapy. Currently, investigations are under way targeting 

genes that are important in initiating adenoviral replication. 

Furthermore, caveolin is a known important mediator for 

adenoviral infection of corneal cells. It has been reported 

that HAdVD37 can enter corneal fibroblasts via the caveo-

lin 1-associated lipid-raft-specific pathway, in which, there 

is triggering of caveosomal signaling and expression of 

proinflammatory mediators, and it is possible that lipid-raft-

mediated endocytosis could be a target for antiviral therapy 

in adenoviral corneal infection.41 There is also ongoing 

research on the use of RNA interference to mediate the silenc-

ing of viral genes required for viral replication via siRNA, 

short-hairpin RNA, or artificial miRNA.144 RNAi-mediated 

silencing of early and late genes of AdVs, specifically or 

particularly DNA polymerase and preterminal proteins, 

can inhibit viral replication.51 Using primary human limbic 

cells, Nikitenko et al145 demonstrated the ability of siRNA to 

downregulate replication of viral DNA in HAdVD species 

(D8 and D37) via silencing of E1A and E2B mRNA. They 

demonstrated that downregulation of E1A gene expression 

in HAdV species D8, D19, and D37 using siRNA inhibited 

AdV DNA replication with consequential blockade of AdV 

multiplication.145 Therefore, it is imperative to develop anti-

viral therapy that targets specific proteins required for HAdV 

survival, with the intent of reducing AdV-associated ocular 

complications and disease burden.
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