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Background and objective: Small cell lung cancer (SCLC) is the most aggressive type of 

lung carcinoma with high metastatic potential and chemoresistance upon relapse. Cancer cells 

remodel the existing metabolic pathways for their benefits and the perturbations in cellular 

metabolism are the hallmark of cancer. However, the extent of these changes remains largely 

unknown for SCLC.

Materials and methods: We characterized the metabolic perturbations in SCLC cells 

(SCLCC) by metabolomics. Large-scale correlation analysis was performed between metabolites. 

Targeted proteomics and gene expression analysis were employed to investigate the changes 

of key enzymes and genes in the disturbed pathways.

Results: We found dramatic decrease of metabolite–metabolite correlations in SCLCC com-

pared with normal control cells and non-small cell lung cancer cells. Pathway analysis revealed 

that the loss of correlations was associated with the alternations of fatty acid oxidation, urea 

cycle, and purine salvage pathway in SCLCC. Targeted proteomics and gene expression 

analysis confirmed significant changes of the expression for the key enzymes and genes in 

the pathways in SCLCC including the upregulation of carbamoyl phosphate synthase 1 (urea 

cycle) and carnitine palmitoyltransferase 1A (fatty acid oxidation), and the downregulation of 

hypoxanthine–guanine phosphoribosyltransferase and adenine phosphoribosyltransferase in 

purine salvage pathway.

Conclusion: We demonstrated the loss of metabolite–metabolite correlations in SCLCC asso-

ciated with the upregulation of fatty acid oxidation and urea cycle and the downregulation of 

purine salvage pathways. Our findings provide insights into the metabolic reprogramming in 

SCLCC and highlight the potential therapeutic targets for the treatment of SCLC.

Keywords: small cell lung cancer, metabolomics, metabolite–metabolite correlations, purine 

salvage pathway, urea cycle, fatty acid oxidation

Introduction
Lung cancer is the leading cause of cancer-related death for both men and women in 

the USA and all over the world.1 Small cell lung cancer (SCLC) accounts for about 

10%–15% of lung cancer.2 Because of its high metastatic potential and chemore-

sistance upon relapse, the prognosis of SCLC is very poor compared with other 

histological types of lung cancer. The median survival time for patients with SCLC is 

15–20 months for the localized stage (LD-SCLC),3 and ,10 months for the extensive 

stage (ED-SCLC).4

The treatment regimen of SCLC and the survival rate of patients have not changed 

substantially over the past 30 years. The standard treatment for SCLC is using the 
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combination of radiotherapy and chemotherapy for LD-SCLC 

and adopting chemotherapy for ED-SCLC. Although most 

patients may be sensitive to radiotherapy and chemotherapy in 

the early stages of treatment (45%–80% effective rate), almost 

all patients will relapse within 6–12 months after treatment.5

Unlike non-small cell lung cancer (NSCLC), there are no 

molecular targeted drugs approved for SCLC. Most of the 

current clinical trials using new molecular targeted drugs 

for the treatment of SCLC did not show significant clinical 

benefits over the existing treatment regimens.6 The main 

factors are the genomic instability and high mutability of 

SCLC. The heterogeneity is very high, resulting in the limited 

efficacy of a single targeted drug.

Metabolism is more conserved than genomic or tran-

scriptomic sequences. Cancer cells generally reprogram the 

existing metabolic pathways to support cell survival under 

stress or allow cells to grow and proliferate at pathologically 

elevated levels. A comprehensive understanding of the under-

lying metabolic perturbations in SCLC is urgently needed. 

Such knowledge would help to elucidate the unique metabolic 

signatures of SCLC and identify drug targets and biomarkers 

for diagnosis. The recent development of next-generation 

metabolomics has provided a powerful tool to simultaneously 

quantify all the essential metabolites in the major metabolic 

pathways such as lipids, amino acids, organic acids, and 

carbohydrates.7 This enables the global evaluation of the 

metabolic disturbances that occur in the biological systems. 

To date, investigations of lung cancer using metabolom-

ics were primarily on NSCLC8–11 and little information is 

available on the metabolic features of SCLC.

Cancer cell lines are straightforward experimental models 

and have been highly informative about the molecular mecha-

nisms of metabolic reprogramming.12 This is particularly 

essential for SCLC due to poor access to the primary tumor 

material.13 In this situation, cell lines are the main research 

tool for SCLC.

In this study, we performed comparative metabolo-

mic analysis to characterize the metabolic perturbations 

in SCLC cells (SCLCC) compared with normal human 

bronchial epithelial cells (HBEC) and NSCLC cells 

(NSCLCC). We conducted large-scale metabolite–metabolite 

correlation analysis (MMCA) and found dramatic decrease 

of metabolite–metabolite correlations (MMCs) in SCLCC. 

The loss of correlations is primarily from fatty acid oxida-

tions, urea cycle, and purine salvage pathway. The changes 

of the expression for key enzymes and genes in the altered 

metabolic pathways were further confirmed using targeted 

proteomics and real-time quantitative polymerase chain 

reaction (qPCR). This study will help our understanding of 

metabolic reprogramming in SCLC and support the devel-

opment of new strategies to treat SCLC through targeting 

cellular metabolism.

Materials and methods
cell culture
Three types of cell lines including human SCLCC (NCI-

H446), human NSCLCC (A549), and HBEC (BEAS-2B) 

were purchased from BeNa Cell Culture Collection (Beijing, 

China). The cells were maintained in RPMI-1640 medium 

supplemented with 10% fetal bovine serum, 100 U/mL 

penicillin, and 100 μg/mL streptomycin. The cell lines 

were maintained in the cell incubator at 37°C, 5% CO
2
, and 

humidified conditions. The cells were passaged when the cell 

density was up to 80%–90%. They were washed with PBS 

and digested with 0.25% trypsin (containing 0.01% EDTA), 

and then the cells were washed off the wall of the bottles using 

RPMI-1640 complete medium, for metabolomic analysis. 

The logarithmic phase cells were used for the experiments.

Extraction of metabolites
Metabolites from the cells were extracted according to a 

previous report with slight modifications.14 Six replicates 

were set up for each type of cells. The cell number of about 

1 million (SD#10%) was used for each replicate. The culture 

medium was aspirated with a pipette and the cells were 

digested with 3 mL of 0.25% trypsin and then transferred 

to a centrifuge tube. The cells were centrifuged for 10 min 

(800× g) at room temperature and the supernatant was dis-

carded. Five hundred microliters of the extraction buffer 

(methanol:water=50:50, v/v) was then added to the centrifuge 

tube. After incubation for 10 min on ice, the mixture was 

centrifuged at 16,000× g for 10 min at 4°C. After centrifu-

gation, 200 μL of the supernatant was then transferred to a 

new 1.5 mL centrifuge tube, dried with nitrogen gas, sealed 

and stored at −80°C for metabolomic analysis.

LC-MS/MS-based metabolomics analysis
The metabolomic analysis was conducted based on previous 

reports.14,15 Briefly, the metabolite extract was redissolved 

in 100 μL of extraction buffer. The major metabolites in the 

samples were analyzed by ultra-performance liquid chroma-

tography (LC-20AD, Shimadzu, Kyoto, Japan), coupled with 

SCIEX Qtrap 5500 (SCIEX, Framingham, MA, USA). Chro-

matographic separation was achieved on a Luna NH
2
 column 

(250×2 mm, 5 μm). The mobile phases were as follows: mobile 

Phase A: 95% water +5% acetonitrile +20 μM ammonium 
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hydroxide, pH 9.4; mobile Phase B: 100% acetonitrile. The 

flow rate was set at 0.3 mL/min. The column temperature 

was set at 25°C. The injection volume was 10 μL. The liquid 

chromatography (LC) gradient was: 0–3 min, 95% B; 3–6 min, 

75% B; 6–7 min, 0% B; 7–12 min, 0% B, 12–15 min, 95% B.  

The mass spectrometry (MS) was operated in multiple 

reaction monitoring mode and the conditions were set as 

follows: ESI source temperature: 500°C, Gas 1: 30 psi, Gas 

2: 30 psi, curtain gas: 30 psi, ion spray voltage: 5,500 V for 

positive mode and −4,500 V for negative mode.

The area of the obtained chromatographic peaks was inte-

grated and manually inspected in Multiquant 3.0 (SCIEX). 

The missing values in the dataset were evaluated by the 

k-nearest neighbor method and the metabolites with missing 

data .50% were removed. Prior to statistical analysis, data 

were log2 transformed and autoscaled. Statistical analyses 

including partial least square analysis (PLS-DA), heatmap 

analysis, principal component analysis (PCA), and large-scale 

correlation analysis were conducted in metaboanalyst 3.0 

(www.metaboanalyst.ca).

Targeted proteomics by parallel reaction 
monitoring
Protein was extracted from the cells using Pierce™ Mass 

Spec Sample Prep Kit for Cultured Cells (Thermo Fisher 

Scientific, Waltham, MA, USA) and quantified using BCA kit 

according to the manufacturer’s instructions. The protein was 

then digested with trypsin as described in the Mass Spec Sam-

ple Prep Kit for Cultured Cells (Thermo Fisher Scientific). 

The digested peptides were resuspended in 0.1% (v/v) formic 

acid for LC-MS/MS analysis. The separation of the peptides 

was performed on Thermo EASY-nLC 1000 nanoliquid chro-

matography (Thermo Fisher Scientific) using a C
18

 column 

(75 μm×15 cm, Acclaim PepMap, Thermo Fisher Scientific). 

The mobile phases were as follows: mobile Phase A: 

98% water with 2% acetonitrile and 0.1% formic acid; 

mobile Phase B: 90% acetonitrile and 0.1% formic acid. The 

gradient was as follows: 0–40 min, 7%–25% B; 40–52 min, 

25%–40% B; 52–56 min, 40%–80% B; 56–60 min, 80% B. 

The flow rate was 400 nL/min. The parallel reaction monitor-

ing analysis was performed on a Q Exactive plus mass spec-

trometer (Thermo Fisher Scientific). The MS cycle consisted 

of a full MS1 scan (350–1,000 m/z) with the resolution of 

70,000 followed by the scheduled targeted MS2 scan with 

the resolution of 35,000. The fragmentation energy of the 

HCD collision pool was set at 27. The isolation window for 

MS/MS was set at 2.0 m/z. The resulting MS data were pro-

cessed using Skyline software (v3.6, MacCoss Lab, Seattle, 

WA, USA) as described previously.16 Peptide settings were 

as follows: enzyme was set as Trypsin (KR/P), max missed 

cleavage was set as 0. The peptide length was set as 7–25 

amino acid residues. The variable modification was set as 

carbamidomethyl on cys and oxidation on Met. Transition 

settings were as follows: precursor charges were set as 

2 and 3. The ion match tolerance was set at 0.02 Da.

real-time quantitative Pcr
Cells were collected and 1 mL of Trizol was added per 

2 million cells. Total RNA was extracted using the RNA 

isolation kit according to the manufacturer’s instructions 

(Thermo Fisher Scientific). The RNA concentration was 

quantified by NanoPhotometer® N50 spectrophotometer 

(Implen, Westlake Village, CA, USA). Total RNA from each 

sample was reverse-transcribed to cDNA using PrimeScript™ 

RT Reagent Kit (Takara Bio, Mountain View, CA, USA). 

qPCR was performed on an ABI 7500 Fast Real-Time PCR 

system (Applied Biosystems, Carlsband, CA, USA). The 

reaction mixture contained 10 μL of SYBR Premix Ex 

Taq (Tli RNaseH Plus) (2×), 0.4 μL of the forward primer, 

0.4 μL of the reverse primer, 0.4 μL of ROX Reference Dye 

II (50×), 2 μL of DNA template, and 6.8 μL of sterilized 

water. The amplification conditions were as follows: 95°C 

predenaturation for 30 s, then 95°C/3 s, 60°C/30 s for 40 

cycles. Triplicates were set up for each sample. GAPDH was 

used as the internal control. The expression ratio of each gene 

relative to GAPDH was calculated. The primer sequences 

are listed in Table S1.

statistical analysis
Data are expressed as the mean±SD. Six replicates were set 

up for metabolomic and proteomic analysis. Three replicates 

were used for qPCR. Statistical analysis was conducted using 

GraphPad Prism 7.0 software (GraphPad, San Diego, CA, 

USA) unless otherwise indicated. Student’s t-test was used 

to calculate the significance levels between two groups. 

A p-value ,0.05 was considered as statistically significant.

Results
Metabolomic analysis revealed the 
dramatic, different metabolic profiles 
between SCLCC, NSCLCC, and the 
controls
To investigate the metabolic features of SCLCC, we first con-

ducted a broad-spectrum targeted metabolomic analysis, and 

in total 420 metabolites were analyzed covering all the major 
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metabolic pathways. Multivariate analysis using PLS-DA 

showed the distinct separation of SCLCC from NSCLCC and 

the controls (Figure 1A). The metabolic profile of NSCLCC 

was in between HBEC and SCLCC. Since PLS-DA is a 

supervised model, leave-one-out cross-validation was per-

formed to avoid the overfitting of the model. The validation 

confirmed the accuracy of PLS-DA classification in this study 

(Figure 1B). Similarly, the metabolic profile of SCLCC was 

also completely separated from the controls by the PCA model 

(Figure S1). Metabolites were analyzed by cluster analysis 

and thermal map analysis (Figure 1C). Replicates of SCLCC 

were clustered together, while replicates of NSCLCC were 

clustered in another category. SCLCC had a higher content 

of nucleosides (adenine and deoxyadenosine), acylcarnitines, 

and argininosuccinic acid than NSCLCC and the controls. 

In contrast, SCLCC had a lower level of adenosine mono-

phosphate and inosine monophosphate (IMP) compared with 

NSCLCC and the control cell line. All these data suggested 

dramatic metabolic differences between SCLCC, NSCLCC, 

and the control cells (HBEC).

The dramatic decrease of correlations 
between metabolites in SCLCC
We next explored the correlations between the metabolites 

in HBEC, NSCLCC, and SCLCC. Log2 transformation and 

normalization of the metabolites peak areas were performed 

prior to correlation analysis to achieve Gaussian distribution 

of the metabolomic dataset. Pearson correlations were then 

conducted between the metabolites. The cutoff values were 

set as Pearson correlation r .0.7 or ,−0.7 and p,0.05. 

Surprisingly, as shown in the heatmap (Figure 2A), the 

correlation patterns in SCLCC were dramatically different 

from those in HBEC and NSCLCC. We then analyzed the 

correlation matrix to investigate significant correlations 

between metabolites. We found that the number of significant 

correlations between metabolites was dramatically reduced in 

lung cancer cells for both negative and positive correlations 

(Figure 2B). Compared with NSCLCC, a further reduction 

in the number of significant correlations was observed in 

SCLCC. Totally, 17,485 positive correlations were found 

in HBEC, while 16,001 were identified in NSCLCC and 

Figure 1 Multivariate analysis of metabolomic data revealed the dramatic metabolic differences between SCLCC, NSCLCC, and the control cells.
Notes: (A) Pls-Da analysis. (B) Validation of PLS-DA model. (C) Unsupervised hierarchical heatmap analysis. Color bar indicated the relative concentration of the 
metabolites with red indicating higher concentration and green indicating lower concentration. N=6 per group. *p,0.05.
Abbreviations: HBEC, human bronchial epithelial cells; NSCLCC, non-small lung cancer cells; PLS-DA, partial least square analysis; SCLCC, small cell lung cancer cells.
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only 14,130 were present in SCLCC. Similarly, only 5,400 

negative correlations between metabolites in SCLCC were 

identified and 6,011 in NSCLCC. In contrast, 6,816 signifi-

cant negative MMCs were found in normal control cells.

The dysregulation of fatty acids oxidation, 
urea cycle, and purine salvage pathway in 
sclcc
We next explored in more detail what metabolites lose 

their correlations in SCLCC compared with HBEC and 

NSCLCC. For example, myristoylcarnitine and L-carnitine 

in control cells were highly correlated with the Pearson 

correlation coefficient r of 0.94 (Figure 2A). However, 

in NSCLCC, the positive correlation coefficient between 

these two metabolites was dramatically reduced to 0.62.  

In SCLCC, the correlation coefficient further decreased to 

0.53. Similarly, the significant positive correlations disap-

peared in SCLCC for xanthine-adenosine, IMP-hypoxanthine, 

and argininosuccinic acid-ornithine (Figure 2A).

To verify our findings in the correlation analysis, we 

conducted variable influence on projection (VIP) analysis in 

PLS-DA model to investigate the metabolites that contributed 

to the separation of SCLCC from HBEC and NSCLCC. The 

top 15 most significantly altered metabolites are shown in 

Figure 2C. We found that acylcarnitines and purine nucle-

otides such as carnitine, myristoylcarnitine, IMP, adenosine, 

and xanthine were significantly changed in SCLCC compared 

with HBEC and NSCLCC (Figure 2C). Interestingly, even 

though the same metabolites were altered in NSCLCC, the 

changes in SCLCC were much more dramatic. For instance, 

the level of myristoylcarnitine in NSCLCC was 30.1% higher 

than in HBEC, while it was 2.2-fold in SCLCC compared 

Figure 2 The dramatic loss of correlations between metabolites in SCLCC.
Notes: (A) The distinct correlation patterns of metabolites between SCLCC, NSCLCC, and HBEC control cells. The examples of the loss of correlations between 
metabolites are highlighted in the box. (B) The number of significant positive correlations in SCLCC, NSCLCC, and HBEC. Pearson correlations coefficient r .0.7 (positive 
correlation) or ,−0.7 (negative correlation) and p,0.05. (C) The top 15 most discriminating metabolites between SCLCC, NSCLCC, and HBEC. The metabolites are ranked 
by VIP scores. (D) The significantly altered metabolic pathways in SCLCC compared to NSCLCC and HBEC.
Abbreviations: ATP, adenosine triphosphate; HBEC, human bronchial epithelial cells; IMP, inosine monophosphate; NSCLCC, non-small lung cancer cells; SCLCC, small 
cell lung cancer cells; TCA, trichloroacetic acid; VIP, variable importance in projection.
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with HBEC. In addition, VIP analysis showed the dramatic 

increase of argininosuccinic acid and urea in SCLCC.

Further pathway analysis was conducted using the metabo-

lites with altered correlations in SCLCC, and the biochemical 

pathway abnormalities are illustrated in Figure 2D. Glycoly-

sis, trichloroacetic acid (TCA) cycles, urea cycle, purine and 

pyrimidine metabolism, fatty acid oxidation, and glycerophos-

pholipids were the main pathways disturbed in SCLCC. Since 

the metabolic characteristics of glycolysis and TCA cycle 

were well documented in cancer cells, we next focused on urea 

cycle, fatty acid oxidation, and purine salvage pathways.

Confirmation using targeted proteomics 
and qPcr analysis
To confirm the disturbed metabolic pathways in SCLCC 

revealed by metabolomic analysis, we conducted targeted 

proteomics and qPCR to analyze the changes of key 

enzymes and genes in the pathways. For targeted proteomics, 

in purine salvage pathway, the protein expression of xanthine 

dehydrogenase (XDH), hypoxanthine–guanine phospho-

ribosyltransferase (HPRT1), and adenine phosphoribosyl-

transferase (APRT) were significantly reduced in SCLCC 

compared with the control cells (Figure 3A–C). Carbamoyl 

phosphate synthase 1 (CPS1) is the rate-limiting enzyme for 

the urea cycle. We found that CPS1 was elevated in SCLCC 

relative to control (Figure 3D). This was consistent with the 

increase of argininosuccinic acid and urea in our metabolomic 

analysis. Carnitine palmitoyltransferase 1A (CPT1A) and 

carnitine palmitoyltransferase 2 (CPT2) are the key enzymes 

located in mitochondria for fatty acid oxidation. Compared 

with the control cells, CPT1A was significantly elevated 

indicating the upregulation of fatty acid oxidation in SCLCC, 

which was in line with the accumulation of acylcarnitines 

found in the metabolomic analysis (Figure 3E). CPT2 expres-

sion in SCLCC was about 1.3-fold of the expression in HBEC 

but this was not statistically significant (p=0.12; Figure 3F).

In the qPCR analysis, the expression of key genes in 

purine salvage pathway including APRT, HPRT1, and 

XDH was significantly reduced by 2–15 fold compared 

with HBEC (Figure 3G). In contrast, CPS1 and CPT1A 

were overexpressed by 4–18 fold (Figure 3G). Together, 

targeted proteomics and qPCR analysis corroborated 

SCLCC-associated perturbations in purine salvage pathway, 

fatty acid oxidation, and the urea cycle.

Integrated network analysis
We then performed integrated network analysis of SCLCC 

to outline biochemical relationships between metabolites, 

proteins, and genes related to urea cycle and proximal 

biosynthetic pathways (Figure 4). Quite noticeably, purine 

salvage pathway, fatty acid oxidation, and urea cycle are 

interconnected with each other through mitochondrial metab-

olism. These specific metabolic pathways are remodeled by 

SCLCC to support the biological processes that enable tumor 

growth and therapy resistance.

For instance, urea cycle is the main metabolic pathway 

for nitrogen recycling from ammonia generated by glutamine 

and asparagine catabolism.17 Ammonia is assimilated through 

CPS1 and subsequently incorporated into amino acid metabo-

lism and nucleotide biosynthesis. The upregulation of urea 

cycle enables SCLCC to maximize cancer cell nitrogen 

utilization and thus accelerate tumor proliferation. Down-

regulation of purine salvage pathway in SCLCC resulted 

in the increase of adenine and hypoxanthine. Addition of 

adenine and hypoxanthine had been shown to alleviate 

the cytotoxicity of chemotherapeutic agent cisplatin in 

Saccharomyces cerevisiae.18 It is likely that the dysregulation 

of purine salvage pathway is used by SCLCC to mediate the 

resistance for chemotherapy agents. Overactivation of fatty 

acid oxidation fuels SCLCC growth via ATP production.

Comparisons across different types of  
cancer
We next investigated the expression pattern of the above-

identified key genes (HPRT1, XDH, CPS1, and CPT1A) 

among different types of cancer tissues through a publicly 

available database oncomine (www.oncomine.org). Surpris-

ingly, very limited information was available regarding the 

expression of these genes in SCLC tissues. This was likely 

due to the poor access to primary tumor material as most 

SCLC patients were diagnosed in their late stages. The 

expressions of these genes in different types of cancer were 

not in the same direction compared with normal control 

tissues (Figure 5). For instance, HPRT1 expression signifi-

cantly decreased by 1.2–8 fold in renal and breast cancer 

which was the same as our finding in SCLCC. In contrast, 

HPRT1 was upregulated in brain glioblastoma and cecum 

adenocarcinoma. Similarly, CPT1A a key gene in acylcar-

nitines biosynthesis, was significantly upregulated in the 

tissues of liver cancer and renal Wilms’ tumor. CPT1A 

expression was significantly reduced compared with the 

controls in breast cancer and ovarian cancer. The expression 

of urea cycle gene CPS1 in liver cancer, rectal adenoma, and 

lung adenocarcinoma was about 1.5–3 fold higher than the 

controls, while, it was dramatically downregulated in breast 

carcinoma.
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Discussion
The present study represented the first attempt to characterize 

the metabolic features of SCLCC using metabolomics in 

combination with targeted proteomics and gene expression 

analysis. Specific focus was placed on SCLCC since SCLC 

is rather aggressive and no molecular targeted drugs are 

standardized for SCLC.19 Cancer cells generally reprogram 

the existing metabolic pathways to meet their special needs. 

Metabolic characteristics of SCLCC can be exploited to 

provide prognostic information, image tumors, and improve 

cancer therapeutics.

In this study, we selected cell line NCI-H446 as the rep-

resentative of SCLC, A549 as the representative of NSCLC, 

and cell line BEAS-2B as the normal lung cell control. 

Figure 3 The changes of key enzymes or genes in the reprogrammed metabolic pathways of SCLCC revealed by targeted proteomics and qPCR analysis.
Notes: (A–F) targeted proteomics; (G) qPcr analysis. Data were mean±SD, n=6 for targeted proteomics and n=3 for qPCR analysis. *p,0.05 and **p,0.01 according to 
student’s t-test.
Abbreviations: APRT, adenine phosphoribosyltransferase; CPS1, carbamoyl phosphate synthase 1; CPT1A, carnitine palmitoyltransferase 1A; CPT2, carnitine 
palmitoyltransferase 2; HBEC, human bronchial epithelial cells; HPRT, hypoxanthine-guanine phosphoribosyltransferase; qPCR, quantitative polymerase chain reaction; 
SCLCC, small cell lung cancer cells; XDH, xanthine dehydrogenase.
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Metabolism is highly conserved to the specific taxa.20,21 

It was reported that cancer metabolome profiles are mainly 

associated with the malignancy.22 Compared with NSLCC, 

SCLC is more malignant with shorter doubling time, higher 

growth fraction, and earlier development of metastases.23 

In contrast, the malignancy between cell lines of the same 

type is similar. In this study, we attempted to explore the large 

metabolic differences between different types of lung cancer 

cells other than the cell-line-specific subtle differences.

Metabolites are tightly coordinated and interconnected in 

the context of metabolic pathways in a steady state. MMCA 

represents a new approach to understanding the metabolome. 

The method allows to monitor even the tiny cellular pertur-

bations even if no detectable changes in mean metabolite 

concentrations are observed.24 MMCA had previously been 

used to explore the metabolic variations between japonica 

and indica rice cultivars.25 Here, we applied this approach 

to investigate the metabolic differences between HBEC, 

NSCLCC, and SCLCC. MMCA generated a large number of 

significant correlations. By checking over 10,000 correlations 

in the correlation matrix, we found that the number of cor-

relations dramatically decreased in SCLCC. In our previous 

study, we also identified the loss of metabolites correlations in 

rat hippocampal metabolism during aging.26 The correlation 

patterns between metabolites in SCLCC reflect the recoordi-

nation of cancer metabolism and might be used as biomarkers 

for the diagnosis of SCLC.

Our study highlighted the importance of purine salvage 

pathway, fatty acid oxidation, and urea cycle to support 

the acquisition and maintenance of malignant properties 

of SCLCC. Recently, metabolic recycling of ammonia 

through urea cycle was shown to facilitate the growth of 

breast cancer.27 In this study, for the first time, we observed 

a significant increase in urea cycle metabolites including 

Figure 4 Integrated network analysis outlining the biochemical interconnections between metabolites in the reprogrammed metabolic pathways of SCLCC.
Note: Values in the circle were the fold changes of metabolites levels, protein or gene expression compared to the control cells.
Abbreviations: AMP, adenosine monophosphate; APRT, adenine phosphoribosyltransferase; ATP, adenosine triphosphate; CoA, coenzyme A; CPT, carnitine 
palmitoyltransferase; F6P, fructose 6-phosphate; FBP, fructose bisphosphate; GTP, guanosine-5′-triphosphate; HPRT, hypoxanthine–guanine phosphoribosyltransferase; IMP, 
inosine monophosphate; OAA, oxaloacetic acid; PEP, phosphoenolpyruvate; PFK, phosphofructokinase; PKM, pyruvate kinase M; SCLCC, small cell lung cancer cells; TCA, 
trichloroacetic acid.
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Figure 5 The expression of key genes across different types of cancer.
Notes: (A) HPRT1 gene expression; (B) CPS1  gene expression; (C) XDH gene expression; and (D) CPT1A gene expression. Gene expression was obtained from oncomine 
(www.oncomine.org). The values are log2 transformation of the fold change (Tumor/normal). The number of tissue samples measured is listed in parentheses.
Abbreviations: CPS1, carbamoyl phosphate synthase 1; CPT1A, carnitine palmitoyltransferase 1A; HPRT, hypoxanthine-guanine phosphoribosyltransferase; XDH, xanthine 
dehydrogenase.
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L-arginine, urea, and ornithine in SCLCC (Figure 4). 

Enhanced L-arginine metabolism contributes to the modula-

tion of immune responses by tumor cells during pathologies 

associated with chronic inflammation.28 A recent study had 

proposed the depletion of L-arginine as a therapy for the 

treatment of liver cancer.29 CPS1 is the first rate-limiting 

mitochondrial enzyme in the urea cycle. We discovered a 

significant overexpression of CPS1 in SCLCC. A previous 

study showed that CPS1 knockdown in lung adenocarci-

noma dramatically inhibited cell proliferation and decreased 

metabolites related to nucleic acid biosynthesis.30 In addition, 

upregulation of CPS1 was associated with poor therapeutic 

response in rectal cancer patients receiving neoadjuvant 

concurrent chemoradiotherapy.31

Our study demonstrated the increased fatty acid beta 

oxidation in SCLCC. Fatty acid oxidation was reported 

as a dominant bioenergetic pathway in prostate cancer.32 

Overexpression of key fatty acid synthesis enzymes was 

observed in human prostate cancers.33 Inhibition of fatty 

acid oxidation by drugs was used for the prevention of 

prostate cancer.34 CPT1A plays an important role in long-

chain fatty acids uptake by mitochondria for beta oxidation. 

In addition to the overexpression in SCLCC identified in 

our study, the upregulation of CPT1A enzyme in fatty 

acid oxidation had been reported in ovarian cancer and 

glioblastoma.35,36 High expression of CPT1A was reported 

to be an adverse prognostic biomarker in acute myeloid 

leukemia.37

The role of purine salvage pathway in cancer cells has not 

been fully understood since most proliferating cells synthesize 

nucleotides de novo, mainly from glucose, glutamine, and CO
2
 

other than utilization of the salvage pathway.38 In this study, we 

showed that purine salvage metabolism decreased in SCLCC. 

A study on yeast indicated that purine salvage pathway might 

mediate the resistance of chemotherapeutic agents.18 Reduced 

purine salvage and increased de novo purine synthesis were 

also found in the tissues of the early stage of lung adenocarci-

noma.39 HPRT1 is the key enzyme in purine salvage pathway 

that converts hypoxanthine to IMP (Figure 4). In contrast 

to SCLCC, HPRT1 gene was dramatically upregulated in 

melanoma cells.40 HPRT1 was identified as a stable refer-

ence gene without significant differences between cancer and 

normal tissues for the normalization of other genes in uterine 

sarcoma.41 More work is needed to further understand the role 

of HPRT1 in cancer cells in order to explain the heterogeneity 

of gene expression in different cancer types.
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Table S1 The primer sequences of real-time qPCR

Gene Primer sequence (5′–3′)

APRT F: gcTggagaTTcagaaagacgcc
r: agcTcacaggcagcgTTcaTgg

XDH F: ggacagTTgTggcTcTTgaggT
r: ggaaggTTggTTTTgcacagcc

HPRT1 F: ccTggcgTcgTgaTTagTgaT
r: agacgTTcagTccTgTccaTaa

CPS1 F: aaTgaggTgggcTTaaagcaag
r: agTTccacTccacagTTcaga

CPT1A F: gaTccTggacaaTaccTcggag
r: cTccacagcaTcaagagacTgc

Abbreviations: APRT, adenine phosphoribosyltransferase; CPS1, carbamoyl 
phosphate synthase 1; CPT1A, carnitine palmitoyltransferase 1A; HPRT, hypoxanthine–
guanine phosphoribosyltransferase; qPCR, quantitative polymerase chain reaction; 
XDH, xanthine dehydrogenase.

Supplementary materials

Figure S1 PCA score plot showing the separation of SCLCC from NSCLCC and the controls.
Note: n=6 per group.
Abbreviations: HBEC, human bronchial epithelial cells; NSCLCC, non-small lung cancer cells; PCA, principal component analysis; SCLCC, small cell lung cancer cells.
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