Comparison of health system responsiveness between HIV and non-HIV patients at infectious disease clinics in Yunnan, China

Jing Li¹
Virasakdi Chongsuvivatwong²
Sawitri Assanangkornchai²
Edward B McNeil²
Le Cai¹

¹School of Public Health, Kunming Medical University, Kunming, Yunnan Province, China; ²Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand

Background: China is in an epidemiologic transition period. Health system responsiveness (HSR) has become an increasing concern in China. With the burden of increasing human immunodeficiency virus (HIV) infection/acquired immune deficiency syndrome, responsiveness of HIV care is urgently needed. We aimed at comparing the experience of HSR between HIV-positive and non-HIV patients.

Methods: A cross-sectional study was carried out in Yunnan, China, from January to February 2015 among two consecutive groups of HIV and non-HIV patients in two hospitals with the largest HIV admissions. Patients' experience and expectation of HSR were measured using a self-reported questionnaire containing items of seven domains and 35 vignettes (five per domain). Each of the items and vignettes was ranked from 1 “very good” to 5 “very bad.” For each domain, B-scales were built based on the difference between experience and the vignettes. Ordered probit and censored ordered probit regression models were constructed to compare HSR experience between the two groups adjusted for socioeconomic status (SES) factors.

Results: The majority of HIV patients were at clinical stage 1, were infected via unprotected sexual contact, and had a CD₄ count <500 cells/µL. After adjustment by SES factors, HIV patients had better experiences of HSR in six of the seven HSR domains, prompt attention being the only domain that non-HIV patients had better experiences.

Conclusion: Perceptions of HSR experience were better among HIV patients except for prompt attention, which could not be explained by SES factors and difference in expectations. A reform is needed not to neglect the needs of non-HIV patients in the study area.

Keywords: health system responsiveness, anchoring vignettes, HIV care, China

Introduction

China is in an epidemiologic transition period. The quality of health care faces noteworthy challenges, especially due to nonclinical determinants such as patients’ perceptions of their experience in clinics. Public perceptions of responsiveness, trustworthiness, and quality are low. One study revealed that about 55% of residents from the lowest and highest income quintile groups were not satisfied with inpatient services.¹ The quality of mental health care has been shown to be significantly associated with dignity and basic amenities.² With the serious burden of increasing human immunodeficiency virus infections and acquired immune deficiency syndrome (HIV/AIDS), responsiveness of HIV care is an urgent public health concern.

On the one hand, there are low levels of responsiveness in HIV care. A study from China showed that health care providers did not offer adequate emotional support to HIV patients, whereas nurses could not provide normative HIV care.³ On the...
other hand, there have been attempts to improve the quality of HIV/AIDS care. Another study suggested that an expert system for HIV voluntary counseling could increase patients’ self-efficacy and knowledge. However, HIV patients still suffer from indignity and incompetent service and lack the required social support.

Since 2011, there has been an advocacy of “zero discrimination” to eliminate discrimination and stigmatization. However, >50% of people living with HIV/AIDS are still fearful of disclosing their infectious status, while almost 80% are afraid of being blamed and are simply refused health care. For HIV patients who bear psychosocial problems such as perceived discrimination, health system responsiveness (HSR) has rarely been addressed in HIV care, especially in China. It is therefore important to compare HSR among HIV and non-HIV patients to meet patients’ needs.

HSR is a promising measure of the quality of a health system and focuses on a health care system’s ability to satisfy patients’ expectations in terms of nonfinancial aspects of health care and nonclinical health domains such as dignity, confidentiality, autonomy, prompt attention, the quality of basic amenities, social support, and choice of provider. It may promote the use of services and ultimately promote health. One study from Ethiopia found that HSR was independently associated with satisfaction of HIV care, while another study suggested that HSR was related to increasing visit adherence. Some domains of HSR such as prompt attention, communication, and autonomy were identified as priority areas to improve responsiveness of health care services. However, these studies did not compare differences of HSR between HIV and non-HIV patients. Our previous study showed that the expectations of HIV patients among the eight domains were lower than that of non-HIV patients, and the assessment of HSR based on HIV patient’s perceptions may give biased results toward the quality of HIV services. Thus, studies are needed to compare differences in HSR based on patients’ experience of health care service simultaneously.

The self-rated behavior of HSR is systematically biased by demographic, socioeconomic, or cultural factors. A challenge to comparing self-reported responsiveness results is known as “reporting behavior heterogeneity,” “differential item functioning (DIF),” “response category cut-point shift.” Anchoring vignettes have been proposed to address these problems. Although anchoring vignettes have been applied to HSR in different settings, it has not been used to assess HSR across HIV and non-HIV patients to measure the equity of outpatient services.

The main aim of this study was therefore to compare experiences of HSR between HIV and non-HIV patients. It is well known that the two groups are different in terms of socioeconomic status (SES) and expectations on HSR. Thus, the comparison will be adjusted for these two factors.

**Methods**

**Study setting and design**

A cross-sectional study was conducted in infectious departments of two large hospitals in Kunming, Yunnan province, China. These two hospitals have the largest number of admissions of HIV and non-HIV-infectious patients in Yunnan.

**Subjects**

Eligible patients in this study were HIV and non-HIV inpatients and outpatients aged ≥15 years by consecutive sampling. By arrangement of the hospitals, the majority of non-HIV-infectious patients were hepatitis patients. HIV patients with tuberculosis were excluded as they received different services from ordinary non-HIV health care. Those who could not communicate in Mandarin or were too ill to be interviewed were also excluded. Consecutive sampling was used to recruit study subjects.

**Sample size**

Sample size estimation used the formula for comparing two population proportions. The percentages of patients who rated the communication domain as “good” among HIV and non-HIV patients in a pilot study were 53% and 61%, respectively. The number of subjects needed to detect a difference of 8% in the proportion of rating communication as “good” between the two groups, with 95% confidence and 80% power, would be 625 per group. To compensate for an estimated 10% nonresponse rate, the sample size was increased to 694 per group.

**Development and modification of vignettes**

The vignettes were developed and modified which was adopted from World Health Organization in accordance with our previous study. Figure 1 shows the framework of HSR in seven domains, with an example vignette shown for communication.

**Study variables and measurements**

The dependent variable was the self-rated experience of HSR in seven domains. The main independent variable was HIV status confirmed by Western blot test. Demographic and socioeconomic variables collected included age, gender, ethnicity, religious affiliation, place of residence, marital
status, family size, education, occupation, and household income, which measurements were in consistent with our previous study. Among them, occupation, education, and income were conventionally reflecting SES.

Data collection
HSR data were collected from 1 January to 15 February 2015. The team of interviewers consisted of the main research investigators, HIV/AIDS specialists, and local medical students. Prior to data collection, all interviewers were given training based on concepts of HSR, dimensionality of each domain, meaning of each vignette, common symptoms of HIV/AIDS, psychological support, and investigation skills and protocol for emergency situations. Eligible patients were interviewed face-to-face using an individual questionnaire. Among them, experiences of HSR were self-reported, whereas vignettes were read by the investigators. Each patient was given a gift valued at 10 RMB as compensation for their time.

Statistical methods
B-scale computation
B-scale computation is an approach that was used to calculate the proportions of HSR’s experiences adjusted for expectations by vignettes. B-scale is set as the scale of self-assessments relative to vignettes in a nonparametric setting. Let $y_i$ be the HSR of the self-assessment and $z_{ij}$ be vignettes (1–J) for the $i$th respondent. With successively ordered ranks ($z_{ij} < z_{ik}$ for $j=2, \ldots, J$) to each respondent on all vignettes, we created the DIF-corrected self-assessment $C_i$:

$$C_i = \begin{cases} 
1 & \text{if } y_i < z_{i1} \\
2 & \text{if } y_i = z_{i1} \\
3 & \text{if } z_{i1} < y_i < z_{i2} \\
\vdots \\
2J & \text{if } y_i > z_{iJ} \\
2J + 1 & \text{if } y_i > z_{ij}
\end{cases}$$

Values of $C$ that are intervals represent the set of inequalities. Under two assumptions of response consistency and vignette equivalence, the C-scale is used to ensure credible comparisons.

Based on the same method as the C-scale, a B-scale was built. The difference between these scales lies in information that exists when a self-grading response is tied with the grading of an anchoring object, $y_i = v_j$. The C-scale makes strict comparisons with adjacent rank orderings. The B-scale states...
less information in the occurrence of a tie, represented as a set of B-scale values rather than a single index value. If \( y_i = v_{i1} \), then \( B_i = \{1, 2\} \), if \( y_i = v_{i2} \), then \( B_i = \{2, 3\} \). The advantage of the B-scale is that it does not rely on cut-point locations and as a result provides credible comparisons without the requirement of interval equivalence or vignette equivalence.

Vignette ordering
The ordering of the vignettes is important before the construction of the B-scale. It is normally chosen by the researchers and also possible to draw upon a consensus ordering by the respondents, so long as only one ordering is used for all respondents in the analysis. However, differences between hypothesized ordering by the researchers and the consensus ordering may be used for diagnosing problems in the survey instruments, particularly when translating the questions for use in different languages. Thus, we confirmed vignette ordering for the construction of B-scales and censored ordered probit regression (COPR) models.

Data analysis
The comparison of sample characteristics between HIV-positive and non-HIV patients was performed using \( \chi^2 \) goodness-of-fit tests for categorical variables. Figure 2 shows the subsequent analysis of experience and HSR vignettes. After vignette ordering (Figure 1), the distributions of experience and B-scales of HSR were described, and ordered probit regression models (OPR) and COPR models were conducted. COPR models were constructed separately for each domain to compare differences of self-reported experiences of HSR between HIV and non-HIV patients before and after adjustment of demographic and socioeconomic factors. Variables with a \( p \)-value <0.05 were considered as significant. All the analyses were performed using R language and environment with emphasis on the “anchors” package.

Ethical considerations
The study was approved by Prince Songkla University Institutional Review Board and Kunming Medical University. Anonymity of the data was assured, and the participants were requested to give their consent to participate by signing an informed consent form, after providing them with detailed information on the study procedures. It was approved that subjects aged <18 years could provide the consent by themselves.
Results
Of the 800 consecutive eligible HIV patients approached, 696 (87%) consented to attend the study, while 699 (66%) of the 1,059 non-HIV patients invited agreed to join the study. Most of the HIV patients who refused to participate stated heavy internalized stigma as the reason for not joining, whereas their counterparts refused mainly because they thought that the study was not relevant to them.

Demographic and socioeconomic characteristics
Majority of both groups of patients were male, of Han ethnicity, married or cohabiting, and employed and had no religious affiliation. About half achieved a junior high school level of education, had a monthly household income of ≤5,000 RMB and were living in a family of two to four members. Both groups were closely matched on gender; however, HIV-positive patients were more likely to belong to a minority ethnicity; have a religious affiliation; live in a rural area; have a higher education level; be separated, divorced, or widowed; have a lower household income; live with fewer family members; and be self-employed.

Clinical characteristics
Table 1 presents the clinical characteristics of HIV patients. The route of HIV transmission among HIV-positive patients was mainly via unprotected sexual contact, accounting for 77.7%. The majority of them were at clinical stage 1, were not tested for virus load, and missed their antiretroviral therapy (ART) dose in the last 7 days. In almost 90% of the patients, the CD$_4$ count was <500 cells/µL and the majority were followed up between two and four times in the first 3 months after confirmation of HIV/AIDS. The median virus load was 89,377.5 copy/mL among those who were tested, and the median number of days between HIV diagnosis and receiving the first dose of ART was 293. The majority of non-HIV patients had hepatitis (85.7%).

Experience of HSR among HIV and non-HIV patients
Table 2 shows the distribution of experiences of HSR among HIV and non-HIV patients. The majority of HIV patients perceived having a “good” experience in all seven HSR domains. Majority of non-HIV patients perceived having a “good” experience in three HSR domains: prompt attention, dignity, and communication, while four domains were perceived as “moderate”: quality of basic amenities, confidentiality, choice, and autonomy. The difference of proportional trends from the OPR models were significant in all domains except for prompt attention, indicating that non-HIV patients were more likely to have a worse experience for these six HSR domains. After adjustment for sociodemographic factors, the differences were still significant among the same six HSR domains.

Experience of HSR after adjusting for vignettes among HIV and non-HIV patients
Table 3 presents B-scale values between self-rated HSR and vignettes in seven domains. B-values ranged from 1 to 6, since there were five vignettes, reflecting more than “very good” to less than “very bad.” Among HIV patients, the highest probabilities mainly concentrated around B-values of 2 reflecting experiences between “very good” and “good” for four domains: prompt attention, dignity, communication,
Table 2 Distribution and ordered probit regression results of experience of HSR before and after adjusting for sociodemographic factors among HIV-positive and non-HIV patients

<table>
<thead>
<tr>
<th>HSR domain</th>
<th>Perceived experience</th>
<th>Crude probit regression</th>
<th>Adjusted probit regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very good</td>
<td>Good</td>
<td>Moderate</td>
</tr>
<tr>
<td>Prompt attention</td>
<td>HIV</td>
<td>83</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>21</td>
<td>3.0</td>
</tr>
<tr>
<td>Dignity</td>
<td>HIV</td>
<td>168</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>42</td>
<td>6.0</td>
</tr>
<tr>
<td>Communication</td>
<td>HIV</td>
<td>179</td>
<td>25.7</td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>49</td>
<td>7.0</td>
</tr>
<tr>
<td>Quality of amenities</td>
<td>HIV</td>
<td>135</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>10</td>
<td>1.4</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>HIV</td>
<td>169</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>10</td>
<td>1.4</td>
</tr>
<tr>
<td>Choice of providers</td>
<td>HIV</td>
<td>136</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>11</td>
<td>1.6</td>
</tr>
<tr>
<td>Autonomy</td>
<td>HIV</td>
<td>167</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>11</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Abbreviations: HIV, human immunodeficiency virus; HSR, health system responsiveness.

Discussion

Patients who received HIV care had better perceptions about self-rated HSR in six domains: prompt attention, confidentiality, choice of provider, quality of basic amenities, dignity, and communication. The highest probabilities of basic amenities, confidentiality, choice of provider, and autonomy domains. After adjusting for demographic and socioeconomic factors, HIV patients had better perceptions about experiences in these six domains, prompting attention being the only exception. However, non-HIV patients were less likely to have a worse experience than HIV patients in dignity, confidentiality, choice of provider, and autonomy domains. The differences of rank probabilities were significant in all seven domains before and after adjusting for sociodemographic factors. In prompt attention, non-HIV patients were more likely to have a worse experience than HIV patients. The differences of HSR after adjusting for vignettes among non-HIV patients was generally lower than that among HIV patients. This is likely to be due to the higher trust in the government and public HIV services and has recently become internalized. More recently, focusing on a scaling up to increase the number of individuals knowing their HIV status and improving access to control the spread of HIV, HIV prevention has steadily been supported first by internal findings such as Global Fund to control the spread of HIV and has recently become internalized. Studies in China and community and public HIV services are part of an attempt to control the spread of HIV. HIV prevention has steadily been supported first by internal findings such as Global Fund to control the spread of HIV and has recently become internalized. Studies in China and community and public HIV services are part of an attempt to control the spread of HIV and has recently become internalized. Studies in China and community and public HIV services are part of an attempt to control the spread of HIV.
to HIV-related services. However, non-HIV health care is overwhelmed by several problems including inequalities of health care utilization and high out-of-pocket payments due to high workloads and inadequate budgets. In 2012 in China, the wealthiest 20% of the rural and urban populations contributed 49.7% and 55.8% of the total health expenditure, respectively, while the poorest 20% contributed only 4.7% and 4.4%, respectively. This finding indicates a need to improve care for ordinary patients in general.

However, HIV patients had worse perceptions about experience of prompt attention compared with their counterparts. There has been no previous study comparing the experience of HSR between HIV and non-HIV patients. One study in South Africa showed that prompt attention had a better experience of prompt attention compared with their counterparts. There has been no previous study comparing the experience of prompt attention between HIV and non-HIV patients.

Table 3 COPR results for experience and vignettes of HSR before and after adjusting for sociodemographic factors among HIV-positive and non-HIV patients

<table>
<thead>
<tr>
<th>HSR domain</th>
<th>Patient group</th>
<th>B-value</th>
<th>COPR</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n Pr.</td>
<td>n Pr.</td>
<td>n Pr.</td>
<td>n Pr.</td>
</tr>
<tr>
<td>Prompt</td>
<td>HIV</td>
<td>49 0.070 493 0.710 35 0.050</td>
<td>88 0.130 0 0.000</td>
<td>31 0.040</td>
<td></td>
</tr>
<tr>
<td>attention</td>
<td>Non-HIV</td>
<td>33 0.048 575 0.840 55 0.080</td>
<td>2 0.003 1 0.001</td>
<td>17 0.020</td>
<td></td>
</tr>
<tr>
<td>Dignity</td>
<td>HIV</td>
<td>63 0.091 485 0.697 18 0.026</td>
<td>104 0.149 7 0.010</td>
<td>19 0.027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>21 0.030 471 0.684 33 0.048</td>
<td>97 0.141 65 0.094</td>
<td>2 0.003</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>HIV</td>
<td>85 0.122 483 0.694 71 0.102</td>
<td>39 0.056 4 0.006</td>
<td>14 0.020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>95 0.141 28 0.041 529 0.783</td>
<td>8 0.012 1 0.001</td>
<td>15 0.022</td>
<td></td>
</tr>
<tr>
<td>Quality of basic amenities</td>
<td>HIV</td>
<td>116 0.167 25 0.036 527 0.757</td>
<td>4 0.006 2 0.003</td>
<td>22 0.032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>2 0.003 20 0.029 581 0.854</td>
<td>4 0.006 59 0.087</td>
<td>14 0.021</td>
<td></td>
</tr>
<tr>
<td>Confidentiality</td>
<td>HIV</td>
<td>148 0.213 517 0.744 7 0.010</td>
<td>1 0.001 0 0.000</td>
<td>22 0.032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>22 0.032 603 0.874 3 0.004</td>
<td>0 0.000 18 0.026</td>
<td>44 0.064</td>
<td></td>
</tr>
<tr>
<td>Choice</td>
<td>HIV</td>
<td>535 0.769 121 0.174 – –</td>
<td>10 0.014 – –</td>
<td>30 0.043</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>24 0.034 117 0.167 – –</td>
<td>520 0.744 – –</td>
<td>38 0.054</td>
<td></td>
</tr>
<tr>
<td>Autonomy</td>
<td>HIV</td>
<td>155 0.223 6 0.009 513 0.737</td>
<td>5 0.007 0 0.000</td>
<td>17 0.024</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-HIV</td>
<td>10 0.015 4 0.006 569 0.827</td>
<td>21 0.031 2 0.003</td>
<td>82 0.119</td>
<td></td>
</tr>
</tbody>
</table>

Note: “=” means calculation of B-scale was not possible. Bold figure= p-value <0.05.

Abbreviations: COPR, censored ordered probit regression; HIV, human immunodeficiency virus; HSR, health system responsiveness; Pr., probability.

Conclusion

Perceptions about experiences of HSR were better among HIV patients than among non-HIV patients in all domains except for prompt attention, even after adjusting for differences in socioeconomic indicators and patients’ own expectations. Commonization or integrating HIV care into the ordinary health care should be considered to improve the quality of care as a whole. A research on management trial should be initiated.

Acknowledgments

The survey was supported by Yunnan Applied Basic Research Projects – Union Foundation (2017FE467[-011]) and National Natural Science Foundation of China (81760617).
They both were not involved in the study design; collection, analysis, or interpretation of data; writing of the manuscript; or decision to submit the paper for publication.

**Disclosure**

The authors report no conflicts of interest in this work.

**References**


