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Purpose: Missing data are a potential source of bias in the results of RCTs, but are often 

unavoidable in clinical research, particularly in patient-reported outcome measures (PROMs). 

Maximum likelihood (ML), multiple imputation (MI), and inverse probability weighting (IPW) 

can be used to handle incomplete longitudinal data. This paper compares their performance 

when analyzing PROMs, using a simulation study based on an RCT data set.

Methods: Realistic missing-at-random data were simulated based on patterns observed during 

the follow-up of the knee arthroscopy trial (ISRCTN45837371). Simulation scenarios covered 

different sample sizes, with missing PROM data in 10%–60% of participants. Monotone and 

nonmonotone missing data patterns were considered. Missing data were addressed by using 

ML, MI, and IPW and analyzed via multilevel mixed-effects linear regression models. Root 

mean square errors in the treatment effects were used as performance parameters across 1,000 

simulations.

Results: Nonconvergence issues were observed for IPW at small sample sizes. The performance 

of all three approaches worsened with decreasing sample size and increasing proportions of 

missing data. MI and ML performed similarly when the MI model was restricted to baseline 

variables, but MI performed better when using postrandomization data in the imputation model 

and also in nonmonotone versus monotone missing data scenarios. IPW performed worse than 

ML and MI in all simulation scenarios.

Conclusion: When additional postrandomization information is available, MI can be benefi-

cial over ML for handling incomplete longitudinal PROM data. IPW is not recommended for 

handling missing PROM data in the simulated scenarios. 

Keywords: missing data, repeated measures, patient-reported outcome measures, PROMS, 

multilevel mixed-effects models, multiple imputation, inverse probability weighting

Introduction
Repeated follow-up assessments are common in randomized controlled trials (RCTs).1,2 

The multiple observations obtained from each participant are likely to be more corre-

lated with one another than with the values between different individuals. Appropriate 

statistical analyses, such as mixed-effects linear regression, are needed to handle this 

aspect of longitudinal data.3–5

Although longitudinal data analysis is an important tool in medical research, the 

robustness of its results can be affected by missing data. Longitudinal follow-up data 

can be subject to monotone missingness, where no observations are available for a 

participant after a specific follow-up time point, such as when a patient drops out or 

withdraws from the trial. They can also be affected by intermittent missingness, where 
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missing data points are followed by observed data at later 

follow-ups.6 Often only a small subset of participants from 

a longitudinal data set have follow-up data available at all 

time points.

Patient-reported outcome measures (PROMs) are instru-

ments, often in questionnaire form, which include “any 

report coming directly from patients, without interpretation 

by physicians or others, about how they [the patients] func-

tion or feel in relation to a health condition and its therapy.”7 

Before they are used in research, PROMs undergo rigorous 

testing for validity, reliability, and robustness, to ensure that 

even small relevant changes in health-related quality of life 

can be measured and that measurement differences are not 

due to error or noise.8–11 These characteristics make PROMs 

an important addition to objective measures, which may not 

fully capture the patient experience of a specific treatment or 

disease burden,12 and they are increasingly used in medical 

research. However, PROMs are susceptible to being miss-

ing, particularly in longitudinal follow-up.6,13,14 Missing data 

patterns and mechanisms for PROMs may differ from those 

of clinical and more objective outcomes. 

The literature provides numerous overviews of statistical 

methods to handle longitudinal data with missing observa-

tions.1,6,15–19 Ad hoc missing data methods include deletion 

methods, which discard observations with missing data, and 

single imputation methods, which carry the last observation 

forward.6,16,20,21 These methods are likely to cause bias and 

generate overly precise standard errors (SEs). Although their 

use is generally discouraged, they are commonly used in 

the analysis of all RCTs, including those with longitudinal 

follow-up data.1,2,16,19,22–24

The use of model-based approaches, including maximum 

likelihood (ML) estimation,25 multiple imputation (MI), and 

inverse probability weighting (IPW),26,27 is encouraged. Their 

use is supported by their robust underlying methodology, easy 

implementation in standard statistical software, and use in 

RCT analyses to date.1,2,23

The literature offers few direct comparisons between the 

ML, MI, and IPW approaches for missing data. Guidance on 

best practice is limited, particularly for analyzing PROMs. It 

is important to understand which statistical approaches are 

most appropriate for the analysis of longitudinal RCT data, 

particularly with a focus on PROMs.

Missing data mechanisms
The literature distinguishes between three missing data 

mechanisms. When missing completely at random (MCAR), 

the probability of a value being missing is independent of 

both the observed and unobserved data for this participant. 

When missing at random (MAR), the probability of data 

being missing depends on the values of other observed data, 

but is independent of the values of the missing data. When 

missing not at random (MNAR), the probability that data 

are missing is related to the underlying value of these data, 

and this dependence remains to some extent even when the 

observed data are taken into account. 

Any analysis of MCAR data will produce unbiased 

results. Unbiased results can be obtained for MAR data if 

the analysis approach takes into account the variables related 

to the missing data mechanism. Analyses under an MNAR 

scenario are always biased if based on conventional statistical 

techniques which make MAR assumptions. 

It is impossible to determine the underlying missing data 

mechanism using only observed data. Most approaches for 

handling missing data assume an MAR mechanism, and 

MAR data are used here. However, possible MNAR mecha-

nisms should always be investigated in supporting sensitivity 

analyses, as emphasized later. 

Statistical methods considered in this 
simulation study
The methodology and implementation of ML, MI, and IPW 

are explained briefly here and in detail elsewhere.6,16,24,26–28,30–32 

The ML approach “implicitly impute[s] the unobserved 

data”6 to estimate model parameters.16,28,30 It uses all of the 

observed data for the relevant outcome collected within the 

relevant follow-up, provided that baseline covariate data 

are also available where applicable. Parameter estimates 

are obtained through an iterative process to maximize the 

likelihood of producing the sample data.16 The observed data 

points are used to make inferences about any missing data. 

MI is a common simulation-based technique for handling 

and analyzing missing data. It is generally described as a 

three-step process.24,32 First, an “imputation model” is created, 

which regresses the variable to be imputed on a set of vari-

ables that are predictive of the missing outcome. Imputations 

are drawn at random from the posterior distribution of this 

model. This process is repeated to generate multiple complete 

data sets. Second, each data set is analyzed separately using 

an identical prespecified statistical method. The results of 

these analyses differ only because the imputed observations 

differ. Third, the results are pooled using Rubin’s rule.33 

Including the variation across the imputed data sets reflects 

the uncertainty around the imputed values.6,24,34,35 MI uses all 

of the observed outcome data for the relevant variable and 

assumes that the data are MAR. 
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MI can be used in cross-sectional settings and to impute 

missing baseline or follow-up data in RCTs and observational 

studies. If several variables include missing observations, 

MI can be applied separately or using an approach such 

as MI by chained equation (MICE), which facilitates the 

simultaneous imputation of several incompletely observed 

variables. In this simulation study, we use MICE to handle 

missing longitudinal data. 

IPW is traditionally used in survey studies. Observations 

with a low probability of being included in the survey are 

given a higher weight in the analysis model to mitigate against 

bias introduced by the sampling design.36,37 However, the 

technique has also gained popularity in the handling of miss-

ing data.26,27,31 The rationale for using IPW in the presence of 

missing data is that the subset of participants with complete 

data for all covariates and follow-up time points, called the 

complete-cases subset, may not be representative of the full 

data set. The complete-cases data subset is analyzed under 

IPW, but the cases are weighted differentially to adjust for the 

bias that would be introduced by a conventional complete-

cases analysis.28 Complete cases that have a low probability 

of being observed due to missing data in comparable par-

ticipants are given a higher weight in the analysis compared 

with those with a high probability of being observed. This 

accounts for the participants who cannot be included in the 

analysis model due to missing data. However, IPW may pro-

duce biased results if a small subgroup of participants has a 

very low probability of having missing data.18

Hypotheses for this work
The three statistical approaches discussed in this paper (ML, 

MI, and IPW) all assume an MAR mechanism, but differ in 

important aspects. Under ML, inferences about missing data 

are restricted to variables contained in the analysis model. 

In contrast, the IPW missingness model and MI imputation 

model are independent from the analysis models and can use 

information from other variables in the data set, including 

postrandomization information. This can make the MAR 

mechanism more plausible38 and may produce less biased 

estimates.37

ML and MI use all of the available follow-up data col-

lected within the relevant time frame for a particular outcome, 

provided that any relevant covariate data are also nonmissing. 

In contrast, some observed data are discarded in IPW, which 

may increase bias and decrease precision around the results.

We hypothesized that MI would produce the best (ie, 

least biased) results when other variables outside the analysis 

model are available to predict missing values. MI and ML 

were expected to perform similarly if the imputation model 

was unable to include variables outside the analysis model 

that were predictive of the missing outcomes. As IPW can 

potentially discard large amounts of available information, 

it was expected to produce inferior results than those of its 

comparators when analyzing RCTs with no more than 1,000 

participants. 

Aims of this research
This research aimed at directly comparing the performances 

of ML, MI, and IPW when handling missing longitudinal 

PROM data in RCT analyses, using simulations based on 

the data from an RCT. The three approaches are all well 

established and can be routinely implemented in standard 

statistical software. The simulation study also aimed at gen-

erating guidance on the most appropriate analysis approach 

for a range of sample sizes, missing data prevalence, and 

auxiliary data availability.

Methods
Case study
This simulation study was based on data collected within the 

knee arthroscopy trial (KAT).40,41 KAT is a large multicenter 

RCT considering the clinical and cost-effectiveness of new 

developments in knee replacements. KAT was designed as 

a partial factorial pragmatic trial. Participants were random-

ized to at least one of four comparisons: patellar resurfacing 

versus no patellar resurfacing; mobile versus fixed bearing; 

all-polyethylene versus metal-backed tibial components; 

and unicompartmental versus total knee replacements. This 

simulation study used data from only the patellar resurfacing 

versus no patellar resurfacing comparison. 

Long-term follow-up of >10 years is ongoing for KAT. 

This simulation study used data over the initial 5-year follow-

up and included only participants with fully observed baseline 

and outcome data. Outcome assessments were performed at 

3 months, 1 year, and yearly thereafter. In total, 983 partici-

pants had completely observed data for the relevant PROM.

Design of the simulation exercise
Figure 1 provides the overview of the simulation study. 

Simulations started with a complete data set (no missing 

data) of the relevant sample size, from which estimates of the 

treatment effects and corresponding SEs were obtained. A 

prespecified proportion of MAR data was then introduced in 

the PROM follow-up data. The different analysis approaches 

were applied to the data set with simulated incomplete 

follow-up. Treatment effects and corresponding SEs were 
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estimated from the imputed data sets and compared with the 

“true” estimates obtained from the complete data sets. Here, 

we define “true” estimates as those calculated by using the 

multilevel mixed-effects model before the introduction of 

missing data, ie, the estimates that the various approaches 

for handling missing data aim at replicating. The simulation 

scenarios considered combinations of sample sizes (100, 

250, 500, 750, and 983 participants) and proportions of 

participants with missing follow-up data (10%, 20%, 40%, 

50%, and 60%).

This simulation study aimed at obtaining 1,000 valid 

imputation results for each scenario. The performance of 

the three approaches was measured by the root mean square 

error (RMSE) and mean absolute error (MAE) between 

the “true” and imputed treatment effect estimates, which is 

defined as follows: 

	 RMSE = 
1 2

1N
N

q qi ii
ˆ

	 MAE = 
1

1N
N

q qii
−

=∑ i
ˆ

where N denotes the number of simulations run (1,000 where 

feasible), q the true value for the estimate of interest, and θ̂i 

the estimate of interest obtained from the ith simulation. The 

simulation work was performed in Stata/SE Version 14.39

Instruments
The 5-year follow-up data for a PROM, the Oxford Knee 

Score (OKS), are considered. The OKS assesses pain and 

functional outcomes following knee replacement.42,43 Its 12 

items are combined into a composite score ranging from 0 

to 48, with higher scores indicating higher levels of function 

and less pain. Table 1 shows the mean OKS values observed 

for the participants in each trial arm at each relevant assess-

ment time point.

Missing data simulation
Missing data were introduced into data sets with fully 

observed OKS data of the relevant sample size. For the major-

ity of simulations, mixtures of monotone and intermittently 

missing data, based on the eight most commonly observed 

missing data patterns in the KAT (Table 2), were imposed 

for the relevant proportion of participants. Additional simu-

lations explored monotone missing data patterns, in which 

participants were equally likely to drop out at any of the 

follow-up time points. 

MAR data were simulated using an algorithm proposed 

by van Buuren et al44 and outlined by Yu et al45 and Simons 

et al.46 This algorithm allows researchers to vary the miss-

ing data patterns and the percentage of participants with 

missing data. Figure 2 outlines the steps the implementation 

followed. Missing data were generated for 5%, 10%, 20%, 

30%, 40%, 50%, and 60% of participants. Sample sizes of 

100, 250, 500, and 750 and the maximum sample avail-

able were considered. Smaller sample sizes were obtained 

by sampling the required number of participants from the 

full data set without replacement before simulating the 

missing data. 

Figure 1 Design of the simulation study.
Abbreviations: IPW, inverse probability weighting; MAE, mean absolute error; MAR, missing at random; MI, multiple imputation; ML, maximum likelihood; RMSE, root 
mean square error; SE, standard error.
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The MAR mechanism was based on logistic regression 

models using baseline variables and follow-up PROM infor-

mation, where relevant, to predict whether participants fell 

into a specific missing data pattern. Explanatory variables 

were randomization allocation, OKS (baseline and follow-up 

where appropriate), age, gender, body mass index, American 

Society of Anesthesiologists’ physical status classification, 

randomizing center size (small/medium/large), postoperative 

complications, and adherence to the randomized procedure. 

The coefficient estimates for each covariate were used in the 

algorithm to generate missing data. 

The effects of a different MAR mechanism were also 

investigated in a “stronger MAR” scenario. The coefficient 

estimates used in the logistic regression model for determin-

ing the probability of participants having missing data were 

changed. The coefficients of covariates outside the analysis 

model were increased threefold, while the coefficients 

included in the analysis model were halved. 

Analysis approaches
The longitudinal PROM data were analyzed using a multilevel 

mixed-effects regression model to compare the PROM over 

time between the two randomization allocations. The statisti-

cal model was based on the analysis prespecified for the KAT 

study. It was adjusted for randomization allocation, baseline 

OKS, gender, age, and follow-up time point (implemented as 

a dummy variable for each year, using the 1-year follow-up 

as the reference category). Nonlinear terms or interactions 

were not used. Although the KAT analysis included interac-

tions between treatment and time,41 they were excluded from 

this simulation because the main focus was estimating the 

overall treatment effect using the three approaches. The model 

included a random intercept and random slope, was fitted 

using an ML approach, and used an unstructured covariance.

The MI and IPW missingness models included all of 

the variables in the analysis model, as well as those used to 

generate the missing data. For exploratory simulations, two 

more PROMs collected in the trial, the EuroQol 5 Dimen-

sion 3 Level questionnaire (EQ-5D-3L)47 and 12-Item Short 

Form Health Survey (SF-12) physical component score,48,49 

were also included. Both were assumed to be fully observed. 

Missing composite scores were replaced with values obtained 

from a single imputation. Imputations for each time point 

were based on relevant baseline data and available OKS, 

SF-12, and EQ-5D follow-up data. The IPW missingness 

model included the composite PROM scores at baseline and 

5-year follow-up. The MI model used all of the baseline and 

follow-up PROM scores. 

Imputations were run separately by treatment arm.24,50 MI 

used MICE and a predictive mean matching approach. For the 

IPW approach, the missingness model was used to estimate 

the probability of missing follow-up data for each participant, 

using a logistic regression model with the outcome variable 

indicating if any follow-up data were missing. The inverse of 

Table 1 Mean OKSs across the follow-up in the subset of participants with completely observed outcome data

Assessment time 
point

No patellar resurfacing Patellar resurfacing Total

n Mean (SD) n Mean (SD) n Mean (SD)

Baseline 492 18.7 (7.4) 491 18.9 (7.3) 983 18.8 (7.3)
3 months 492 31.8 (9.2) 491 32.3 (9.4) 983 32 (9.3)
1 year 492 35.7 (9.7) 491 35.6 (9.5) 983 35.6 (9.6)
2 years 492 36.3 (10) 491 36.2 (10) 983 36.3 (10)
3 years 492 35.6 (10.1) 491 36.1 (9.9) 983 35.9 (10)
4 years 492 34.9 (10.3) 491 35.6 (10.4) 983 35.3 (10.4)
5 years 492 34.9 (10.3) 491 35.6 (10.4) 983 35.3 (10.3)

Abbreviation: OKS, Oxford Knee Score.

Table 2 Longitudinal missing data pattern observed in the case study and imposed on the complete data set

Missingness pattern Total Observed in trial %* % used in simulation Cumulative %

No follow-up data available 62 13.51 22.06 22.06
Only 3-month data missing 49 10.68 17.44 39.50
Only 5-year data missing 46 10.02 16.37 55.87
Data available to year 1 34 7.41 12.10 67.97
Data available to year 2 26 5.66 9.25 77.22
Only 4-year data missing 23 5.01 8.19 85.41
Only 3-year data missing 22 4.79 7.83 93.24
Data available to year 3 19 4.14 6.76 100.00

Note: *Missing data observed for participants still alive at 5 years.
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Figure 2 Depiction of the algorithm used for each iteration of the simulation of missing PROMs data within the complete-cases data set.
Abbreviations: KAT, knee arthroscopy trial; PROMs, patient-reported outcome measures.

Required:

•  Overall proportion of participants with incomplete data: P
•  Number/type of missing data pattern to be simulated
•  Relative frequency of each missing data pattern (fi)
•  Size of the data set the missing data are imposed on (Ndata set)

Step 1 – assigning missing data pattern

• Assign each participant, at random, to a longitudinal missing data pattern with probability fi

Step 2 – calculation of a linear score

• Calculate a linear score (si) for each participant
The weights for the calculation of si are the regression coefficients from a logistic regression
model predicting the probability of each longitudinal missing data pattern using the covariates
identified to be predictive of missing data in the KAT.

Step 3 – assigning odds

• Within each pattern, cases are split into subgroups based on si
• Odds (Oj) of data being missing in relation to the lowest subgroup are assigned to each
  subgroup
Here, the data are split into three groups of size Nj based on the 33rd and 66th percentiles; 
increasing odds of 1, 2, 3 have been assigned to the groups (as in Yu et al45 and Simons et al46).

Step 4 – calculating the probability of data being missing

• Using Oi and P, the probability of data being missing is calculated.
Here, the following formula introduced by Yu et al45 has been used:

Step 5 – imposing missing data

•  The calculated probability for each participant is compared to a randomly generated
   number (uniform distribution)
•  The observations at the relevant time points are set to be missing in-line with the missing
   data pattern assigned to this participant if the calculated probability exceeds the
   random number
•  Thus, missing data according to the relevant missing data pattern are imposed on the
   complete longitudinal data for the relevant observations

prob (miss) =
Ndataset* Oj * P * fi

Nj* Σ3 =1 Ojj
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this probability was used as the weight in the IPW analysis 

model (subject-specific weight), which used only cases with 

completely observed OKS outcome data.

The MI and IPW approaches were analyzed by using the 

same multilevel mixed-effects regression model described 

above, except that the MI approach analyzed the imputed 

data, and the IPW approach analyzed the complete-cases sub-

set using subject-specific weights to account for missing data. 

The Stata commands “mixed” and “mi impute” were used 

to implement the statistical models.

Ethics approval
Approval for the KAT study was obtained from the Multi-

Research Ethics Committee for Scotland (research protocol 

MREC/98/0/100 – November 1998, ISRCTN45837371) and 

from the Local Research Ethics Committees at each study 

site recruiting participants. All the participants gave written 

informed consent prior to being included in the study. No 

additional ethics approval was required for the performance 

of this simulation study.

Results
In general, the results consistently showed that the RMSE 

(and MAE) increased with increasing proportions of  missing 

data and decreasing sample sizes (Figures 3–5). The graphs 

presented in these figures show the RMSE and SE results, 

while the MAE results are presented in the Supplementary 

materials. For clarity, separate plots are provided for the dif-

ferent proportions of missing data.

Feasibility of the analysis approaches
The ML approach could obtain valid results in all simulation 

scenarios. A negligible proportion of the MI models did not 

converge. Valid results could not be obtained for ~20% of the 

IPW simulations for a sample size of 100 with 10% missing 

data, ~3% for a sample size of 100 with 20% missing data, 

and ~1% for a sample size of 250 with 10% missing data. 

Very low proportions of invalid results were observed for the 

remaining simulations for a sample size of 100.

Performance of the different analysis 
approaches
The first simulation scenario considered the observed patterns 

of missing data. Figure 3 shows the RMSEs introduced into 

the treatment effects. The ML and MI approaches performed 

very similarly, irrespective of the sample size or proportion 

of missing data. The IPW approach consistently resulted in 

worse RMSEs compared with the ML and MI approaches. 

Figure 3 RMSE of the estimated treatment coefficient using the observed missing data pattern.
Abbreviations: IPW, inverse probability weighting; MAR, missing at random; MI, multiple imputation; ML, maximum likelihood; RMSE, root mean square error.
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The difference between the performance of the IPW approach 

and of the ML and MI approaches was more pronounced 

for smaller sample sizes. The same patterns were observed 

when using the MAE as a performance measure (see the 

Supplementary materials). 

Figure 6 presents the SEs for the treatment effects. The 

ML and MI approaches produced SEs that were very similar 

to the true SEs. The IPW approach produced elevated SEs, 

particularly under scenarios with both higher proportions of 

missing data and smaller sample sizes.

Similar patterns for all three performance measures were 

observed for the three approaches for handling missing data under 

the “stronger MAR” scenario (see the Supplementary materials).

Further simulations added more PROM follow-up data 

(SF-12 and EQ-5D-3L) into the MI and IPW models. The 

MI approach introduced smaller RMSEs into the treatment 

effects compared with the ML approach when the original 

missing data pattern (a mixture of intermittent and monotone 

missingness) was maintained. The IPW approach intro-

duced similar RMSEs in this and the previous simulations 

( Figure 4). When considering a scenario with only monotone 

missingness, the differences in the RMSEs introduced by 

the MI approach decreased marginally, particularly for large 

proportions of participants with missing follow-up data 

( Figure 5), compared with intermittent missing data patterns. 

IPW produced greater errors than the other approaches.

The MAE in the estimated treatment effects was also used 

to measure the performance of the three approaches when 

handling missing data. The results for the MAE (shown in 

the Supplementary materials) were consistent with those 

presented above for the RMSE. Estimates of the SE of the 

treatment effects remained consistent across the simulation 

scenarios considered.

Discussion
This paper aimed at comparing the performance of the three 

approaches for analyzing longitudinal PROMs with some 

missing data: ML, MI, and IPW. These approaches are all 

well established and straightforward to implement using 

standard statistical software.

The simulation results obtained from ML and MI were 

very similar under MAR, when the MI model took into 

Figure 4 RMSE of the estimated treatment coefficient adding the SF-12 and EQ-5D-3L to the MI and IPW models.
Abbreviations: EQ-5D-3L, EuroQol 5 Dimension 3 Level questionnaire; IPW, inverse probability weighting; MAR, missing at random; MI, multiple imputation; ML, maximum 
likelihood; RMSE, root mean square error; SF-12, 12-Item Short Form Health Survey.
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account baseline data, data collected early in the trial, and 

the relevant outcome scores. These results agree with the 

existing literature.34,50 However, when the MI model included 

additional auxiliary variables collected over the follow-up 

period of the study, MI performed better than ML. This is an 

important finding as RCTs commonly collect information on 

a number of different PROMs, as well as clinical information 

such as clinical assessments, readmissions, and complica-

tions. This information should be used in MI models, where 

appropriate. Using auxiliary variables can also make the 

MAR assumption, on which all these three approaches rely, 

more plausible,38 particularly when some missing data are 

related to a change in health states.51 In such scenarios, MI 

should be favored over ML. 

The MI model including auxiliary variables performed 

slightly worse with monotone missing data than with inter-

mittently missing data. This finding emphasizes the impor-

tance of continued data collection and including all collected 

data in the analysis.

IPW performed notably worse than its comparators, 

in terms of both bias and variability around the estimates 

of the treatment effects. IPW potentially uses only a small 

subset of the observed outcome data. In line with the current 

literature, we do not recommend using IPW as implemented 

here to handle missing longitudinal PROM data in RCTs.52 

Some convergence issues were observed for the IPW models 

for small sample sizes, as the same statistical models were 

used across all simulation scenarios. Outside the context of a 

simulation study, models should be tailored to the data avail-

able and simplified for smaller sample sizes, as appropriate. 

The differences in the performance measures for the three 

approaches are relatively small. They lie within the measure-

ment error of the PROM and do not exceed its minimal impor-

tant difference, which have been estimated at 4 and 5 points, 

respectively.10 These differences are unlikely to be clinically 

meaningful. However, many trials are powered to detect small 

differences between treatment arms. For example, the KAT 

study was powered to detect a 1.5 point difference in the OKS 

for the patella resurfacing  comparison.40 Thus, even these 

moderate differences can affect trial conclusions; they can 

be used to derive guidance on which approach for handling 

missing data to be used. 

Figure 5 RMSE of the estimated treatment coefficient – considering dropouts only while also using the SF-12 and EQ-5D-3L as auxiliary variables in the MI and IPW models.
Abbreviations: EQ-5D-3L, EuroQol 5 Dimension 3 Level questionnaire; IPW, inverse probability weighting; MAR, missing at random; MI, multiple imputation; ML, maximum 
likelihood; RMSE, root mean square error; SF-12, 12-Item Short Form Health Survey.
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Limitations
A limited number of missing data scenarios were consid-

ered, and the maximum sample sizes were restricted by the 

number of complete cases in the trial that this simulation 

study is based on. However, sample sizes ranging from 100 

to almost 1,000 participants were deemed representative of 

the vast majority of RCTs. 

Most of the simulations considered the same missing data 

pattern, a mixture of intermittent and monotone missing-

ness. Missing data patterns are likely to vary between trials 

and, to a smaller extent, between PROMs. Other patterns of 

missingness could have been investigated here. However, 

monotone and intermittently missing data are commonly 

observed in RCTs, and we believe that the patterns used, as 

well as the conclusions drawn, are generalizable to a large 

proportion of RCTs. 

The simulation scenarios that added auxiliary PROM data 

in the MI and IPW approaches assumed that these PROMs 

were completely observed, which may not have been realistic. 

However, most RCTs collect information on several PROMs, 

which are likely to have different completion rates. More 

resources may be spent on ensuring high completion rates 

for the primary or key secondary outcome measures, eg, 

through follow-ups by telephone. It is also possible that RCT 

participants are more inclined to complete shorter question-

naires or those they consider more relevant to themselves. 

Different follow-up schedules may be used for different 

PROMs, and those collected more frequently can be used to 

make inferences about missing data in other questionnaires. 

Information on clinical assessments, readmissions, additional 

treatment, or complications may be less prone to missing 

data and could be used in imputation models. In short, any 

available additional postrandomization information should 

be included in imputation models if deemed appropriate to 

reduce bias.

The ML, MI, and IPW approaches were implemented 

as described in the “Methods” section. These specifica-

tions were included in this simulation study as they are well 

established, commonly used by the statistical community, 

and easily implementable using standard statistical software. 

Other specifications of these models are possible, but were 

not considered here. IPW performed worse than ML and MI 

Figure 6 SE of the estimated treatment coefficient using the observed missing data pattern.
Abbreviations: IPW, inverse probability weighting; MAR, missing at random, MI, multiple imputation; ML, maximum likelihood; SE, standard error.
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here, possibly because the IPW approach implemented did 

not use data from participants with any missing follow-up 

data. Other implementations of IPW have been suggested, 

including a stratification approach to account for different 

missing data patterns, which may be due to differences in 

patient characteristics; however, this approach is only thought 

to be appropriate if the number of missing data patterns is 

small.26 Doubly robust IPW approaches,37 or IPW incor-

porating some imputations,27,31 have also been suggested 

as alternatives. However, as the implementations for these 

approaches are complex and not routinely available in stan-

dard statistical software, they did not match the criteria for 

methods compared here.

The simulation studies presented here are restricted to the 

KAT study and the OKS. Validation in other PROMs could 

be beneficial. However, the OKS shares characteristics with 

many composite-score PROMs: it is used as a continuous 

score, baseline variables have some predictive ability for 

the OKS at follow-up, and there is moderate correlation 

between the OKS and other PROMs collected at follow-up. 

The results of the simulations using the OKS are thus likely 

to be generalizable to many other PROMs.

This work did not consider the effect of MNAR mecha-

nisms or misspecifications of the analysis model on the 

performance of the three approaches. As misspecification 

and MNAR can occur in a number of ways, the effect of 

different misspecifications or different MNAR mechanisms 

may have very different effects on the performance of the 

three approaches for handling missing data in longitudinal 

data sets. We therefore avoided general statements about the 

performance of the investigated analysis approaches that 

may not be applicable to all MNAR and misspecification 

scenarios, which could lead to underestimating the bias intro-

duced through missing data. The effects of MNAR scenarios 

should be investigated for all analyses on incomplete data 

in appropriate sensitivity analyses, as recommended in the 

literature.29,51,53–55

Conclusion
This simulation study directly compared the performances 

of ML, MI, and IPW in handling incomplete PROM data in 

a longitudinally collected data set from an RCT. The IPW 

model performed worse than the ML and MI approaches, 

introducing greater RMSE and MAE. It should therefore 

not be used for the analysis of similar small RCT data sets, 

especially when some missing outcome data are observed 

for ≥30% of participants. 

ML and MI perform similarly under MAR when no 

additional follow-up data are available. However, if auxiliary 

PROMs have been more completely observed during follow-

up than the PROM of primary interest, or other postrandom-

ization data are available, then MI performs better and should 

be favored over non-imputation-based ML approaches. As 

both approaches assume an MAR mechanism, additional 

sensitivity analyses considering MNAR scenarios should be 

conducted to supplement the primary analysis.

Availability of data and materials
The data used for this simulation work were collected as 

part of the KAT study. As the authors obtained permission to 

use the data for prespecified analyses and simulation studies 

performed as part of Ines Rombach’s doctoral thesis, the data 

set cannot be made publicly available. Data requests should be 

directed to the trial coordinating office, the Health Services 

Research Unit at the University of Aberdeen. The simulation 

work was performed in Stata and is available from the cor-

responding author upon request. 

Acknowledgments
We are very grateful to the KAT study group for providing 

data for this methodological work. We recognize the contri-

butions of all of the KAT investigators, collaborators, and 

those who coordinated the KAT study. We also thank all of 

the trial participants and the National Institute for Health 

Research – Health Technology Assessment who funded the 

KAT. We acknowledge English language editing by Jennifer 

A de Beyer.

This research is part of Ines Rombach’s doctoral thesis, 

and financial support was provided entirely by a Medical 

Sciences Graduate School Studentship from the Medical 

Research Council and the Department of Population Health, 

University of Oxford (Grant Number: MR/J500501/1). 

This work was previously presented in the follow-

ing conferences: 1) Rombach I, Gray AM, Jenkinson C, 

Rivero-Arias O. To impute or not to impute? A comparison 

of statistical approaches for analyzing missing longitudinal 

patient reported outcome data in randomized controlled tri-

als. PROMs Research Conference; June 2017; Oxford, UK. 

2) Rombach I, Gray AM, Jenkinson C, Rivero-Arias O. A 

comparison of statistical approaches for analyzing miss-

ing longitudinal patient reported outcome data in RCTs. 

4th International Clinical Trials Methodology Conference 

(ICTMC) and the 38th Annual Meeting of the Society for 

Clinical Trials (SCT); May 2017; Liverpool, UK.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Patient Related Outcome Measures 2018:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

208

Rombach et al

Disclosure
All authors are employed by the University of Oxford. The 

funding agreement ensured the authors’ independence in 

designing the study, interpreting the data, and writing and 

publishing the report. The authors report no other conflicts 

of interest in this work.

References
 1. Bell ML, Fiero M, Horton NJ, Hsu CH. Handling missing data in 

RCTs; a review of the top medical journals. BMC Med Res Methodol. 
2014;14:118.

 2. Rombach I, Rivero-Arias O, Gray AM, Jenkinson C, Burke O. The 
current practice of handling and reporting missing outcome data in 
eight widely used PROMs in RCT publications: a review of the current 
literature. Qual Life Res. 2016;25(7):1613–1623.

 3. Beunckens C, Molenberghs G, Kenward MG. Direct likelihood analy-
sis versus simple forms of imputation for missing data in randomized 
clinical trials. Clin Trials. 2005;2(5):379–386.

 4. Mallinckrodt CH, Clark SW, Carroll RJ, Molenbergh G. Assessing 
response profiles from incomplete longitudinal clinical trial data under 
regulatory considerations. J Biopharm Stat. 2003;13(2):179–190.

 5. White IR, Moodie E, Thompson SG, Croudace T. A modelling strategy 
for the analysis of clinical trials with partly missing longitudinal data. 
Int J Methods Psychiatr Res. 2003;12(3):139–150.

 6. Bell ML, Fairclough DL. Practical and statistical issues in missing data 
for longitudinal patient-reported outcomes. Stat Methods Med Res. 
2014;23(5):440–459.

 7. Patrick DL, Burke LB, Powers JH, et al. Patient-reported outcomes 
to support medical product labeling claims: FDA perspective. Value 
Health. 2007;10 (Suppl 2):S125–S137.

 8. Jenkinson C, Morley D. Patient reported outcomes. Eur J Cardiovasc 
Nurs. 2016;15(2):112–113.

 9. Kazi AM, Khalid W. Questionnaire designing and validation. J Pak Med 
Assoc. 2012;62(5):514–516.

10. Beard DJ, Harris K, Dawson J, et al. Meaningful changes for the Oxford 
hip and knee scores after joint replacement surgery. J Clin Epidemiol. 
2015;68(1):73–79.

11. Dawson J, Rogers K, Fitzpatrick R, Carr A. The Oxford shoulder score 
revisited. Arch Orthop Trauma Surg. 2009;129(1):119–123.

12. Lohr KN, Zebrack BJ. Using patient-reported outcomes in clinical 
practice: challenges and opportunities. Qual Life Res. 2009;18(1): 
99–107.

13. Fielding S, Maclennan G, Cook JA, Ramsay CR. A review of RCTs 
in four medical journals to assess the use of imputation to overcome 
missing data in quality of life outcomes. Trials. 2008;9:51.

14. Gomes M, Gutacker N, Bojke C, Street A. Addressing missing data 
in patient-reported outcome measures (PROMS): implications for the 
use of PROMS for comparing provider performance. Health Econ. 
2016;25(5):515–528.

15. Ibrahim JG, Molenberghs G. Missing data methods in longitudinal 
studies: a review. Test (Madr). 2009;18(1):1–43.

16. Enders CK. Analyzing longitudinal data with missing values. Rehabil 
Psychol. 2011;56(4):267–288.

17. Verbeke G, Fieuws S, Molenberghs G, Davidian M. The analysis 
of multivariate longitudinal data: a review. Stat Methods Med Res. 
2014;23(1):42–59.

18. Faria R, Gomes M, Epstein D, White IR. A guide to handling missing 
data in cost-effectiveness analysis conducted within randomised con-
trolled trials. Pharmacoeconomics. 2014;32(12):1157–1170.

19. Powney M, Williamson P, Kirkham J, Kolamunnage-Dona R. A review 
of the handling of missing longitudinal outcome data in clinical trials. 
Trials. 2014;15:237.

20. Mallinckrodt CH, Sanger TM, Dube S, et al. Assessing and interpreting 
treatment effects in longitudinal clinical trials with missing data. Biol 
Psychiatry. 2003;53(8):754–760.

21. Lachin JM. Fallacies of last observation carried forward analyses. Clin 
Trials. 2016;13(2):161–168.

22. Eekhout I, de Boer RM, Twisk JW, de Vet HC, Heymans MW. Miss-
ing data: a systematic review of how they are reported and handled. 
Epidemiology. 2012;23(5):729–732.

23. Lang KM, Little TD. Principled missing data treatments. Prev Sci. 
2018;19(3):284–294.

24. White IR, Royston P, Wood AM. Multiple imputation using chained 
equations: issues and guidance for practice. Stat Med. 2011;30(4): 
377–399.

25. Kenward MG, Lesaffre E, Molenberghs G. An application of maximum 
likelihood and generalized estimating equations to the analysis of ordinal 
data from a longitudinal study with cases missing at random. Biometrics. 
1994;50(4):945–953.

26. Doidge JC. Responsiveness-informed multiple imputation and inverse 
probability-weighting in cohort studies with missing data that are non-
monotone or not missing at random. Stat Methods Med Res. 2018;27(2): 
352–363.

27. Seaman SR, White IR. Review of inverse probability weighting for 
dealing with missing data. Stat Methods Med Res. 2013;22(3):278–295.

28. Little RJA, Rubin DB. Statistical Analysis with Missing Data. 2nd ed. 
Hoboken, NJ: John Wiley & Sons; 2002.

29. Mallinckrodt CH, Lane PW, Schnell D, Peng Y, Mancuso JP. Recommen-
dations for the primary analysis of continuous endpoints in longitudinal 
clinical trials. Drug Inf J. 2008;42(4):303–319.

30. Carpenter JR, Kenward MG. Multiple Imputation and Its Application. 
1st ed. Chichester: John Wiley & Sons; 2013.

31. Seaman SR, White IR, Copas AJ, Li L. Combining multiple imputation 
and inverse-probability weighting. Biometrics. 2012;68(1):129–137.

32. van Buuren S. Multiple imputation of discrete and continuous data 
by fully conditional specification. Stat Methods Med Res. 2007;16(3): 
219–242.

33. Rubin D. Multiple Imputation for Nonresponse in Surveys. New York, 
NY: Wiley & Sons; 1987.

34. Kenward MG, Carpenter J. Multiple imputation: current perspectives. 
Stat Methods Med Res. 2007;16(3):199–218.

35. Fielding S, Fayers P, Ramsay CR. Analysing randomised controlled trials 
with missing data: choice of approach affects conclusions. Contemp 
Clin Trials. 2012;33(3):461–469.

36. Mansournia MA, Altman DG. Inverse probability weighting. BMJ. 
2016;352:i189.

37. Carpenter JR, Kenward MG, Vansteelandt S. A comparison of multiple 
imputation and doubly robust estimation for analyses with missing data. 
J R Stat Soc Ser A Stat Soc. 2006;169(3):571–584.

38. White IR, Kalaitzaki E, Thompson SG. Allowing for missing out-
come data and incomplete uptake of randomised interventions, with 
application to an Internet-based alcohol trial. Stat Med. 2011;30(27): 
3192–3207.

39. StataCorp. Stata Statistical Software: Release 14. College Station, TX: 
StataCorp LP; 2015.

40. KAT Trial Group, Johnston L, MacLennan G, McCormack K, Ramsay C, 
Walker A. The Knee Arthroplasty Trial (KAT) design features, baseline char-
acteristics, and two-year functional outcomes after alternative approaches 
to knee replacement. J Bone Joint Surg Am. 2009;91(1):134–141.

41. Murray DW, MacLennan GS, Breeman S, et al. A randomised controlled 
trial of the clinical effectiveness and cost-effectiveness of different knee 
prostheses: the Knee Arthroplasty Trial (KAT). Health Technol Assess. 
2014;18(19):1–235, vii–viii.

42. Dawson J, Fitzpatrick R, Murray D, Carr A. Questionnaire on the per-
ceptions of patients about total knee replacement. J Bone Joint Surg 
Br. 1998;80(1):63–69.

43. Murray DW, Fitzpatrick R, Rogers K, et al. The use of the Oxford hip 
and knee scores. J Bone Joint Surg Br. 2007;89(8):1010–1014.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Patient Related Outcome Measures 2018:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Patient Related Outcome Measures

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/patient-related-outcome-measures-journal

Patient Related Outcome Measures is an international, peer-reviewed, 
open access journal focusing on treatment outcomes specifically 
relevant to patients. All aspects of patient care are addressed within 
the journal and practitioners from all disciplines are invited to submit 
their work as well as healthcare researchers and patient support groups.  

The journal is included in PubMed. The manuscript management system 
is completely online and includes a very quick and fair peer-review 
system. Visit http://www.dovepress.com/testimonials.php to read real 
quotes from published authors. 

Dovepress

209

Analyzing incomplete longitudinal PROMs data

44. Van Buuren S, Brand JPL, Groothuis-Oudshoorn CG, Rubin DB. Fully 
conditional specification in multivariate imputation. J Stat Comput 
Simul. 2006;76(12):1049–1064.

45. Yu LM, Burton A, Rivero-Arias O. Evaluation of software for mul-
tiple imputation of semi-continuous data. Stat Methods Med Res. 
2007;16(3):243–258.

46. Simons CL, Rivero-Arias O, Yu LM, Simon J. Multiple imputation 
to deal with missing EQ-5D-3L data: Should we impute individual 
domains or the actual index? Qual Life Res. 2015;24(4):805–815.

47. Oemar M, Oppe M. EQ-5D-3L User Guide – basic information on how 
to use the EQ-5D-3L instrument, Version 5.0; 2013. Available from: 
http://www.euroqol.org/fileadmin/user_upload/Documenten/PDF/
Folders_Flyers/EQ-5D-3L_UserGuide_2013_v5.0_October_2013.pdf. 
Accessed October 1, 2014.

48. Jenkinson C, Layte R. Development and testing of the UK SF-12 (short 
form health survey). J Health Serv Res Policy. 1997;2(1):14–18.

49. Jenkinson C, Layte R, Jenkinson D, et al. A shorter form health survey: 
can the SF-12 replicate results from the SF-36 in longitudinal studies? 
J Public Health Med. 1997;19(2):179–186.

50. Sullivan TR, White IR, Salter AB, Ryan P, Lee KJ. Should multiple 
imputation be the method of choice for handling missing data in ran-
domized trials? Stat Methods Med Res. Epub 2016 Jan 1.

51. Graham JW. Missing data analysis: making it work in the real world. 
Ann Rev Psychol. 2009;60:549–576.

52. Horton NJ, Kleinman KP. Much ado about nothing: a comparison of 
missing data methods and software to fit incomplete data regression 
models. Am Stat. 2007;61(1):79–90.

53. Eekhout I, Enders CK, Twisk JW, de Boer MR, de Vet HC, Heymans 
MW. Including auxiliary item information in longitudinal data analyses 
improved handling missing questionnaire outcome data. J Clin Epide-
miol. 2015;68(6):637–645.

54. Cornish RP, Tilling K, Boyd A, Davies A, Macleod J. Using linked 
educational attainment data to reduce bias due to missing outcome data 
in estimates of the association between the duration of breastfeeding 
and IQ at 15 years. Int J Epidemiol. 2015;44(3):937–945.

55. Permutt T. Sensitivity analysis for missing data in regulatory submis-
sions. Stat Med. 2016;35(17):2876–2879.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com

	_GoBack

	Publication Info 4: 


