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Background: Over the years, pyrazolopyrimidine derivatives have been recognized as having 

antimicrobial activities. Recently, we reported different synthetic methods to prepare pyrazo-

lopyrimidine derivatives as anticancer and antimicrobial agents. The studies showed that our 

previously reported 5-aminopyrazoles 2 act as a building block for the preparation of a variety 

of interesting pyrazolopyrimidines as purine analogs.

Purpose: The objective of this study was to describe the direct new method for preparation of novel 

pyrazolo[1,5-a]pyrimidine derivatives and their corresponding cycloalkane ring-fused derivatives. Also, 

the new compounds were tested in vitro for their antibacterial and antifungal activity properties. 

Methods: Pyrazolo[1,5-a]pyrimidine derivatives were prepared by the reaction of our previously 

reported 5-aminopyrazoles 2 with suitable sodium salts of (hydroxymethylene) cycloalkanones 

and sodium salts of unsaturated ketones. 

Results: The structures of the new compounds were characterized according to their mass spectros-

copy, 1H NMR, IR and elemental analyses. Compounds 8b, 10e, 10i, and 10n were the most active 

compounds against Gram-positive and Gram-negative bacterial species. Compound 10i with two moi-

eties of 4-Br-C
6
H

4
 revealed increased reactivity compared with ampicillin as standard reference.

Conclusion: About twenty two novel pyrazolo[1,5-a]pyrimidine derivatives and their 

corresponding cycloalkane ring-fused derivatives were prepared through the reaction of 

5-aminopyrazoles 2 with different sodium salts of (hydroxymethylene) cycloalkanones and 

sodium salts of unsaturated ketones. The antibacterial and antifungal activities of the newly 

synthesized compounds were evaluated and revealed that compounds 8b, 10e, 10i, and 10n were 

the most active compounds against Gram-positive and Gram-negative bacterial strains.

Keywords: pyrazolo[1,5-a]pyrimidines, 5-aminopyrazoles, 2-(hydroxymethylene)-1- 

cycloalkanones, 2-formylcycloalkanones, antibacterial, antifungal, docking studies

Introduction
Antimicrobial resistance threatens prevention and treatment of diseases caused by 

fungi, bacteria, viruses, and parasites. Diseases caused by infection over time are 

a growing threat to the overall health of people worldwide. Urgent and preventive 

action must be taken in all societies.1 Antimicrobial resistance occurs when micro-

scopic organisms such as viruses, bacteria, parasites, and fungi change, when treated 

with antimicrobial agents such as fungicides, antivirals, and antibiotics. Over time, 

microorganisms promote and acquire antimicrobial resistance. In consequence, 

most drugs become virtually ineffective in treatment, and diseases and infections 
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will be persistent in the human body, leading to increased 

and evolving risk of proliferation in communities and 

threats to our actual ability to treat infectious and common 

diseases that are known to lead to death.2 It is clear that 

antimicrobial resistance occurs naturally and spontaneously 

over time, usually through genetic changes. Antimicrobial 

resistance is naturally generated by natural selection from 

random mutations. When the new gene is made, bacteria 

can convert genetic information in a horizontal way. If the 

bacteria carry several resistant genes, they are called multi-

resistance bacteria. The effect of antimicrobial resistance is 

the environmental stress on bacteria, but the mutations that 

appear in some bacterial cells make them escape the anti-

microbial resistance effect. Next, this feature moves to the 

next offspring, which is characterized as a generation with 

full antimicrobial resistance. Poor ability to control infection, 

lack of adequate hygienic conditions, and inadequate proper 

handling of all types of foods lead to increased prevalence 

of resistance to all antimicrobials. Patients with an infection 

caused by drug-resistant bacteria are always at increased risk 

of poor clinical outcomes and acute death as they consume 

more medicines and medical resources than other infected 

patients with non-resistant strains of the same microbes and 

bacteria.3 Many pyrazolopyrimidines are known to possess 

antimicrobial and antifungal activities;4 we have recently 

reported different innovative synthetic methods to prepare 

pyrazolopyrimidine derivatives that found application 

and appeared to constitute new classes of anticancer and 

antimicrobial agents.5,6 A series of one of our previously 

reported novel 5-aminopyrazoles 17–11 (Figure 1) was used 

recently by other research groups as a starting material for 

the construction of pyrazolopyrimidines.12–19 The studies 

demonstrated that our aminopyrazoles act as a building 

block for a variety of interesting pyrazolopyrimidines as 

purine analogs. In another study conducted, our previously 

reported 5-aminopyrazoles 220,21 (Figure 1) were proven as 

a good starting synthetic material for the preparation of a 

variety of interesting pyrazolopyrimidines.22,23 We have 

reported that 5-aminopyrazoles, aminotriazoles, aminotet-

razole, and aminobenzimidazole reacted with sodium salts 

of (hydroxymethylene) cycloalkanones and sodium salts 

of unsaturated keto compounds to give the corresponding 

angular azolopyrimidine derivatives.24–31 These promising 

results have motivated our research group to continue 

this work exploring novel molecular mechanisms of these 

synthetic compounds and their use as chemotherapeutic 

agents. In view of these findings and as a part of our program 

directed toward the preparation of potential antimetabolic 

agents,32 we have recently reported different synthetic 

methods for the preparation of azoloazines using acti-

vated nitriles.33 Many derivatives of these ring systems are 

considered important as antimetabolites in most biochemical 

reactions.34 In the light of these reports and in the continu-

ing results of our previous research into the synthesis of 

biologically active heterocyclic compounds,35 the present 

research reports a new preparation of cycloalkane ring-fused 

pyrazolo[1,5-a]pyrimidines 8a–f (Scheme 1) and substituted 

pyrazolo[1,5-a]pyrimidines 10a–n (Scheme 2) by the reac-

tion of our previously reported 5-aminopyrazole 2 with 

suitable sodium salts of (hydroxymethylene)-cycloalkanones 

7a–d and sodium salts of unsaturated keto compounds 9a–h. 

The synthesized heterocycles were tested and evaluated for 

their antifungal and antibacterial activities.

Materials and methods
The melting points were determined on a Gallenkamp 

melting point apparatus and were uncorrected. Infrared (IR) 

spectra (KBr discs) were recorded on an Fourier-transform 

infrared (FTIR) plus 460 IR spectrophotometer (Shimadzu, 

Japan). 1H NMR spectra were recorded on a BRUKER-

400 spectrometer operating at 400 MHz in DMSO-d
6
 with 

Si(CH
3
)

4
 as an internal standard at the Faculty of Pharmacy, 

Ain Shams University, Egypt. Shifts were given in ppm and 

the abbreviations were as follows: s (singlet), d (doublet), 

t (triplet), and m (multiplet). The mass spectra were run in 

the Microanalytical Center at Cairo University. The reagents 

and solvents were purchased in commercially available grade 

purity. 5-Aminopyrazoles 2 were prepared following our 

previously reported method.20

Synthetic procedures
General procedure for the synthesis of (8a–h)
To a solution of any of 2b (2.17 g, 0.01 mol) or 2c (2.96 g, 

0.01 mol), the sodium salt of 7a (1.34 g, 0.01 mol), 7b (1.48 g, 

0.01 mol), 7c (1.62 g, 0.01 mol), or 7d (1.76 g, 0.01 mol) and 

piperidine acetate (1 mL; prepared from 4.2 mL glacial acetic 
Figure 1 Structure of our previously reported 5-aminopyrazoles 1a,b7–11 and 
2a,b.20,21
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acid, 10 mL water, and 7.2 mL piperidine) were refluxed in 

water (50 mL) for 10 min. Acetic acid (1.5 mL) was added 

to the hot solution and refluxing was continued for about 

15 min. The reaction mixture was allowed to cool to room 

temperature. The precipitate, in each case, was collected by 

filtration and crystallized from ethanol. 

2-(Phenylamino)-7,8-dihydro-6H-cyclopenta[e]
pyrazolo[1,5-a]pyrimidine-3-carboxamide (8a)
Canary yellow crystals; yield: 75% (2.21 g), melting point 

(mp): 310°C–315°C; IR (KBr, υ cm−1): 3,378, 3,301 (NH
2
), 

3,145 (NH), 3,050 (CH-aromatic), 2,955, 2,918 (CH
2
), 

1,651 (C=O), and 1,596, 1,449 (C=C). 1H-NMR (400 MHz 

∆

∆

∆

Scheme 1 Synthesis of 7,8-dihydro-6H-cycloalkan[e]pyrazolo[1,5-a]pyrimidine-3-carboxamide derivatives 8a–h.
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DMSO-d
6
) δ: 2.52–2.50 (m, 2H, CH

2
), 3.06–3.33 (m, 4H, 

2CH
2
), 6.94–7.36, 7.68–7.70 (m, 5H, C

6
H

5
), 7.48–7.57 

(s, 2H, NH
2
), 8.54 (s, 1H, CH pyrimidine), 9.69 (s, 1H, NH). 

analysis calculated (Anal. Calcd.) for C
16

H
15

N
5
O (293.32): 

C, 65.52; H, 5.15; N, 23.88. Found: C, 65.69; H, 4.90;  

N, 24.01.

2-((4-Bromophenyl)amino)-7,8-dihydro-6H-
cyclopenta[e]pyrazolo-[1,5-a]pyrimidine-3-
carboxamide (8b)
Faint yellow crystals; yield: 80% (2.96), mp: 282°C–290°C; 

IR (KBr, υ cm−1): 3,405, 3,266 (NH
2
), 3,168 (NH), 3,040 (CH-

aromatic), 2,954, 2,855 (CH
2
), 1,651 (C=O) and 1,593, 1,450 

2

N
H

N

NHR

O

H2N

H2N

b, R = C6H5

c, R = 4-Br.C6H4 a, CH3

b, C2H5

c, C6H5

d, 4-Cl.C6H4

e, 4-Br.C6H4

f, 4-OCH3.C6H4

g, 4-CH3.C6H4

h, 2-OH.C6H4

9 R1

9a–h

O NaR1

O

– +

+

(i) AcOH/Pip. acetate
(ii) ∆/30 min

10a–n

N

N

NHR

O

H2N

N

R1

R

C6H5

C6H5

4-Br.C6H4

C6H5

4-Br.C6H4

C6H5

4-Br.C6H4

R1

CH3

C2H5

C2H5

C6H5

C6H5

4-Cl.C6H4

4-Cl.C6H4

R

C6H5

4-Br.C6H4

C6H5

4-Br.C6H4

C6H5

4-Br.C6H4

C6H5

R1

4-Br.C6H4

4-Br.C6H4

4-OCH3.C6H4

4-OCH3.C6H4

4-CH3.C6H4

4-CH3.C6H4

2-OH.C6H4

a,
b,
c,
d,
e,
f,
g,

10

h,
i,
j,
k,
l,
m,
n,

10

Scheme 2 Synthesis of 7-substituted-pyrazolo[1,5-a]pyrimidine-3-carboxamide derivatives 10a–n.
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(C=C). 1H-NMR (DMSO-d
6
) δ: 2.17–2.26 (m, 2H, CH

2
), 

2.93–3.04 (m, 4H, 2CH
2
), 7.45–7.49 (s, 2H, NH

2
), 7.60–7.67 

(m, 4H, C
6
H

4
), 8.52 (s, 1H, CH pyrimidine), 9.75 (s, 1H, NH). 

Anal. Calcd. for C
16

H
14

N
5
OBr (372.22): C, 51.63; H, 3.79; 

N, 18.82. Found: C, 51.89; H, 4.01; N, 18.99. 

2-(Phenylamino)-6,7,8,9-tetrahydropyrazolo[1,5-a]
quinazoline-3-carboxamide (8c)
White crystals; yield: 99% (3.04 g), mp: 263°C–266°C; 

IR (KBr, υ cm−1): 3,393, 3,306 (NH
2
), 3,184 (NH), 3,050 

(CH-aromatic), 2,936, 2,862 (CH
2
), 1,650 (C=O) and 1,595, 

1,455 (C=C). 1H-NMR (DMSO-d
6
) δ: 1.77–1.94 (m, 4H, 

2CH
2
), 2.75–3.11 (m, 4H, 2CH

2
), 6.94–7.36, 7.65–7.71 

(m, 5H, C
6
H

5
), 7.51–7.53 (s, 2H, NH

2
), 8.87 (s, 1H, CH 

pyrimidine), 9.59 (s, 1H, NH). Anal. Calcd. for C
17

H
17

N
5
O 

(307.35): C, 66.43; H, 5.58; N, 22.79. Found: C, 66.77; 

H, 5.31; N, 22.98. 

2-((4-Bromophenyl)amino)-6,7,8,9-
tetrahydropyrazolo[1,5-a]quinazoline- 
3-carboxamide (8d)
Off white crystals; yield: 96% (3.70 g), mp: 280°C–285°C; 

IR (KBr υ cm−1): 3,393, 3,392 (NH
2
), 3,272 (NH), 3,159 

(CH-aromatic), 2,933 (CH
2
), 1,650 (C=O) and 1,592, 1,453 

(C=C). 1H-NMR (DMSO-d
6
) δ: 1.73–1.88 (m, 4H, 2CH

2
), 

2.51–2.98 (m, 4H, 2CH
2
), 7.28 (s, 2H, NH

2
), 7.44–7.60 (m, 

4H, C
6
H

4
), 8.74 (s, 1H, CH pyrimidine), 9.61 (s, 1H, NH). 

Anal. Calcd. for C
17

H
16

N
5
OBr (386.25): C, 52.86; H, 4.18; 

N, 18.13. Found: C, 53.02; H, 4.01; N, 18.40.

2-(Phenylamino)-6,7,8,9,10-pentahydropyrazolo[1,5-a]
quinazoline-3-carboxamide (8e)
White crystals; yield: 70% (2.24 g), mp: 222°C–224°C; 

IR (KBr, υ cm−1): 3,350, 3,300 (NH
2
, NH), 3,020 

(CH-aromatic), 2,960 (CH
2
), 1,670 (C=O). 1H-NMR 

(DMSO-d
6
) δ: 1.60–2.00 (m, 6H, 3CH

2
), 2.65–3.20 (m, 4H, 

2CH
2
), 6.90–7.80 (m, 5H, C

6
H

5
), 7.80–7.83 (s, 2H, NH

2
), 8.89 

(s, 1H, CH pyrimidine), 10.11 (s, 1H, NH). Anal. Calcd. for 

C
18

H
19

N
5
O (321.38): C, 67.27; H, 5.96; N, 21.79. Found: C, 

67.00; H, 5.70; N, 22.00.

2-((4-Bromophenyl)amino)-6,7,8,9,10-
pentahydropyrazolo[1,5-a]quinazoline-3-
carboxamide (8f)
White powder; yield: 60% (2.40 g), mp: 241°C–245°C; IR 

(KBr υ cm−1): 3,400, 3,300 (NH
2
, NH), 3,130 (CH-aromatic), 

2,900 (CH
2
), 1,660 (C=O). 1H-NMR (DMSO-d

6
) δ: 1.37–1.90 

(m, 6H, 3CH
2
), 2.40–2.90 (m, 4H, 2CH

2
), 7.00 (s, 2H, NH

2
), 

7.20–7.90 (m, 4H, C
6
H

4
), 8.50 (s, 1H, CH pyrimidine), 

9.22 (s, 1H, NH). Anal. Calcd. for C
18

H
18

N
5
OBr (400.27): 

C, 54.01; H, 4.53; N, 17.50. Found: C, 54.00; H, 4.22;  

N, 17.20.

2-(Phenylamino)-6,7,8,9,10,11-hexahydrocycloocta[e]
pyrazolo[1,5-a]pyrimidine-3-carboxamide (8g)
White crystals; yield: 80% (2.69 g), mp: 244°C–245°C; 

IR (KBr, υ cm−1): 3,397, 3,324 (NH
2
), 3,273 (NH), 3,146 

(CH-aromatic), 2,920, 2,853 (CH
2
), 1,655 (C=O) and 

1,596, 1,447 (C=C). 1H-NMR (DMSO-d
6
) δ: 1.34–1.44 

(m, 4H, 2CH
2
), 1.69–1.89 (m, 4H, 2CH

2
), 2.50–3.38 (m, 4H, 

2CH
2
), 6.94–7.55 (m, 5H, C

6
H

5
), 7.68–7.70 (s, 2H, NH

2
), 

8.46 (s, 1H, CH pyrimidine), 9.63 (s, 1H, NH). Anal. Calcd. 

for C
19

H
21

N
5
O (335.40): C, 68.04; H, 6.31; N, 20.88. Found: 

C, 68.29; H, 6.52; N, 21.10. 

2-((4-Bromophenyl)amino)-6,7,8,9,10,11-
hexahydrocycloocta[e]pyrazolo[1,5-a]pyrimidine-3-
carboxamide (8h)
Faint yellow crystals; yield: 90% (3.70 g), mp: 266°C–270°C; 

IR (KBr, υ cm−1): 3,367, 3,303 (NH
2
), 3,269 (NH), 3,157 

(CH-aromatic), 2,921, 2,851 (CH
2
), 1,648 (C=O) and 

1,591, 1,453 (C=C). 1H-NMR (DMSO-d
6
) δ: 1.33–1.42 

(m, 4H, 2CH
2
), 1.67–1.87 (m, 4H, 2CH

2
), 2.51–2.97 (m, 4H, 

2CH
2
), 7.38–7.58 (m, 4H, C

6
H

4
), 7.65–7.67 (s, br, 2H, NH

2
), 

8.44 (s, 1H, CH pyrimidine), 9.68 (s, 1H, NH). Anal. Calcd. 

for C
19

H
20

N
5
OBr (414.30): C, 55.08; H, 4.87; N, 16.90. 

Found: C, 55.22; H, 4.61; N, 17.10. 

General procedure for the synthesis of (10a–n)
To a mixture of any of 2b (2.17 g, 0.01 mol) or 2c (2.96 g, 0.01 

mol), the sodium salt of 9a (1.08 g, 0.01 mol), 9b (1.22 g, 0.01 

mol), or 9c (1.70 g, 0.01 mol), 9d (2.04 g, 0.01 mol), 9e (2.49 

g, 0.01 mol), 9f (2.00 g, 0.01 mol), 9g (1.84 g, 0.01 mol), 

or 9h (1.86 g, 0.01 mol) and piperidine acetate (1 mL) were 

refluxed in water (50 mL) for 10 min. Acetic acid (1.5 mL) 

was added to the hot solution and refluxing was continued 

for about 15 min. The reaction mixture was allowed to cool 

to room temperature. The precipitate, in each case, was col-

lected by filtration and crystallized from ethanol. 

7-Methyl-2-(phenylamino)pyrazolo[1,5-a]pyrimidine-
3-carboxamide (10a)
Faint brown crystals; yield: 65% (1.74 g), mp: 248°C–250°C; 

IR (KBr, υ cm−1): 3,395, 3,271 (NH
2
), 3,161 (NH), 3,050 
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(CH-aromatic), 2,900 (CH
3
), 1,651 (C=O) and 1,594, 1,447 

(C=C). 1H-NMR (DMSO-d
6
) δ: 2.52–2.78 (s, 3H, CH

3
), 

7.38–7.58 (m, 5H, C
6
H

5
), 7.72–7.74 (s, br, 2H, NH

2
), 8.52 

(s, 1H, CH pyrimidine), 8.98 (s, 1H, CH pyrimidine), 9.67 

(s, 1H, NH). Anal. Calcd. for C
14

H
13

N
5
O (267.29): C, 62.91; 

H, 4.90; N, 26.20. Found: C, 63.03; H, 4.71; N, 26.40. 

7-Ethyl-2-(phenylamino)pyrazolo[1,5-a]pyrimidine-3-
carboxamide (10b)
Off white crystals; yield: 78% (2.21 g), mp: 215°C–219°C; 

IR (KBr, υ cm−1): 3,395, 3,273 (NH
2
), 3,166 (NH), 3,040 

(CH-aromatic), 2,925 (CH
2
, CH

3
), 1,653 (C=O), and 

1,595, 1,449 (C=C). 1H-NMR (DMSO-d
6
) δ: 1.35–1.39 

(t, 3H, CH
3
), 3.11–3.17 (q, 2H, CH

2
), 6.95–7.37, 7.60–7.71 

(m, 5H, C
6
H

5
), 7.44–7.52 (s, br, 2H, NH

2
), 8.52 (s, 1H, CH 

pyrimidine), 8.83 (s, 1H, CH pyrimidine), 9.59 (s, 1H, NH). 

Anal. Calcd. for C
15

H
15

N
5
O (281.31): C, 64.04; H, 5.37; 

N, 24.90. Found: C, 64.33; H, 5.61; N, 25.20. 

2-((4-Bromophenyl)amino)-7-ethylpyrazolo[1,5-a]
pyrimidine-3-carboxamide (10c)
Faint yellow crystals; yield: 97% (3.48 g), mp: 217°C–220°C; 

IR (KBr, υ cm−1): 3,423, 3,315 (NH
2
), 3,264–3,178 (NH), 

3,012 (CH-aromatic), 2,973, 2,919 (CH
2
, CH

3
), 1,659 (C=O) 

and 1,591, 1,455 (C=C). 1H-NMR (DMSO-d
6
) δ: 1.37–1.41 

(t, 3H, CH
3
), 3.14–3.20 (q, 2H, CH

2
), 7.06–7.51, 7.63–7.71 

(m, 4H, C
6
H

4
), 7.57 (s, br, 2H, NH

2
), 8.58 (s, 1H, CH pyrimi-

dine), 8.91 (s, 1H, CH pyrimidine), 9.63 (s, 1H, NH). Anal. 

Calcd. for C
15

H
14

N
5
OBr (360.21): C, 50.02; H, 3.92; N, 19.44. 

Found: C, 50.22; H, 4.02; N, 19.20. 

7-Phenyl-2-(phenylamino)pyrazolo[1,5-a]pyrimidine-
3-carboxamide (10d)
Canary yellow crystals; yield: 97% (3.51 g), mp: 237°C–

240°C; IR (KBr, υ cm−1): 3,376, 3,312 (NH
2
), 3,269 (NH), 

3,149 (CH-aromatic), 1,654 (C=O) and 1,596, 1,444 (C=C). 
1H-NMR (DMSO-d

6
) δ: 6.92–7.67 (m, 10H, 2C

6
H

5
), 

8.19–8.20 (s, 2H, NH
2
), 8.65 (s, 1H, CH pyrimidine), 8.66 

(s, 1H, CH pyrimidine), 9.66 (s, 1H, NH). Anal. Calcd. for 

C
19

H
15

N
5
O (329.36): C, 69.29; H, 4.59; N, 21.26. Found: C, 

69.45; H, 4.70; N, 21.44.

2-((4-Bromophenyl)amino)-7-phenylpyrazolo[1,5-a]
pyrimidine-3-carboxamide (10e)
Canary yellow crystals; yield: 73% (2.96 g), mp: 287°C–

290°C; IR (KBr, υ cm−1): 3,412, 3,310 (NH
2
), 3,265 (NH), 

3,166 (CH-aromatic), 1,658 (C=O) and 1,596, 1,455 (C=C). 
1H-NMR (DMSO-d

6
) δ: 7.35–7.69 (m, 9H, C

6
H

5
, C

6
H

4
), 8.21 

(s, 2H, NH
2
), 8.69 (s, 1H, CH pyrimidine), 8.70 (s, 1H, CH 

pyrimidine), 9.71 (s, 1H, NH). Anal. Calcd. for C
19

H
14

N
5
OBr 

(408.25): C, 55.90; H, 3.46; N, 17.15. Found: C, 56.10; 

H, 3.80; N, 17.30. 

7-(4-Chlorophenyl)-2-(phenylamino)pyrazolo[1,5-a]
pyrimidine-3-carboxamide (10f)
Canary yellow crystals; yield: 96% (3.47 g), mp: 272°C–

275°C; IR (KBr, υ cm−1): 3,381, 3,317 (NH
2
), 3,271 (NH), 

3,169 (CH-aromatic), 1,659 (C=O) and 1,597, 1,452 (C=C). 
1H-NMR (DMSO-d

6
) δ: 6.94–7.78 (m, 9H, C

6
H

5
, C

6
H

4
), 

8.26–8.82 (s, 2H, NH
2
), 8.34 (s, 1H, CH pyrimidine), 8.69 

(s, 1H, CH pyrimidine), 9.75 (s, 1H, NH). MS (EI): m/z (%) 

366 [M+2]+ (4.49), 365 [M+1]+ (20.13), 364 [M+] (13.72), 

363 [M−1]+ (58.89), 362 [M−2]+ (1.09), 346 (100.00). Anal. 

Calcd. for C
19

H
14

N
5
OCl (363.80): C, 62.73; H, 3.88; N, 19.25. 

Found: C, 62.99; H, 4.01; N, 19.40. 

2-((4-Bromophenyl)amino)-7-(4-chlorophenyl)
pyrazolo[1,5-a]pyrimidine-3-carboxamide (10g)
Canary yellow crystals; yield: 94% (4.14 g), mp: 272°C–

275°C; IR (KBr, υ cm−1): 3,409, 3,220 (NH
2
, NH), 3,050 (CH-

aromatic), 1,636 (C=O) and 1,586, 1,468 (C=C). 1H-NMR 

(DMSO-d
6
) δ: 6.14–7.94 (m, 8H, 2C

6
H

4
), 7.97–7.99 (s, 2H, 

NH
2
), 8.11 (s, 1H, CH pyrimidine), 8.25 (s, 1H, CH pyrimi-

dine), 9.72 (s, 1H, NH). Anal. Calcd. for C
19

H
13

N
5
OBrCl 

(442.70): C, 51.55; H, 2.96; N, 15.82. Found: C, 51.69; 

H, 3.01; N, 15.97. 

7-(4-Bromophenyl)-2-(phenylamino)pyrazolo[1,5-a]
pyrimidine-3-carboxamide (10h)
Canary yellow crystals; yield: 99% (4.04 g), mp: 275°C–

278°C; IR (KBr, υ cm−1): 3,400, 3,378 (NH
2
), 3,271 (NH), 

3,168 (CH-aromatic), 1,656 (C=O) and 1,596, 1,450 (C=C). 
1H-NMR (DMSO-d

6
) δ: 6.94–7.92 (m, 9H, C

6
H

5
, C

6
H

4
), 

8.18–8.20 (s, 2H, NH
2
), 8.69 (s, 1H, CH pyrimidine), 8.70 

(s, 1H, CH pyrimidine), 9.67 (s, 1H, NH). MS (EI): m/z (%) 

410 [M+2]+ (13.48), 409 [M+1]+ (61.29), 408 [M+] (15.20), 

407 [M−1]+ (60.21), 406 [M−2]+ (1.25), 390 (100.00). Anal. 

Calcd. for C
19

H
14

N
5
OBr (408.25): C, 55.90; H, 3.46; N, 17.15. 

Found: C, 56.09; H, 3.78; N, 17.35.

7-(4-Bromophenyl)-2-((4-bromophenyl)amino)
pyrazolo[1,5-a]pyrimidine-3-carboxamide (10i)
Yellow crystals; yield: 85% (4.14 g), mp: 197°C–200°C; IR 

(KBr, υ cm−1): 3,406, 3,350 (NH
2
), 3,270 (NH), 3,169 (CH-

aromatic), 1,635 (C=O) and 1,588, 1,468 (C=C). 1H-NMR 

(DMSO-d
6
) δ: 6.13–7.79 (m, 8H, 2C

6
H

4
), 7.89–7.92 (s, 2H, 

NH
2
), 8.70 (s, 1H, CH pyrimidine), 8.81 (s, 1H, CH pyrimi-

dine), 9.73 (s, 1H, NH). Anal. Calcd. for C
19

H
13

N
5
OBr

2
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(487.15): C, 46.84; H, 2.69; N, 14.38. Found: C, 47.02; 

H, 2.99; N, 14.60.

7-(4-Methoxyphenyl)-2-(phenylamino)pyrazolo[1,5-a]
pyrimidine-3-carboxamide (10j)
Canary yellow crystals; yield: 75% (2.69 g), mp: 247°C–

250°C; IR (KBr, υ cm−1): 3,362, 3,310 (NH
2
), 3,167 (NH), 

3,040 (CH-aromatic), 1,658 (C=O) and 1,599, 1,456 (C=C). 
1H-NMR (DMSO-d

6
) δ: 3.91 (s, 3H, CH

3
), 6.94–7.66 (m, 9H, 

C
6
H

5
, C

6
H

4
), 8.26–8.28 (s, 2H, NH

2
), 8.62 (s, 1H, CH pyrimi-

dine), 8.90 (s, 1H, CH pyrimidine), 9.66 (s, 1H, NH). MS 

(EI): m/z (%) 361 [M+2]+ (2.43), 360 [M+1]+ (17.62), 359 

[M+] (74.11), 358 [M−1]+ (2.12), 357 [M−2]+ (0.07), 342 

(100.00). Anal. Calcd. for C
20

H
17

N
5
O

2
 (359.38): C, 66.84; H, 

4.77; N, 19.49. Found: C, 67.02; H, 4.99; N, 19.60.

2-((4-Bromophenyl)amino)-7-(4-methoxyphenyl)
pyrazolo[1,5-a]pyrimidine-3-carboxamide (10k)
Yellow crystals; yield: 95% (4.14 g), mp: 217°C–220°C; IR 

(KBr, υ cm−1): 3,407, 3,277 (NH
2
), 3,155 (NH), 3,050 (CH-

aromatic), 1,682 (C=O) and 1,596, 1,461 (C=C). 1H-NMR 

(DMSO-d
6
) δ: 3.92 (s, 3H, CH

3
), 6.10–7.65 (m, 8H, 2C

6
H

5
), 

8.25–8.27 (s, 2H, NH
2
), 8.62 (s, 1H, CH pyrimidine), 8.73 

(s, 1H, CH pyrimidine), 9.72 (s, 1H, NH). Anal. Calcd. for 

C
20

H
16

N
5
O

2
Br (438.28): C, 54.81; H, 3.68; N, 15.98. Found: 

C, 55.10; H, 3.98; N, 16.11.

2-(Phenylamino)-7-(p-tolyl)pyrazolo[1,5-a]
pyrimidine-3-carboxamide (10l)
Canary yellow crystals; yield: 76% (2.60 g), mp: 257°C–

260°C; IR (KBr, υ cm−1): 3,372, 3,312 (NH
2
), 3,270 (NH), 

3,156 (CH-aromatic), 1,653 (C=O) and 1,599, 1,450 (C=C). 
1H-NMR (DMSO-d

6
) δ: 2.46 (s, 3H, CH

3
), 6.93–7.65 (m, 9H, 

C
6
H

5
, C

6
H

4
), 8.14–8.16 (s, 2H, NH

2
), 8.64 (s, 1H, CH pyrimi-

dine), 8.65 (s, 1H, CH pyrimidine), 9.66 (s, 1H, NH). MS 

(EI): m/z (%) 345 [M+2]+ (2.17), 344 [M+1]+ (17.27), 343 

[M+] (70.81), 342 [M−1]+ (1.89), 341 [M−2]+ (0.12), 325 

(100.00). Anal. Calcd. for C
20

H
17

N
5
O (343.38): C, 69.96; 

H, 4.99; N, 20.40. Found: C, 70.21; H, 4.67; N, 20.73. 

2-((4-Bromophenyl)amino)-7-(p-tolyl)pyrazolo[1,5-a]
pyrimidine-3-carboxamide (10m)
Yellow crystals; yield: 99% (4.20 g), mp: 217°C–220°C; IR 

(KBr, υ cm−1): 3,400, 3,315 (NH
2
), 3,260 (NH), 3,156 (CH-

aromatic), 1,644 (C=O) and 1,590, 1,470 (C=C). 1H-NMR 

(DMSO-d
6
) δ: 2.46 (s, 3H, CH

3
), 6.11–7.63 (m, 8H, 2C

6
H

4
), 

8.12–8.14 (s, 2H, NH
2
), 8.64 (s, 1H, CH pyrimidine), 8.66 

(s, 1H, CH pyrimidine), 9.70 (s, 1H, NH). Anal. Calcd. for 

C
20

H
16

N
5
OBr (422.28): C, 56.89; H, 3.82; N, 16.58. Found: 

C, 57.14; H, 4.02; N, 16.70. 

7-(2-Hydroxyphenyl)-2-(phenylamino)pyrazolo[1,5-a]
pyrimidine-3-carboxamide (10n)
Faint brown crystals; yield: 65% (2.26 g), mp: 207°C–210°C; 

IR (KBr, υ cm−1): 3,442, 3,415 (NH
2
), 3,351 (NH), 3,159 (CH-

aromatic), 1,662 (C=O) and 1,583, 1,447 (C=C). 1H-NMR 

(DMSO-d
6
) δ: 6.70–7.20 (m, 9H, C

6
H

4
, C

6
H

5
), 7.32–7.33 

(s, 2H, NH
2
), 8.88 (s, 1H, CH pyrimidine), 8.99 (s, 1H, CH 

pyrimidine), 8.98 (s, 1H, NH), 11.01 (s, 1H, OH). Anal. 

Calcd. for C
19

H
15

N
5
O

2
 (345.35): C, 66.08; H, 4.38; N, 20.28. 

Found: C, 66.22; H, 4.01; N, 20.45.

Docking studies and structure–activity 
relationship
In the absence of a crystal structure, homology models of 

Bacillus subtilis (Bsu) MurC (Accession No:NP_390857), 

Pseudomonas aeruginosa (Pae) MurC (Accession No: 

B7UZI9), and Staphylococcus aureus (Sau) MurC (Accession 

No:A6U2K6) were built based on the published cocrystal struc-

ture of Escherichia coli (Eco) MurC (pdb ID: 2F00; Figure 2). 

The sequence identities between Eco MurC and Bst MurC, Pae 

MurC, and Sau MurC were found to be 26%, 58%, and 25%, 

respectively. The E. coli ATP binding site (126GTHGKTT132) 

was conserved by .85% with B. subtilis (108GAHGKTSTT116), 

P. aeruginosa (122GTHGKTT128), and S. aureus (108GAHGK-

TSTT116). The model was validated using protein Preparation 

Wizard and minimized prior to docking. Docking of a set of 

pyrazolopyrimidines was carried out in the ATP binding site 

using Schrodinger 16.4 software Glide (XP) extra precision 

module from Schrodinger.36,37 The best Docking Score is 

obtained as the most negative value for the active ligands. All 

the compounds were constructed using the fragment library of 

Maestro 9.2, and all compounds were prepared by using the 

LigPrep 2.9.38 Glide docking parameters were set to the default 

hard potential function. No constraints were applied for all the 

docking studies. Structure–activity relationship (SAR) analysis 

was performed using R-Group Analysis. 

Antimicrobial evaluation
The antimicrobial activities of the samples tested were 

studied on Mueller–Hinton agar plates by the disc diffusion 

technique against Gram-positive (B. subtilis and S. aureus) 

and Gram-negative (E. coli and P. aeruginosa) bacterial 

strain.39 Ampicillin (AM 20 µg) was used as the standard 

antibacterial agent obtained from Bioanalyse® Ltd. (Ankara, 

Turkey). Sterile Whatman filter paper discs (6 mm) were 

individually impregnated with 10 µL of solvent (distilled 

water, chloroform, DMSO) containing 20 µg concentration 

of each sample at a pH value of 6. All the discs were dried 

aseptically and placed on the surface of Mueller–Hinton 
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Figure 2 Predicted 3D structure of MurC ligase of (A) Bacillus subtitles, (B) Escherichia coli K12, (C) Pseudomonas aeruginosa, and (D) Staphylococcus aureus.

agar plates seeded with 1.8×108 cfu/mL (0.5 OD600) of the 

test bacteria. Following 24 h incubation at 37°C, plates were 

examined for the presence of inhibition zones. The inhibition 

zones surrounding the disks were measured (mm) considering 

only halos .6 mm.40 Inhibition zones obtained are the mean 

of three replicates for each experiment.

Results and discussion
Chemistry
In this study, 5-aminopyrazoles 2b was found to react with 

the sodium salts of (hydroxymethylene)-cycloalkanones 

7a–d in acetic acid-piperidine acetate to give adduct for 

which structure 8a–h is set. The reaction starts with an initial 

nucleophilic attack from the external amino group to the 

formyl group followed by cyclization and then removal of 

one molecule of water to produce angular three-ring com-

pounds 8a–h. This requires that in the presence of acidic 

medium, it occurs by first protonation of the ring nitrogen 

which is the most nucleophilic center in the compound 2 and 

directs the exocyclic amino group to attack the unhindered 

formyl group of 4 to give compounds 8a–h (Scheme 1). 

The structures of later compounds were confirmed by the 

spectral data and elemental analysis. Thus, the IR spectrum 

of compound 8a, as an example of this series, revealed the 

presence of three bands at υ 3,378, 3,301, and 3,145 cm−1 

for NH
2
 and NH groups and a characteristic C=O band at 

υ 1,651 cm−1. Moreover, 1H NMR of 8a showed the existence 

of a signal at δ 8.54 ppm assigned for pyrimidine-H proton, 

two multiplets at a range of δ 2.52–3.33 ppm assigned for 

three CH
2
 groups, and two broad singlets at δ 7.48–7.57 and 

9.69 ppm assigned for NH
2
 and NH groups. The behavior of 

the 5-aminopyrazoles 2b toward sodium salts of unsaturated 

keto compounds 9a–h was also studied: the pyrazolopy-

rimidine compounds 10a–n were obtained by cyclic con-

densation of 2b with 9a–h in acetic acid-piperidine acetate 

(Scheme 2). The structure of the 10a–n reaction products 

was confirmed by spectral data and elemental analysis (IR, 
1H NMR, MS). Thus, analytical data were revealed for 10a 

molecular formula C
14

H
13

N
5
O (M+ 267). The IR spectrum 

of compound 10a revealed the presence of three bands at 

υ 3,395, 3,271, and 3,161 cm−1 for NH
2
 and NH groups and 

a characteristic C=O band at υ 1,651 cm−1. Also, 1H NMR 
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revealed a multiplet at δ 7.38–7.58 ppm assignable to the 

aromatic protons and two signals at δ 8.52 and 8.98 ppm 

assignable for two pyrimidine CH protons. These results 

obtained in this study, when combined with our previous 

results, show that the reaction of 5-aminopyrazoles with 

sodium salts of (hydroxymethylene)-cycloalkanones and 

sodium salts of unsaturated aliphatic ketones can be used 

as a new and effective method in the preparation of many 

important pyrazolo[1,5-a]pyrimidine derivatives and their 

cycloalkane ring-fused derivatives.

Antimicrobial evaluation and the 
structure–activity relationship
Mur ligases play a vital role in the bio-bacterial 

peptidoglycans.41,42 Mur ligases play an important role 

in the biosynthesis of the cell wall peptidoglycan. Many 

enzymes stimulate the early stages of the pathogenesis 

of the peptidoglycan named MurA to MurF.43 MurC, the 

third enzyme in Mur ligases of the peptidoglycan pathway, 

initiates the synthesis of pentapeptide precursor where the 

l-alanine binds to the UDP-N-acetylmuramic acid converting 

to UDP-N-acetylmuramic acid-l-alanine.42 The reactivity 

of all the newly synthesized products against bacterial and 

fungi species was evaluated through Table 1. Pyrazolopy-

rimidine compounds possess bactericidal activity against 

both Gram-negative and Gram-positive MurC enzymes.42 

Compounds 8b, 10e, 10i, and 10n were found to be the 

most active compounds against Gram-positive and Gram-

negative bacterial species (Figure 3). The presence of the 

two moieties of 4-Br-C
6
H

4
 in compound 10i increased the 

reactivity of the compound when comparing with ampicillin 

as a standard reference.

The effects of substituents (R1, R2, and R3) in the pyra-

zolopyrimidine-3-carboxamide region were investigated, 

and a series of derivatives are summarized in Table 2 and 

Figure 4. Compound 7-(4-bromophenyl)-pyrazolopyrimidine-

3-carboxamide (10i) with 17-Br and 13-bromophenyl sub-

stituents exhibited most inhibitory effect for MurC ligase 

of Gram-negative and Gram-positive bacteria (Table 2). 

To investigate the binding mode of 10i, it was docked 

into the active site of MurC ligase of Bacillus subtilis. As 

shown in Figure 5A, compound 10i interacted with extended 

conformation. The bromophenyl group formed face-to-face 

π–π interactions with His263. The carbonyl oxygen atom 

formed hydrogen bonding interaction with a side chain of 

Ser275. However, compound 10i formed hydrogen bonding 

interaction with Gly205 in the case of S. aureus (Figure 5B). 

MurC ligase of E. coli formed hydrogen bonding interaction 

Table 1 Reactivity of the newly synthesized products against bacterial and fungi species

Compd number Inhibition zone diameter (mm/mg sample)

Bacterial species Fungal strain

Gram-positive bacterial strain Gram-negative bacterial strain

Bacillus 
subtilis

Staphylococcus 
aureus

Escherichia 
coli

Pseudomonas 
aeruginosa

Aspergillus 
flavus

Candida 
albicans

8a 9 0.0 0.0 10 0.0 0.0
8b 12 0.0 11 12 0.0 0.0
8c 0.0 0.0 0.0 0.0 0.0 0.0
8d 9 0.0 0.0 10 0.0 0.0
8g 0.0 0.0 0.0 0.0 0.0 0.0
8h 9 0.0 0.0 9 0.0 0.0
10a 10 0.0 0.0 9 0.0 0.0
10b 0.0 0.0 0.0 0.0 0.0 0.0
10c 0.0 13 0.0 0.0 0.0 0.0
10d 0.0 0.0 0.0 0.0 0.0 0.0
10e 9 0.0 9 9 0.0 0.0
10f 9 0.0 0.0 10 0.0 0.0
10g 0.0 9 0.0 0.0 0.0 0.0
10h 9 0.0 0.0 0.0 0.0 0.0
10i 14 14 12 12 0.0 0.0
10j 0.0 0.0 0.0 9 0.0 0.0
10k 0.0 0.0 0.0 0.0 0.0 0.0
10l 9 0.0 0.0 10 0.0 0.0
10m 0.0 0.0 0.0 0.0 0.0 0.0
10n 10 12 11 11 0.0 0.0
Ampicillin 26 21 25 26 – –
Amphotericin B – – – – 15 19

Note: Solvent used: DMSO solutions.
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Figure 3 The most active synthesized products against Gram-positive and Gram-negative bacterial species.
Abbreviations: G+, Gram positive; G–, Gram negative; B. S., Bacillus subtilis; S. A., Staphylococcus aureus; E. C., Escherichia coli; P. A., Pseudomonas aeruginosa.

Table 2 SAR activates for MurC ligase of 2-(phenylamino)pyrazolo[1,5-a]pyrimidine-3-carboxamide moiety

Structure 
name

R1 R2 R3 Energy R1 
family

R2 
family

R3 
family

Inhibition zone diameter

Gram-negative 
bacterial strain

Gram-positive
bacterial strain

Escherichia 
coli K12

Pseudomonas 
aeruginosa

Bacillus 
subtilis

Staphylococcus 
aureus

8a 23.02 20 8 9 0.0 10 9 0.0

8b 21.04 19 7 9 11 12 12 0.0

8c 25.49 18 6 8 0.0 0.0 0.0 0.0

8d 23.48 17 5 8 0.0 10 9 0.0

8g 28.46 16 4 7 0.0 0.0 0.0 0.0

8h 26.44 15 3 7 0.0 9 9 0.0

10a 21.69 14 1 11 0.0 9 10 0.0

10b 21.2 13 1 6 0.0 0.0 0.0 0.0

10c 19.19 12 2 6 0.0 0.0 0.0 13

10d 31.03 11 1 5 0.0 0.0 0.0 0.0

10e 29.1 10 2 5 9 9 9 0.0

10f 30.19 9 1 4 0.0 10 9 0.0

(Continued)
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Table 2 (Continued)

Structure 
name

R1 R2 R3 Energy R1 
family

R2 
family

R3 
family

Inhibition zone diameter

Gram-negative 
bacterial strain

Gram-positive
bacterial strain

Escherichia 
coli K12

Pseudomonas 
aeruginosa

Bacillus 
subtilis

Staphylococcus 
aureus

10g 28.35 8 2 4 0.0 0.0 0.0 9

10h 30.17 7 1 3 0.0 0.0 9 0.0

10i 28.32 6 2 3 12 12 14 14

10j 35.31 5 1 2 0.0 9 0.0 0.0

10k 33.46 4 2 2 0.0 0.0 0.0 0.0

10l 30.7 3 1 1 0.0 10 9 0.0

10m 28.84 2 2 1 0.0 0.0 0.0 0.0

10n 33.63 1 1 10 11 11 10 12

Abbreviation: SAR, structure–activity relationship.

Figure 4 (A) 2-(Phenylamino)pyrazolo[1,5-a]pyrimidine-3-carboxamide moiety. (B) Compound 7-(4-bromophenyl)-2-((4-bromophenyl)amino)pyrazole[1,5-a]pyrimidine-3-
carboxamide (10i).

with Asn 194 (Figure 5C). P. aeruginosa MurC ligase 

formed 3 H-bonding interactions with Gln 318, Gln 325, 

and Val 326 (Figure 5D). However, 7-(4-bromophenyl)-

pyrazolopyrimidine-3-carboxamide (10h) showed only 

inhibitory activities against Bacillus subtilis. 7-(2-

hydroxyphenyl)-pyrazolopyrimidine-3-carboxamide (10n) 

containing 2-hydroxyphenyl possessed good inhibitory 

activities for all MurC ligases of Gram-positive and 

Gram-negative bacteria (Table 2). Compounds bearing 

R3 Br-substituents of the 2-(phenylamino)-pyrazolopy-

rimidine-3-carboxamide displayed better potency for the 

MurC ligase than those without substituents at the same 

positions. However, introducing Br-substituents to 2-((4-

bromophenyl)amino)-7-( p-tolyl)pyrazolopyrimidine-3-
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carboxamide (10m) removed its inhibitory activities in 

comparison with 2-(phenylamino)-7-(4-methylphenyl)

pyrazolopyrimidine-3-carboxamide (10l; Table 2). Com-

pounds 8c and 8g did not show any inhibitory activities for 

MurC ligase of Gram-negative and Gram-positive bacteria 

(Table 2). However, Br-substitution of compounds 8d and 

8h evidently increased their inhibitory effects for MurC  

ligase (Table 2).

Figure 5 Binding mode analysis of (10i) with MurC ligase (A) Bacillus subtilis, (B) Escherichia coli K12, (C) Pseudomonas aeruginosa, and (D) Staphylococcus aureus.
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Conclusion
The conclusion of this study was summarized through the 

reaction of 5-aminopyrazoles 2 with different sodium salts 

of (hydroxymethylene) cycloalkanones and sodium salts 

of unsaturated ketones to obtain the novel pyrazolo[1,5-a]

pyrimidine derivatives and their corresponding cycloalkane 

ring-fused derivatives. The newly synthesized compounds 

were evaluated according to their antibacterial and antifungal 

activities. The evaluations showed that compounds 8b, 10e, 

10i, and 10n were the most active compounds against Gram-

positive and Gram-negative bacterial strains.
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