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Abstract: Several members of the sirtuin (SIRT) family, a highly conserved family of 

NAD+-dependent enzymes, have been shown to play a critical role in both promoting and/or 

suppressing tumorigenesis. In this study, recent progress in the field concerning SIRT4 and cancer 

was reviewed, and the relationship between SIRT4 and tumors was investigated. Subsequently, 

we evaluated the role of SIRT4 with oncogenic or tumor-suppressive activity in cancer, which 

may provide insight in identifying the underlying mechanism of action of SIRT4 in cancer. 

Finally, we explored the potential of SIRT4 as a therapeutic target in cancer therapy.
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Introduction
The sirtuin (SIRT) family is a homologous analogue of the yeast silent information 

regulator (Sir2), which codes for histone deacetylation in mammals.1,2 Mammalian 

SIRTs are considered class III histone deacetylases, which are different from class I 

and II histone deacetylases.3,4 Seven members of the SIRT family (SIRT1–7) share a 

conserved catalytic domain.5 In addition to having a similar structure, members of the 

SIRT family have different enzymatic activities.6 For example, SIRT1–3 and SIRT7 

are primarily lysine deacetylases,7,8 SIRT4 serves as both an ADP-ribosyl-transferase 

and lysine deacylase,9,10 SIRT5 serves as a lysine demalonylase,11 desuccinylase,12 

and deglutarylase,13 and SIRT6 is an ADP-ribose transferase and deacetylase.14,15 

In addition, the location of these proteins within the cell is different.6 SIRT1, SIRT6, 

and SIRT7 are located within the nucleus, SIRT2 is located in the cytoplasm, and 

SIRT3, SIRT4, and SIRT5 are located in the mitochondria. These differences in 

location suggested that different family members may have different functions.16 

SIRT family members play an important role in stress resistance, genome stability, 

energy metabolism, and aging.5 Moreover, previous studies have shown that almost 

all members of the SIRT family play a role in tumorigenesis.6,17–19

Recent studies have demonstrated that members of the SIRT family often play oppo-

site roles in tumor formation.6 For example, they can both promote and inhibit tumor 

formation.16,20,21 In previous studies, it was proposed to divide genes into oncogenes or 

tumor suppressor genes; however, only a small fraction of genes has been classified into 

these categories. Myc, for example, is an oncogene,22 whereas the RB gene is a tumor 

suppressor gene.23 Other genes, including those of SIRT family members, have less 

specific roles, and the tumor promoting, or inhibiting, features of these genes may be 

dependent on the stage of tumor development, the tissue or organ microenvironment, 

and experimental conditions.24 For example, SIRT1 is highly expressed in gastric,25 

colon,26 prostate,27 and skin cancers,28 as well as in several other tumors. This indicated 
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that SIRT1 may play a key role in promoting tumor forma-

tion in these malignant conditions. However, another study 

has demonstrated that expression of SIRT1 in human breast 

cancer tissue was reduced.29 Moreover, SIRT1 expression in 

a murine APCmin/+ model inhibited the formation of intestinal 

tumors.30 These observations were similar to the findings 

demonstrating that SIRT2 was downregulated in breast,31 

glioma, and skin cancers.32,33 However, SIRT2 expression is 

enhanced in acute myeloid leukemia and prostate cancer.34,35 

Therefore, the findings and conclusions of one tumor type 

cannot be extrapolated to that of another.

SIRT4 is a relatively understudied member of the SIRT 

family. At present, an increasing number of studies are 

focused on the correlation between SIRT4 and tumors, 

and these novel investigations will be reviewed in the 

following sections.

The primary function of SIRT4
SIRT4 is located within mitochondria9 and is widely dis-

tributed in adult and fetal tissues, as well as in adult thymus 

and white blood cells.36 Thus far, its most important function 

was related to regulating metabolism.4 Recent findings sug-

gested that SIRT4 is active in nutrient-replete conditions, 

and deacetylates and inhibits malonyl CoA decarboxylase 

(MCD). MCD is an enzyme that produces acetyl CoA from 

malonyl CoA, which provides the carbon skeleton for lipo-

genesis and inhibits fat oxidation.37 Mice lacking SIRT4 

showed increased MCD activity and deregulated lipid metab-

olism, resulting in increased exercise tolerance and protection 

against diet-induced obesity.37 This suggested that SIRT4 

is an important regulator of lipid homeostasis.37 Moreover, 

in the liver, SIRT4 inhibition increased gene expression of 

mitochondrial and fatty acid metabolism-related enzymes, 

thereby suggesting that SIRT4 inhibition increased fat oxi-

dative capacity.38 In addition, in pancreatic β-cells, SIRT4 

repressed the activity of glutamate dehydrogenase (GDH) and 

subsequently downregulated insulin secretion in response to 

amino acids.9,39 Previous studies have shown that SIRT4 was 

essential when cells encounter toxic stress and nicotinamide 

phosphor-ribosyl-transferase, thereby helping maintain mito-

chondrial NAD levels.40 SIRT4 also inhibited the activity 

of pyruvate dehydrogenase, a key enzyme that affects the 

entrance of glucose into the tricarboxylic acid cycle.41 In a 

recent study, it was shown that SIRT4 is a protein deacetylase 

that removed 3 acyl moieties from lysine residues that were 

produced from leucine catabolism. Moreover, they showed 

that SIRT4-deficient mice had a dysregulated leucine metabo-

lism that resulted in elevated insulin secretion.10

In addition to the regulatory role in metabolism, SIRT4 

was found to have other activities. For example, SIRT4 

regulated cell cycle progression and genomic fidelity in 

response to DNA damage.42 Camptothecin or ultraviolet 

(UV)-treated SIRT4 knockout mouse embryonic fibroblasts 

showed elevated cell death when compared to wild-type 

cells.42 In another study, it was demonstrated that SIRT4 

reduced Drp1-driven mitochondrial fission.43 SIRT4 inhibited 

the phosphorylation of Drp1 and prevented Drp1 recruitment 

to the mitochondrial membrane by interacting with Fis-1.43 

Moreover, SIRT4 expression hampered activity of the 

MEK/ERK signaling pathway.43 Similar to other members 

of the SIRT family, SIRT4 may have complex biological 

functions that need to be further elucidated.

The role of SIRT4 in tumors
So far, most studies on SIRT4 in tumors have been performed 

on the role of SIRT4 as a tumor suppressor gene. In previ-

ous studies, it has been shown that overexpression of SIRT4 

in vitro inhibited the proliferation of HeLa and Myc-driven 

human Burkitt lymphoma cells by inhibiting glutamine 

metabolism.42,44 Moreover, SIRT4 can inhibit the proliferation 

of RKO,45 HT29, SW480, HCT116,46 DLD-1, H1299, A549, 

and DU145 cells.43,47 Overexpression of SIRT4 inhibited the 

migration and invasion of SW480, HCT116, H1299, and 

A549 cells.43,46 Knockdown of SIRT4 increased the migra-

tion ability of KYSE170, H1299, and A549 cells.43,48 In vivo 

studies in nude mice have shown that knockout of SIRT4 in 

mouse embryonic fibroblast cells forms larger tumors.42,45,47 

Moreover, SIRT4 knockout mice spontaneously develop 

lung cancer, liver cancer, breast cancer, and lymphomas.42 

In a Tsc2−/− murine embryonic fibroblast xenograft model, 

overexpression of SIRT4 reduced cell proliferation and 

transformation and delayed tumor development.47 In addition, 

SIRT4 overexpression resulted in a significant decrease in 

RKO tumor size in nude mice.45 The Cancer Genome Atlas 

microarray database analysis indicated that at the mRNA 

level, SIRT4 mRNA levels in human breast, bladder, gas-

tric, colon, thyroid, and ovarian cancers were decreased 

when compared with normal tissues.42,47 Moreover, RT-PCR 

analysis of mRNA extracted from human tissue demonstrated 

that SIRT4 mRNA levels in colon,45 breast,49 endometrial,50 

and esophageal cancers were reduced.48 Decreased SIRT4 

protein levels in gastric, colon, liver, lung, and esophageal 

cancer tissues were associated with worse pathological grad-

ing and other clinicopathological parameters.43,45,46,51,52 At the 

same time, reduced SIRT4 protein levels correlated with poor 

prognosis in colon, lung, and esophageal cancer.43,45,46,48
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Previous studies have also shown that SIRT4 may not 

be just a tumor suppressor gene.53–55 For example, Shi et al55 

evaluated 241 cases of paired breast cancer and noncancerous 

tissues by immunohistochemical staining and found that 

48 (19.92%) tumor tissue samples were SIRT4 positive, 

whereas only 29 (12.03%) adjacent nontumor tissue samples 

were SIRT4 positive.55 In addition, studies were performed 

using tissue microarray staining, which included 93 cases 

of esophageal carcinoma and adjacent nontumor tissues of 

the esophagus, and showed that the SIRT4 protein level in 

esophageal cancer tissue was higher compared to that in adja-

cent nontumor esophageal tissue. The mean survival time of 

esophageal cancer patients who demonstrated higher levels 

of SIRT4 protein was lower compared to that of patients who 

demonstrated lower level of SIRT4 (26.2 vs 32.1 months). 

Although trending, the data were not significantly different.54 

At the cellular level, SIRT4 expression was increased under 

conditions of DNA damage, including camptothecin, UV, 

and oncogene-induced transformation. Moreover, SIRT4 

overexpression increased the survival rate of HepG2 cells in 

DNA-damaging conditions, reduced mortality, and SIRT4 

loss sensitized cells after drug treatment.53 Taken together, 

these studies demonstrated that SIRT4 is upregulated in 

several tumors, can regulate oncogenic stress, and prepare 

tumor cells to gain selective advantages. Therefore, in several 

tumors and cases, SIRT4 may play an oncogenic role, which 

merits further studies for confirmation (Table 1).

Two possible mechanisms for the 
role of SIRT4 in tumors
inhibiting metabolism
Both tumorigenic and normal cells have distinct metabolic 

patterns, and an altered energy metabolism is a key charac-

teristic of tumors.24 Tumor cells often appear to enhance both 

the glucose and glutamine metabolism to provide the energy 

that is required for tumor growth.56,57 Due to the higher degree 

of malignancy, the proliferation rate may be faster; therefore, 

the corresponding energy demand may be higher. Previous 

studies on SIRT4 indicated that SIRT4 inhibited tumor 

metabolism, particularly the glutamine metabolism,41,42,47 

suggesting that SIRT4 may function as a tumor suppressor. 

SIRT4 is also thought to be a keeper of cellular energy 

metabolism.41 SIRT4 can be inhibited by mTOR and CtBP, 

and subsequently, through the inhibition of GDH, inhibit the 

glutamine reflux. A lower level of SIRT4 will increase the 

cellular glutamine reflux and promote tumor formation.42,47,58 

Overexpression of SIRT4 can inhibit glutamine consumption 

and ammonia production in Myc-induced B cell lymphoma. 

In addition, Ramos and Raji cells inhibit the GDH activity 

in colon and esophageal cancer cells in vitro.44,46,48

An enhanced glucose metabolism is a feature of tumors,24 

and Jeong et al42 demonstrated that SIRT4 inhibited tumor 

growth by inhibiting the mitochondrial glutamine metabolism.47 

However, an effect of SIRT4 on the glucose metabolism was 

not observed. Recent study has shown that SIRT4 had inhibi-

tory effects on pyruvate dehydrogenase.41 Because pyruvate 

dehydrogenase is a key enzyme that affects the entrance of 

glucose into the tricarboxylic acid cycle, it was suggested that 

SIRT4 may play a role in the glucose metabolism. In our previ-

ous study, we demonstrated that SIRT4 increased mortality in 

colorectal cancer cells that were grown in glucose-deprived 

culture media and that addition of glutamine to a downstream 

metabolite, dimethyl α-ketoglutarate, could counteract this 

effect.45 We also found that overexpression of SIRT4 reduced 

the survival rate of colorectal cancer cells in glutamine-

deprived media.45 These findings were in line with the notion 

that SIRT4 inhibited the glutamine metabolism and indicated 

that SIRT4 inhibited the glucose metabolism in colorectal 

cancer cells.45 So far, there was no consistent conclusion about 

whether SIRT4 affected the glucose metabolism or not.

Regulation of genome stability
DNA damage causes cell cycle arrest, which is one way 

for cells to maintain genome stability.59 Glutamine is a key 

Table 1 Summary of the roles of SiRT4 in tumors

Phenotype Tumor types Role of SIRT4 References

SiRT4 protein levels are increased Breast and esophageal cancer Cancer promoting 54, 55
SiRT4 protein levels are decreased Gastric, colorectal, liver, lung, endometrial, 

and esophageal cancer
Cancer suppressing 42, 43, 45, 46, 

48, 51, 52, 65
SiRT4 overexpression inhibits cell proliferation Myc-induced B cell lymphoma, colorectal 

cancer, cervical lung, and esophageal cancer
Cancer suppressing 42–46

SiRT4 knockout mice spontaneously develop cancers Lung, liver, breast cancer, and lymphoma Cancer suppressing 42
SiRT4 overexpression increases the survival rate of 
cancer cells in DNA-damaging conditions

HepG2 cells Cancer promoting 53

Abbreviation: SiRT4, Sirtuin-4.
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substance of cells that transit from the G1 phase into the 

S phase.60 In a previous study, it was shown that SIRT4 

expression increased in DNA-damaging conditions, leading 

to cell cycle arrest by inhibiting the glutamine reflux, thereby 

reducing the accumulation of damage to DNA, and promoting 

self-protection.42 Therefore, decreased SIRT4 expression in 

nontumor cells resulted in accumulation of cell mutations 

while the DNA is damaged, which contributed to tumor 

formation.42 In this setting, SIRT4 in nontumor cells may 

have a tumor suppressor role in DNA-damaging condi-

tions. This mechanism may also be established in tumor 

cells. In 1 study, it was found that SIRT4 was increased in 

HepG2 cells after treatment with cisplatin, radiation, and UV 

irradiation.53 In addition, overexpression of SIRT4 reduced 

the death rate of HepG2 cells in DNA-damaging condi-

tions, thereby increasing the cellular clone formation rate 

after radiation treatment.53 Therefore, in regulating genome 

stability, SIRT4 plays a dual role in inhibiting tumor forma-

tion and protection.

In summary, in nontumor cells, SIRT4 protected against 

the accumulation of DNA damage, reduced cell death in 

DNA-damaging conditions, and acted as a tumor suppressor. 

However, in tumor cells, SIRT4 played a dual role. First, in 

normal conditions, SIRT4 inhibited the glutamine metabo-

lism to reduce tumor metabolism, which inhibited tumor 

proliferation. In extreme DNA-damaging conditions, such as 

in the presence of chemotherapeutic drugs, SIRT4 protected 

tumor cells, thereby acting as an oncogene. Simultaneously, 

SIRT4 reduced tumor cell evolution, delayed tumor cell 

mutation accumulation, and acted as a tumor suppressor. For 

tumor cells, mutation accumulation is more important than 

temporary existence, and therefore, SIRT4 may generally 

act as a tumor suppressor.

Can SIRT4 be a therapeutic target 
for cancer?
Synergistic glucose metabolism inhibitor
Therapeutics that can block tumor cells in their metabolic path-

way are currently under development as novel tumor treatment 

strategies.61,62 For example, targeting the glucose metabolism 

pathway using glucose inhibitors has been proposed in tumor 

therapy.61–63 However, by activating additional metabolic 

pathways, including the glutamine metabolism, tumor cells 

can survive with a reduced glucose metabolism. Thus, the 

mitochondrial glutamine metabolism can compensate for the 

lack of glucose and recharge the mitochondrial tricarboxylic 

acid cycle.31,34 Therefore, blocking glutamine metabolism, and 

simultaneously blocking glucose and glutamine metabolism, 

has great potential in cancer therapy.64 In our previous study, 

we demonstrated that colorectal cancer cells maintained 

growth in a glucose-deprived environment, and SIRT4 over-

expression increased death resulting from glucose deprivation 

in colorectal cancer.45 Moreover, synergistic treatment by 

SIRT4 overexpression and glucose inhibitors significantly 

increases colorectal cancer cell death.45 Overexpression of 

SIRT4 increased the sensitivity of Burkitt lymphoma cells to 

glucose deprivation and increased cell death that was associ-

ated with glucose metabolism inhibitor treatment.44 Thus, these 

findings indicated the therapeutic potential of the SIRT4 target-

ing metabolism, particularly its potential for the treatment of 

tumors in combination with a glucose metabolism inhibitor.

Synergistic chemotherapy drugs
Previous study has shown that SIRT4 delayed the cell cycle 

in DNA-damaging conditions.42 Chemotherapy drugs can 

damage DNA; however, when used in the clinic, several have 

reported that SIRT4 increased the sensitivity of tumor cells 

to chemotherapeutic drugs. In our previous study, we showed 

that 5-FU increased the sensitivity of colorectal cancer cells 

to chemotherapy drugs by delaying the cell cycle.45 In another 

study, it was reported that overexpression of SIRT4 reduced 

the mortality rate of cisplatin and increased the rate of clone 

formation.53 To some extent, these 2 studies were not contra-

dictory because SIRT4 reduced the viability of tumor cells 

in the presence of chemotherapy drugs by delaying the cell 

cycle. Moreover, it may help tumor cells prevent the DNA 

damage caused by chemotherapeutics, allowing them to 

escape death, leading to a higher survival rate. As discussed 

above, chemotherapy-induced DNA damage can both kill 

tumor cells and help them survive, such that they acquire 

more mutations and become more aggressive. Therefore, the 

use of SIRT4 in antitumor therapy merits further investiga-

tion, especially to confirm that it inhibits proliferation activity 

while increasing the survival rate.

Conclusion
SIRT4 may act as an oncogene and tumor suppressor gene, 

which may be dependent on the affected tissue types and 

specific tumor environment. SIRT4 showed enhanced poten-

tial as an antitumor therapeutic when used in synergy with 

glucose metabolism inhibitors. However, the use of SIRT4 

in combination with cytotoxic chemotherapy drugs requires 

further investigation. Additionally, particular in vivo studies 

are warranted. In addition, it would be worth exploring the 

underlying mechanism of action and regulatory effect of 

SIRT4 on the glucose metabolism, the relationship between 
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SIRT4 and both the epithelial to mesenchymal transition and 

autophagy, as well as the impact of SIRT3, which is also 

located in mitochondria.
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