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Abstract: Benzodiazepines are one of the most prescribed medications as first-line treatment 

of anxiety, insomnia, and epilepsy around the world. Over the past two decades, advances in the 

neuropharmacological understanding of gamma aminobutyric acid (GABA)
A
 receptors revealed 

distinct contributions from each subtype and produced effects. Recent findings have highlighted 

the importance of α
1
 containing GABA

A
 receptors in the mechanisms of addiction and tolerance 

in benzodiazepine treatments. This has shown promise in the development of tranquilizers with 

minimal side effects such as cognitive impairment, dependence, and tolerance. A valium-like 

drug without its side effects, as repeatedly demonstrated in animals, is achievable.

Keywords: benzodiazepines, subtype, tolerance, dependence, anxiolytic, GABA
A
 receptor

Introduction
Benzodiazepines are a class of tranquilizers that enhance gamma aminobutyric acid 

(GABA)ergic transmission. They are seen ubiquitously in the modern health care 

system as .5% of the total adults in USA are prescribed benzodiazepines each year.1 

The major behavioral and psychoactive effects of benzodiazepines include anticon-

vulsive, sedative, muscle relaxant, and anxiolytic effects.2 They are readily prescribed 

by physicians and are regarded as a frontline treatment for many common psychiatric 

disorders such as anxiety, obsessive-compulsive disorder, seizures, as well as a number 

of sleep disorders.3

Benzodiazepines were discovered in 1955 by chemist Leo Sternbach and, when 

first introduced, were proposed as a promising replacement for barbiturates, another 

similar class of tranquilizers that also act on GABA.4,5

The medical use of barbiturates was prominent until the 1950s when serious side 

effects, such as high incidence of abuse, dependence, and overdose finally started 

to surface.6

When benzodiazepines hit the market in the 1960s, they were thought to be the 

successor to barbiturates due to lower toxicity and side effects. Despite having a lower 

abuse profile, benzodiazepines still cause dependence after repeated use, which was 

not widely recognized until the 1980s.7,8

Many attempts to produce dependence and tolerance-free benzodiazepine drugs 

have been investigated in the past. The selective agonist zolpidem was marketed, 

as promising data showed reduced abuse potential.9 However, these results did not 
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translate in the clinic since zolpidem causes dependence 

after repeated use.10

Studies have also attempted to investigate neurophar-

macological mechanisms of benzodiazepines. At first, the 

benzodiazepine site was categorized into benzodiazepine 

subtype I and benzodiazepine subtype II, where traditional 

benzodiazepines bind to both, but triazolopyridazines (TPZs) 

have high affinity for only type I.11 It was later found that TPZ 

was actually just a selective agonist for one of many subtypes 

that exist within the GABA
A
 receptor family.12

Progress in neuropharmacology has revealed various 

subtypes within the GABA
A
 receptor family, as well as 

anatomical and pharmacological differences between them. 

Investigations have also been directed toward the addiction 

and tolerance mechanisms of benzodiazepines; their rela-

tionships with specific subtypes within the GABA
A
 receptor 

family will be discussed in further depth.

Pharmacological targets of 
benzodiazepine 
Benzodiazepines, although referred to as a positive allosteric 

modulator (PAM) of the GABA
A
 receptor, does not actually 

enhance GABA’s binding to the receptor, like conventional 

PAMs. Benzodiazepines increase the frequency of chloride 

channel influx which hyperpolarizes the GABA receptor, 

resulting in increased inhibitory postsynaptic potential.13,14

α
1–6

, β
1–3

, γ
1–3

, δ, ε, θ, and π make up the currently defined 

GABA
A
 subunits in the human brain.15 Classic benzodiaz-

epines such as diazepam binds to α
1
, α

2
, α

3
, and α

5
 containing 

GABA
A
 receptors.16 α

1
 containing GABA

A
 receptors are 

the most abundant subtype and can be found throughout 

the brain, while α
2
, α

3
, and α

5
 subtypes are more region 

specific.17

Although numerous combinations exist, most GABA
A
 

receptors structurally contain two α, two β, and a single 

γ subunit surrounding a chloride ion channel as shown in 

Figure 1.18 The benzodiazepine site is located between the 

α and γ subunit.

Roles of GABAA receptor α1, α2, α3, 
and α5 subunits in benzodiazepine 
pharmacology
GABA

A
 subtype selective compounds and rodent models 

of subunit point mutation have provided promising data for 

identifying different subunit contributions toward each clini-

cal effect. We will discuss clinical effects of sedation first, 

as it impairs the cognitive performance of benzodiazepine-

prescribed patients.20

We know that the α
1
 subtype plays a major role in sedation 

because α
1
(H101R) point mutated mice were resilient to 

sedative effects of benzodiazepines.21 Benzodiazepines that 

possess sparing efficacy at α
1
 subtype such as L-838,417 act 

as a sedation-free anxiolytic in animal models.21,22 L-838,417 

has seen popular use in research and is a partial agonist of α
2
, 

α
3
, and α

5
 containing GABA

A
 receptors.22 Other compounds 

with low or absent α
1
 subtype efficacy such as imidazenil, 

TPA123, and TPA023, are also shown to be sedation-free 

anxiolytics, revealing the importance of the α
1
 subtype in 

the mediation of sedation.23,24 

Moreover, α
1
 subtype selective agonists such as zolpidem 

are unable to produce anxiolytic effects other than sedation.25 

The α
5
 inverse agonist, α5IA, improves memory without 

producing anxiety, increased awakeness, or proconvulsant 

effects in animals.26 So far, we could conclude that anxiety is 

mediated by either α
2
 or α

3
 subtypes or both, while sedation 

is mediated by α
1
 containing GABA

A
 receptors.

Because α5IA reversed alcohol-induced memory deficit 

when given prior to alcohol administration in humans, α
5
 sub-

type is thought to contribute toward amnesic effects.26 This 

was further confirmed when the α
5
 subtype was found to be 

responsible for amnestic effects of GABA
A
 receptor PAM 

etomidate, which correspond with earlier studies on the role 

of the α
5
 subtype in memory and its anatomical presence in 

the hippocampus.27

However, it seems α
5
 is not the sole subtype that con-

tributes to amnesic effects. α
1
 subtype full agonist zolpidem 

seemed to produce more memory and cognitive impairment 

compared to an equivalent dose of triazolam, an agonist of all 

benzodiazepine sites.28 Given that zolpidem produces almost 

no efficacy at the α
5
 subtype, we can conclude that α

1
 subtype 

is also involved in amnesic effects of benzodiazepines.28

In 2000, it was thought that α
2
 subtype solely mediated 

anxiolytic actions because only α
2
(H101R) point mutated 

mice were still anxious after diazepam treatment.29 On the 

contrary, two studies 5 years later, the first study using 

α

α

α

αα

αβ
β

γ

Figure 1 The GABAA receptor and its approximate subtype composition (adapted 
from wafford’s study).
Note: Data from wafford.19

Abbreviation: GABA, gamma aminobutyric acid.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2018:14 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1353

individual GABAA receptor contribution to benzodiazepine effects

TP003, an α
3
 subtype selective agonist, demonstrated that 

TP003 produced strong anxiolytic effects.30 The second 

study used an α
3
 subtype inverse agonist α3IA to produce 

anxiogenic effects in mice, further confirming the role of α
3
 

subtype in mediating anxiety.31

Although α3IA’s weak inverse efficacy at α
2
 subtype could 

be argued to be anxiogenic, novel non-benzodiazepine com-

pounds such as adipiplon (NG2-73) and SB-205,384 produced 

anxiolytic effects without any efficacy at the α
2
 subtype.32

Moreover, it was shown by data that various novel ben-

zodiazepine compounds with stronger efficacy at α
3
 than 

α
2
 subtype showed more anxiolytic effects. Löw et al’s 

study received several responses suggesting that the data 

from elevated plus maze in α
2
(H101R) mice could be more 

related and influenced by the motor activity mediated through 

α
2
 subtype than anxiolysis.33,34

This is important because almost all past models and 

reviews have categorized the anxiolytic effects of benzodi-

azepines solely from efficacy at the α
2
 subtype, some further 

suggesting novel benzodiazepine anxiolytics should be α
2
 

selective.35–39 However, the most recent investigations on 

this matter suggest that both α
2
 and α

3
 subtypes mediate 

anxiety.40,41 Therefore, the design of subtype selective ben-

zodiazepine anxiolytics should not be limited to α
2
 contain-

ing GABA
A
 receptors. This paper will present a revised and 

comprehensive model of benzodiazepine pharmacology.

α
5
 subtype has also been shown to play a role in mediating 

anxiety and especially conditioned fear memory, as shown 

by α
5
 subtype inverse agonists, RY024, and α

5
(H105R) 

point mutated mice.42,43 However, the α
5
 subtype does not 

seem to play a major role in mediating anxiety as another 

α
5
 subtype inverse agonist, α5IA, does not produce anxiety as 

assessed by elevated plus maze.44 α
5
 subtype also appears to 

play a minor role in anticonvulsive actions as proconvulsive 

as α5IA did not increase seizure thresholds as assessed by 

pentylenetetrazol.44 As a result, the α
5
 subtype most probably 

mediates a narrow category of anxiety, such as conditioned 

fear, but could be clinically relevant.

Moreover, several models of GABA
A
 subunit contribu-

tion in benzodiazepine pharmacology suggest anticonvulsive 

action only at α
1
 subtype.36 TPA023 devoid of activity at the 

α
1
 subtype was still able to produce anticonvulsive effects, 

through α
2
 and possibly α

3
 subtype.24

Diazepam was anticonvulsive in both α
2
(H101R) and 

α
3
(H126R) mice; however, more α

2
(H101R) mice convulsed 

after treatment toward pentylenetetrazol, revealing that the 

α
2
 subtype contributes more than α

3
 subtype in the anticon-

vulsant properties of benzodiazepines.29

Most anticonvulsive actions of benzodiazepines are 

mediated by α
1
 as diazepam only mildly attenuated penty-

lenetetrazol-induced seizures in α
1
(H101R) mice. However, 

this data should not discourage anticonvulsant drug discovery 

that has no efficacy at α
1
 subtype. Recent investigations actu-

ally showed that the α
1
 subtype antagonist, α

2
, α

3
, and α

5
 

subtype partial agonist imidazenil was actually more potent 

than diazepam at attenuating diisopropyl fluorophosphate-

induced convulsions and neuronal damage.46

Myorelaxation has been identified to involve α
2
/α

3
 

subtype using respective point mutated mice; however, the 

action appears to be primarily mediated through α
2
 subunit 

because high doses were needed to induce myorelaxation in 

the α
2
(H101R) mice.47 α

1
 and α

5
 subtypes might also con-

tribute minorly toward myorelaxation because its respective 

selective antagonists are able to bluntly alleviate diazepam-

induced myorelaxation.48,49

Not only does insufficient information support that 

α
2
 subtype exclusively mediates anxiety, other than a single 

study, current evidence for the anxiolytic effects of benzodi-

azepines also points toward a dual contribution from α
2
 and α

3
 

subtypes.29–41 Therefore, in Table 1, anxiolytic effects were 

assigned to both α
2
/α

3
 containing GABA

A
 receptors.

In 2010, in a disappointing human trial on MRK-409, a 

GABA
A
 receptor α

2
, α

3
, and α

5
 subtype partial agonist that 

promised to be a sedation-free anxiolytic in animals, demon-

strated that its minor agonism on α
1
 subtype produced sedation 

in humans.54 However, the question of whether other subunits 

were involved in sedation was quickly overthrown as the clini-

cal results of TPA023B, published shortly after, as an α
1
 sub-

type antagonist and α
2
/α

3
 subtype partial agonist, produced a 

sedation-free anxiety suppressing profile,50 demonstrating that 

any efficacy at α
1
 subtype could cause sedation in humans.

α
5
 subtype might be differentially distributed in different 

sexes. The selective α
5
 subtype allosteric modulator, SH-053-

2′F-R-CH3, seemed to particularly impact female but not 

male mice at alleviating stress.55 In humans, long-term ben-

zodiazepine use inducing alterations in long-term memory 

was only significant in women.56

Recent advances in novel clinical applications of benzo-

diazepines revealed densely populated α
2
 containing GABA

A
 

receptors within the dorsal root involved in relieving pain, 

in which its inhibitory currents are believed to contribute to 

nociception.21 Furthermore, although α
1
 subtype agonists 

such as zolpidem and diazepam are efficacious for pain and 

neuropathy, α
2
, α

3
 and α

5
 subtype partial agonists seem to 

produce similar results without the sedative, amnesic, and 

addictive properties of α
1
 subtype agonists.57,58
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Table 1 Model of GABAA receptor subtypes and their contri bution toward benzodiazepine’s psychopharmacological effects

α α α α

Abbreviation: GABA, gamma aminobutyric acid.

Mechanism of benzodiazepine 
addiction
Benzodiazepine-induced activation of mesolimbic dopamine 

pathway was observed for the first time in 2009. Benzodi-

azepine indirectly acts upon the dopaminergic neurons in 

the ventral tegmental area (VTA), a brain region that plays 

a major role in addiction and reward.59

Both the selective α
1
 subtype agonist zolpidem as well as 

diazepam were able to modulate glutamatergic transmission 

upon dopamine neurons in the VTA. This is groundbreaking 

because zolpidem has a significantly higher affinity toward 

α
1
 (Ki =20 nM) containing GABA

A
 subtypes than α

2
 and α

3
 

(Ki =400 nM) subtypes, and is almost inactive at α
5
.60 This 

suggests that α
1
 containing GABA

A
 receptors unquestionably 

play a role in addiction.

However, in the same study, diazepam had a significantly 

higher effect than zolpidem upon VTA; could there be more 

subtypes than just α
1
 subtype in the role of addiction? The role 

of α
5
 subtype in addiction was ruled out because α

5
 subtype 

inverse agonists were unable to prevent self-administration 

of ethanol.61 Another study demonstrated that while α
2
, α

3
, 

and α
5
 point mutated mice showed clear preference toward 

drinking water contaminated with midazolam, α
1
(H101R) 

mice did not show any bias between water and midazolam 

solution,62 implying that α
1
 containing GABA

A
 receptors are 

required for addictive behaviors associated with benzodiaz-

epines. Furthermore, α
1
 subtype inactive compounds such 

as TPA023 show almost no abuse properties.60

Recently, opposing evidence has shown that α
2
 and α

3
 

subtypes might also be implicated in the addiction of benzo-

diazepines. After α
2
 subtype within the nucleus accumbens 

(NAcc) are knockdown in mice, midazolam were no longer 

reinforcing. Implying that the α
2
 subtype is at least in part 

involved in the reinforcing effects of benzodiazepines.63 

Rhesus monkeys with a history of benzodiazepine use, but not 

cocaine use, have been shown to self-administer α
1
 subtype 

inactive compound L-838,417 and the α
3
 subtype selective 

agonist TP003.64 These findings hint that the α
3
 containing 
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GABA
A
 receptors could be reinforcing in experienced 

benzodiazepine users. The experienced rhesus monkeys had 

been previously treated with numerous different benzodiaz-

epines for around 6 months.64

The α
1
 containing GABA

A
 receptors expressed within 

the VTA favor its inhibitory projection toward GABA 

interneurons.62,65 With interneurons being responsible for the 

inhibitory control over dopaminergic neurons of the VTA, inhib-

iting the inhibition of dopaminergic neurons results in free firing 

of the dopaminergic neurons. This results in increased dopamine 

levels as shown in Figure 2.62,65 This finding is in congruence 

with the lack of midazolam self-administration in α
1
(H101R) 

mice.62 It seems that α
1
 subtype should be completely avoided 

since even partial agonists at this site could still produce sedation 

and addiction as seen in bretazenil and MRK-409.54,66

The increased AMPA/NMDA ratio in VTA has been 

shown in another GABA
A
 PAM gaboxadol; however, it does 

not produce reinforcing effects.67 Whether gaboxadol has 

another mechanism to avert addiction is unclear, but more 

regions than VTA could be involved. Selective α
1
 subtype 

antagonist βCCt and 3-PBC were shown to be able to prevent 

the reinforcing effects of alcohol.68,69 α
1
 subtype antagonists 

effectively blocking addictive behaviors in mice indicate 

that α
1
 containing GABA

A
 receptors are highly involved and 

most likely contribute most or all of the reinforcing effects 

of GABAergic and benzodiazepine site acting substances. 

Furthermore, infusions of α
1
 subtype antagonist into the ven-

tral pallidum and extended amygdala, which accommodates 

a large amount of α
1
 containing GABA

A
 receptors, resulted 

in a reduction in ethanol-induced addictive behaviors.68,70

Opioid mechanisms are associated with reward pathways 

and a study has shown the competitive opioid receptor 

antagonist naloxone attenuating the addictive properties 

of benzodiazepines.71 However, more studies opposing 

the above study have been published. Interestingly, nalox-

one is able to block anxiolytic and sedative properties of 

benzodiazepines.72 More recent studies showed that opioid 

peptides are involved in benzodiazepine’s anxiolytic rather 

than addictive effects.73

The role of nicotinic acetylcholine receptor (nAChR), 

especially the α4β2 subtype, has been highlighted in drug 

addiction.74 Since nAChR is a major modulator of GABA 

release in regions such as the thalamus, hippocampus, and 

VTA,68,75 there is surprisingly less research in this direction. 

Is there really no link between acetylcholine and benzodi-

azepine addiction?

nAChRs, especially the α4β2 subtype, are upregulated 

after chronic exposure to drugs such as nicotine.76 This 

phenomenon is also seen in naloxone-induced morphine 

withdrawal, alcohol withdrawal, and what we’re interested 

in: flumazenil-induced benzodiazepine withdrawal.77,78

Most interestingly, this acetylcholine release was not 

seen in the partial agonists imidazenil and abecarnil, which 

has no efficacy at the α
1
 subtype.79 The fact that benzodi-

azepine withdrawal is marked by an acetylcholine increase 

in the nucleus accumbens, which is also seen in other drug 

withdrawals, further begs clarification of the benzodiazepine–

acetylcholine affiliation, and possibly of subunit-specific 

involvement, which has been overlooked.78,79

Although a recent primate study showed that α
3
 subtype 

might be reinforcing in those who are already dependent, 

α
1
 containing GABA

A
 receptors contribute to most if not all 

of the reinforcing effects of benzodiazepines.

Mechanisms of benzodiazepine 
tolerance
Efficacy of benzodiazepine progressively reduces after long-

term exposure; not only is a higher dosage of the drug required 

Figure 2 Mechanism of benzodiazepines at vTA.
Note: Data adapted from Rudolph et al37 and Heikkinen et al.59

Abbreviations: vTA, ventral tegmental area; GABA, gamma aminobutyric acid; NAcc, nucleus accumbens; mPFC, medial prefrontal cortex.
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to experience the same therapeutic effects, but also discon-

tinuation of prolonged treatment induces withdrawal.80

A simple way to explain tolerance to any drug is down-

regulation of the receptor as the aftermath of neuroplasticity. 

However, it is demonstrated that even after chronic admin-

istration of benzodiazepines, the number of benzodiazepine 

sites is not reduced, neither is the sensitivity of the benzo-

diazepine site.81,82

Benzodiazepine site downregulation does not seem to 

happen unless astronomical doses are given, in many studies 

over 100 mg/kg in rats, which translated into human doses 

that are far above the therapeutic range.83,84 Not to mention, 

only inconclusive and inconsistent results have been pre-

sented regarding possible changes in subtype composition 

and their mRNA expression.85,86 So, if its not downregulation, 

what is the underlying mechanism?

While tolerance to sedative and anticonvulsant effects 

seems to build quickly in both humans and animal models, 

a lack of tolerance regarding the anxiolytic and amnesic 

effects of long-term benzodiazepine use has been consistently 

demonstrated in clinical trials.87–89

Diazepam and alprazolam for the treatment of panic attacks, 

social phobia, and other anxiety-related disorders are effective 

even after chronic use.90,91 Could this mean α
2
 and α

3
 containing 

GABA
A
 receptors, which mediate anxiety, have less significance 

in the tolerance building mechanism of benzodiazepines?

Other than putting the blame of addiction on α
1
 subtype, 

α
5
 subtype might be required for tolerance toward sedative 

effects of benzodiazepines. With the guidance of α
1
, α

2
, α

3
, 

and α
5
 subtype point mutated mice, repetitive dosing of diaz-

epam showed that α
5
 containing GABA

A
 receptors of the den-

tate gyrus lead the adaptive changes associated with sedative 

tolerance to benzodiazepines.92 After chronic benzodiazepine 

administration, mice of the α
5
 point mutated species retained 

most of the motor-depressant effects of benzodiazepines, 

whereas α
1
, α

2
, and α

3
 point mutated mice started habituating 

from the sedative effects of benzodiazepines.92

Now one might ask, how would you then explain tolerance of 

zolpidem since it has no α
5
 subtype efficacy? Well, in the same 

study, α
1
(H101R) mice showed downregulation of α

5
 containing 

GABA
A
 receptors in the dentate gyrus of the hippocampus, but 

not in α
2
 and α

3
 point mutated mice.92 Therefore, a hypothesis 

that the involvement of α
5
 as well as α

1
 subtypes is required to 

induce tolerance in benzodiazepine use was put forward.

Although long-term benzodiazepine treatment did not 

reduce the number of benzodiazepine sites or alter the binding 

affinity as assessed by 3H-flumazenil,93 it did downregulate 

adenosine receptors in the striatum by almost half in mice 

of the same investigation. It has been consistently shown 

that benzodiazepine use is associated with downregulation 

of adenosine A
1
 and A

2
 receptors in animals.94,95 Although 

the mechanism of how benzodiazepines can influence 

adenosine receptors is unclear, a possible explanation for 

the downregulation of adenosine is for the attenuation of 

benzodiazepine-induced sedation.

It has been proven that benzodiazepines can indirectly 

increase adenosine after acute administration, through inhibi-

tion of adenosine reuptake. The adenosine reuptake inhibitor 

dipyridamole and the adenosine deaminase EHNA were able 

to reverse the sedative effects of benzodiazepines, as measured 

by excitatory currents within the hippocampus.96 This mecha-

nism was recently further validated when the sedative effects 

of benzodiazepines, barbiturates, and propofol all appeared 

to be mediated by the adenosine system.97 Downregulation 

of adenosine receptors as discussed could in part explain the 

tolerance to the sedative effects of benzodiazepines.

It came forth that not only adenosine is involved in the 

tolerance toward benzodiazepines. NDMA and AMPA recep-

tor upregulation was observed in the cerebral cortex of mice 

after abrupt ending of chronic diazepam administration.98,99 

More recent inspections of this mechanism showed compa-

rable results especially in the rat hippocampus.100,101

It appears that NMDA upregulation happens acutely after 

benzodiazepine administration, because NMDA antagonists 

dizocilpine (MK-801) and CPP were able to prevent toler-

ance to sedative and withdrawal effects after benzodiaz-

epine administration.102,103 While the NMDA antagonist can 

suppress withdrawal symptoms in acute benzodiazepine 

abstinence, the AMPA antagonist prevented withdrawal 

during the long-term phase in mice.104,105 The upregulation 

and changes of glutamatergic system are most likely a com-

pensatory mechanism.

Numerous investigations have observed uncoupling 

between allosteric linkage of GABA and the benzodiazepine 

site. Uncoupling is a mechanism wherein the benzodiazepine 

site loses its allosteric modulatory effects over GABAergic 

activities.18,89 It explains the reduced efficacy of benzodiaz-

epines after chronic use and is further verified in numerous 

in vivo demonstrations.89 Benzodiazepine site uncoupling is 

associated with negative modulation of GABAergic transmis-

sion and is likely a result of compensation to suppress repeated 

benzodiazepine-induced GABAergic enhancement.106

In rats continuously exposed to either full agonist, partial 

agonist, or the antagonist flumazenil, the benzodiazepine 

efficacy correlates to the degree of uncoupling. Full agonists 

resulted in the highest percentage of benzodiazepine site 
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uncoupling, especially in benzodiazepine sites that regulated 

anticonvulsant actions.107 This not only explains the rapid toler-

ance building toward anticonvulsant effects but also indicates 

that partial agonists may be able to produce less tolerance.

Interestingly, a single flumazenil dose can reverse the 

anticonvulsant tolerance after chronic benzodiazepine 

exposure.108,109 The mechanisms of how flumazenil com-

pletely reverses the allosteric uncoupling of benzodiazepine 

and GABA are unclear. Flumazenil appears to be capable of 

yielding opposite downstream mechanisms of benzodiazepine 

agonists, and actually upregulate benzodiazepine binding and 

GABAergic chloride uptake.110 Similar results have been 

observed in clinics, where flumazenil was able to reverse 

tolerance of daily clonazepam in users with partial seizures, 

who have been taking the medication for over a year.111,112

Benzodiazepine uncoupling recovers after 2 days of 

abstinence in rats, and only happens after repeated adminis-

tration.113 This correlates with previously mentioned human 

clinical data in terms of the quick adaptations to benzodiaz-

epine’s anticonvulsant tolerance. Because about one third of 

all postsynaptic GABA
A
 receptors are continuously activated, 

uncoupling might impact continual GABA transmission, 

which could also contribute to withdrawal.114

In chick cortical neurons, benzodiazepine treatment leads 

to mild reductions of GABA
A
 receptors on membrane sur-

face; these missing receptors are discovered intracellularly 

and contribute around 7% of all GABA
A
 receptors.115 Tehrani 

et al also demonstrated that these intracellular GABA
A
 

receptors located on clathrin-bound vesicles are uncoupled 

as benzodiazepine sites with reduced affinity and allosteric 

modulatory control over the receptor.116–118 

Long-term benzodiazepine treatment caused a signifi-

cant 83% increase in the number of GABA
A
 receptors on 

clathrin-coated vesicles versus control. Although benzo-

diazepines are still able to bind at these sites, they produce 

no modulatory effect. The internalization also meant a 

12% reduction of GABA
A
 receptors located on synaptic 

membranes, as assessed by 3H-flunitrazepam after a 7-day 

benzodiazepine treatment.118

This internalization of GABA
A
 receptors at the synaptic 

membrane possibly contributes to the tolerance of benzodi-

azepines. Although benzodiazepine agonists are able to bind 

to intracellular GABA receptors, they produce little or no 

allosteric modulation. A recent examination of benzodiaz-

epine allosteric uncoupling has shown that benzodiazepine 

site internalization is part of the uncoupling mechanism.114 

This finding is likely the observation of benzodiazepine sites 

located on clathrin vesicles.

Considerable evidence has been compiled recently 

underlying a complete and complex molecular mechanism 

of phosphorylation and posttranslational modifications of 

GABA
A
 as a response to benzodiazepines that possibly 

contribute to the observed uncoupling and tolerance build-

ing mechanism.119 These complex molecular mechanisms 

of posttranslational modifications of the GABA
A
 receptor 

resulting from palmitoylation, ubiquitination, and especially 

phosphorylation, are believed to dictate the role in regulating 

the recycling of GABA
A
 receptors through different protein 

kinases and ultimately impact inhibitory currents.18,84,119

cAMP-dependent protein kinase A (PKA) has been 

identified to lead the changes and alterations of GABA
A
 

receptor functioning of CA1 pyramidal cells within the 

hippocampus after long-term flurazepam administration.120 

Further evidence accumulated over the importance of PKA 

in the formation of benzodiazepine tolerance showed that 

mutations to a single PKA phosphorylation site prevented 

uncoupling, even after chronic diazepam treatment.121

As compared to wild-type mice, a wide range of tran-

scripts that are thought to contribute to the neuroplastic 

mechanisms of tolerance remained unchanged in α
1
(H101R) 

point mutated mice after diazepam administration.122 Tran-

scripts changes such as brain-derived neurotrophic factor 

and calcium/calmodulin-dependent kinase II play important 

roles in synaptic plasticity; α
1
(H101R) mice did not produce 

transcript changes after diazepam treatment.122 This is 

direct evidence regarding the involvement of α
1
 containing 

GABA
A
 receptors in the role of benzodiazepine tolerance. 

It agrees with earlier studies wherein α
1
 subtype inactive 

benzodiazepines imidazenil and TPA023 consistently failed 

to show anticonvulsant tolerance in chronic dosing in mice 

and monkeys.123–129

Interestingly, there seems to be almost no downregulation 

of GABA
A
 receptors despite long-term heavy administration 

of imidazenil as compared to diazepam.83 Future studies could 

compare the uncoupling and posttranslational modification 

differences between traditional benzodiazepine agonists 

such as diazepam and α
1
 subtype ineffective compounds 

like TPA023 and imidazenil.

Conclusion
Although partial agonism at α

1
 containing GABA

A
 receptors 

appears to reduce abuse potential, it appears insufficient. 

Bretazenil and etizolam which showed reduced abuse poten-

tial in animal models do not keep their promise.129,130 When 

the bretazenil dose increased from 2 to 4 mg in humans, users 

reported liking the drug. While etizolam has seen popular 
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recreational use, it is sold online as a research chemical 

capable of inducing euphoria.131 As a result, if clinical effects 

can be achieved without the involvement of α
1
 subtype, it 

should be avoided in future drug design of benzodiazepines 

and similar compounds.

As already discussed, both α
2
 and α

3
 containing GABA

A
 

receptors and their involvement in anxiety suppressing effects 

of benzodiazepines are critical. This is because most current 

models have characterized α
2
 containing GABA

A
 receptors 

as the sole mediator of anxiety in benzodiazepines.35–39 

As highlighted in the model presented in this review, the 

search for a selective anxiolytic should not be constrained 

to α
2
 selective.29–41

Benzodiazepine tolerance is complicated and appears to 

result from a combination of various factors. Complex mech-

anisms involving uncoupling, intracellular trafficking, post-

translational modifications of GABA
A
 receptors all appear 

to contribute toward benzodiazepine tolerance.89,119 Various 

studies have also suggested the involvement of other neu-

rotransmitters, especially adenosine and glutamate, during the 

tolerance and withdrawal effects of benzodiazepines.92–105

The efficacy of benzodiazepines may also play a role 

in tolerance as full agonists produce more tolerance than 

partial agonists.107

In the light of current evidence, α
1
 dormant, α

2
, α

3
, and 

α
5
 subtype partial agonists not only possess low abuse poten-

tial, but are also low or devoid of tolerance building. There 

is evidence that α
1
 containing GABA

A
 receptors directly 

contribute to the downstream effects of tolerance, because 

α
1
(H101R) mice have been shown to maintain expressions 

in neuroplasticity-coding transcripts after diazepam adminis-

tration.120 This perfectly agrees with data from animal studies 

regarding the lack of tolerance in α
1
 subtype inactive com-

pounds such as TPA023B and imidazenil.121–126 Future drug 

discovery involving tranquilizers should look for partial ago-

nists of α
2
, α

3
, and α

5
 containing GABA

A
 receptors; Valium 

without its side effects is potentially achievable.
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