Molecular epidemiology of Clostridium difficile in two tertiary care hospitals in Shandong Province, China

Ying Luo1,2
Wen Zhang2
Jing-Wei Cheng3
Meng Xiao3
Gui-Rong Sun1
Cheng-Jie Guo2
Ming-Jun Liu1
Pei-Shan Cong1
Timothy Kudinha4,5

1 Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China;
2 Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China;
3 Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China;
4 Charles Sturt University, Orange, NSW, Australia;
5 Central West Pathology Laboratory, Orange, NSW, Australia

Purpose: The incidence and severity of Clostridium difficile infection (CDI) have markedly increased over the past decade. However, there is very limited epidemiological data on CDI in China so far, specifically no data in Shandong Province. The aim of this study was to evaluate diagnostic algorithm for CDI and to gain data on molecular epidemiology of CDI in the Shandong Province of China.

Materials and methods: Nonrepetitive unformed fecal specimens (n=504) were investigated by the glutamate dehydrogenase (GDH), C. difficile toxin A&B (CDAB) tests and toxigenic culture. Furthermore, 85 isolates were characterized by toxin gene detection, multilocus sequence typing, ribotyping and antimicrobial susceptibility testing.

Results: The algorithm of combining GDH and CDAB tests could define diagnosis of 54.2% CDI cases and excluded 90% of non-CDI. Further adding the toxigenic culture to the algorithm enhanced the detection sensitivity to 100%. Toxigenic strains comprised 84.7% of isolates, including A+B+CDT− (71.8%, 61/85), A−B+CDT− (11.8%, 10/85) and A+B+CDT+ (1.2%, 1/85) isolates. RT046/ST35 (13.9%, 10/72), RT014/ST2 (12.5%, 9/72) and RT017/ST37 (12.5%, 9/72) were the more common genotypes among toxigenic C. difficile strains. The clinical severity score of A−B+CDT− toxin genes genotype (3.50±0.85) was significantly higher than the A+B+CDT− type (2.59±0.93) (P<0.05). RT046/ST35 isolates were highly prevalent and had high clinical severity scores (3.80±0.92). Variations in resistance from different sequence types (STs) were observed. Toxigenic strains showed higher resistance rates to erythromycin, clindamycin and ciprofloxacin compared to nontoxigenic strains (P<0.05).

Conclusion: The epidemiology of C. difficile in Shandong Province differed from other regions in China. Comprehensive optimized diagnosis strategy and continuous surveillance should be established and applied in order to curb the spread of toxigenic C. difficile strains, especially for hospitalized patients.

Keywords: Clostridium difficile, genotype, antimicrobial resistance, severity score, Shandong Province, China

Introduction
Clostridium difficile, a gram-positive sporulating anaerobic bacillus, is the etiologic pathogen of pseudomembranous colitis and a principal pathogen of antimicrobial-associated diarrhea. Patients with C. difficile infection (CDI) have clinical manifestations ranging from asymptomatic carriage, diarrhea to pseudomembranous colitis, even severe life-threatening toxic megacolon, sepsis and death. Generally, TcdA and TcdB toxins (encoded by tcdA and tcdB genes, respectively) are the major virulence factors produced by toxigenic C. difficile strains. However, some strains can also...
produce *C. difficile* binary toxin (CDT; encoded by binary genes *cdtA* and *cdtB").

The increased morbidity and severity of CDI has led to a significant economic burden on the health care systems worldwide, with increased treatment cost and prolonged hospital stay.\(^3\)\(^4\) CDI is thus regarded an urgent public health threat, and the financial burden is estimated to be $725 million in community settings and $5.4 billion in health care settings in North America.\(^5\) Knowledge of the antimicrobial susceptibility profiles and molecular types of *C. difficile* is important for monitoring spread of this organism. Of the typing methods described for *C. difficile*, multilocus sequence typing (MLST), which facilitates isolate discrimination by sequencing 7 housekeeping gene fragments, is widely used in studying the population gene structure and global epidemiology of the organism.\(^6\)\(^7\) However, at the present time, polymerase chain reaction (PCR) ribotyping is the most frequently used typing method because of the high discriminatory power and low costs.\(^8\)\(^9\) One of the most notable findings achieved by molecular epidemiology studies worldwide has been the detection of the hypervirulent *C. difficile* clone BI/NAP1/027 (BI: restriction endonuclease analysis group BI; NAP1: North American pulse-field type 1; PCR ribotype 027), which especially occurred in North America and Europe.\(^10\)\(^11\)

In China, there is limited clinical and epidemiologic data on CDIs, with few case reports and studies described in only a few geographical regions, including Beijing, Shanghai, Zhejiang and Guangzhou.\(^7\)\(^8\)\(^12\)\(^13\) Shandong Province, the second largest populous province in China, covering an area of 155,800 km\(^2\) with a population of around 100 million, has no related report on CDIs to date.

This study, for the first time, evaluated the CDI laboratory diagnostic strategies and explored the molecular epidemiology of *C. difficile* strains from two hospitals in Shandong Province, aiming to provide local scientific reference data for prevention and control of CDI.

Materials and methods

Ethics

The study was approved by the Human Research Ethics Committee of the Affiliated Hospital of Qingdao University. The written informed consent requirement from patients was waived due to the retrospective nature of the study. Furthermore, all patients’ data was anonymized before the study.

Study design and sample collection

This study was conducted at the Zibo Central Hospital (ZCH) and the Affiliated Hospital of Qingdao University (AHQU), in Shandong Province in Eastern China. Both hospitals are tertiary general hospitals with 2000 beds. The study was conducted from March 2016 to April 2017. A total of 504 nonrepetitive unformed stool specimens were collected from hospitalized patients with suspected CDI symptoms during the study period (Figure 1).

VIDAS glutamate dehydrogenase (GDH) and *C. difficile* toxin A&B (CDAB) testing

All the fecal specimens were tested by enzyme immunoassay (EIA) methods using commercial VIDAS GDH and CDAB kits (bioMérieux, Marcy l’Etoile, France), following the manufacturer’s instructions.

C. difficile culture and identification

The fecal samples were incubated on ChromID *C. difficile* agar (CDIF, bioMérieux) at 35°C under anaerobic condition for 48 h. Typical *C. difficile* colonies were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with VITEK MS system (bioMérieux).

DNA extraction, toxin gene detection and tcdC sequencing

Genomic DNA was extracted, and a five-plex PCR was performed to simultaneously detect 16S rDNA and toxin genes *tcdA* (encoding toxin A), *tcdB* (encoding toxin B), *cdtA* and *cdtB* in *C. difficile* isolates, as previously described.\(^2\) Isolates positive for toxin A were further characterized to check for the deletion of the repeating region of *tcdA* gene by primers NK9 and NKV011.\(^16\) The *tcdC* gene, a negative regulator of *tcdA* and *tcdB*, was also sequenced and analyzed as previously described.\(^17\)

MLST and PCR ribotyping

MLST was performed by using 7 gene loci (*adh, atpA, dxr, glyA, recA, sodA* and *tpi*), as previously described.\(^6\) PCR products were purified and sequenced at Taihe Biotechnology Company (Beijing, China). DNA sequences were queried against the PubMLST database (http://pubmlst.org/cdifficile/) to obtain the allele numbers, sequence types (STs) and clades. Five novel STs identified in this study were submitted to the database and assigned ST numbers, ST450–ST454.

PCR ribotyping was performed by capillary gel electrophoresis as previously described.\(^18\) Gene Marker V2.2.0 (Soft Genetics, America) was used to determine the size of each peak, and ribotypes (RTs) were assigned by presenting the
data on the WEBRIBO database (https://webribo.ages.at/) and compared with results reported by Cheng et al. Novel RTs observed in this study were named as “SDR” plus two Arabic numbers (e.g., SDR01).

Three reference C. difficile strains, PUCD10 (PUR09/ST81), PUCD301 (RT027/ST1) and PUCD610 (RT017/ST37), were used as internal controls.

Antimicrobial susceptibility testing
The agar dilution method was used to determine the minimum inhibitory concentrations (MICs) of vancomycin, metronidazole, erythromycin, clindamycin, ciprofloxacin and tetracycline, according to the Clinical and Laboratory Standards Institute (CLSI) guidelines M11-A8. The interpretation of breakpoints of metronidazole, clindamycin and tetracycline was based on CLSI M100-S27 criteria. In addition, the breakpoints of vancomycin, erythromycin and ciprofloxacin were ≥32, ≥8 and ≥8 mg/L, respectively (Table S1).

Bacteroides fragilis ATCC 25285 was used for quality control.

Resistance gene detection
The quinolone resistance determining region (QRDR) of gyrA and gyrB genes were amplified and sequenced in 30 selected ciprofloxacin-resistant isolates as previously described by Drudy et al.

Patient characteristics and severity score
A CDI severity score was determined for each patient based on clinical features, laboratory test findings and clinical impressions of the attending physician, in accordance to the 2010 updated America guidelines. The severity of CDI in each patient was assigned a score of 1–6, 1, no clinical CDI; 2, mild; 3, mild to moderate; 4, moderate; 5, moderate to severe; and 6, severe.

Statistical analysis
All data were statistically analyzed by using SPSS software (version 18.0, IBM, New York, USA). Kruskal–Wallis and chi-square tests were used to analyze correlations among STs, RTs and antimicrobial susceptibility patterns of C. difficile strains. A P-value of <0.05 was considered statistically significant.

Results
General clinical information
A total of 504 inpatients with diarrhea from ZCH (n=256) and AHQU (n=248) were included in this study (Figure 1). The average age of the patients, which included 261 males (51.8%) and 243 females (48.2%), was 49.3±18.1 (ranged from 4 to 91). About 24.0% (121/504) of the patients were from hematology and oncology departments, 20.0% (101/504)
from gastroenterology department, 16.9% (85/504) from surgery department, 7.9% (40/504) from emergency department, 7.5% (38/504) from intensive care unit, 6.2% (31/504) from pediatric department and 17.5% (88/504) from other departments (i.e., geriatrics, obstetrics and gynecology, cardiovascular, neurology).

Comparison of GDH versus toxigenic culture
Among the 504 fecal specimens tested, 22.8% (115/504) were positive for GDH, and 16.9% (85/504) were *C. difficile* culture positive. Only one specimen was GDH negative but culture positive (Table 1; Figure 1). Compared to the culture method, the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the GDH assay were 98.8%, 92.6%, 73.0% and 99.7%, respectively (Table 2).

Detection of toxin genes and comparison with CDAB EIA method
Of the 85 *C. difficile* strains isolated in this study, 72 (84.7%) were toxin gene positive, among which 61 (71.8%) were *tcdA*-positive, *tcdB*-positive and *cdtA/cdtB*-negative (A+B+CDT–), and 10 (11.8%) were *tcdA*-negative, *tcdB*-positive and *cdtA/cdtB*-negative (A–B+CDT–). Only one strain (CD029) isolated in ZCH was *cdt* gene positive, and the toxigenic type was *cdtA*+/*cdtB*–. Only one strain (CD029) isogenegative (A–B+*cdtB* and 10 (11.8%) were *tcdA*-negative, *tcdB*-positive and 13 (11.1%) STs were detected, respectively. Only ST3 comprised both toxigenic (n=8) and non-toxigenic (n=9) strains (Table 3).

Genotypes determined by MLST and PCR ribotyping
The 85 *C. difficile* strains were classified into 23 STs, including 5 STs (1 per isolate) that were novel (Table 3). Among 72 toxigenic strains and 13 nontoxigenic strains, 20 and 4 STs were detected, respectively. Only ST3 comprised both toxigenic (n=8) and non-toxigenic (n=9) strains (Table 3). Among toxigenic *C. difficile* strains, ST2 (25.0%, 18/72) was the most common, followed by ST35 (18.1%, 13/72), ST37 (12.5%, 9/72), ST3 (11.1%, 8/72) and ST54 (9.7%, 7/72), while ST3 (69.2%, 9/13) was the most common ST.

Thirty-nine fecal specimens were CDAB positive and toxigenic culture positive (7.7%). However, among 76 CDAB negative/equivocal strains, 33 toxigenic culture positive strains were detected (43.4%) (Figure 1). Therefore, a total of 72 out of 504 patients (14.3%) with diarrhea were defined as CDI according to toxigenic culture results (Figure 1). Compared to toxigenic culture, the sensitivity, specificity, PPV and NPV of CDAB assay were 54.2%, 100.0%, 100.0% and 92.9%, respectively (Table 2).

To overcome the deficiencies of low PPV for GDH and NPV for CDAB methods, we recommended a combined laboratory diagnosis algorithm for CDI based on GDH and CDAB testing and complemented by detection of toxin genes either in toxigenic culture method or directly in stool samples for any discordant results (Figure 1), as recommended by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).24

Table 1 *Clostridium difficile* culture, VIDAS GDH, VIDAS CDAB and toxic typing results for 504 fecal samples in the study

<table>
<thead>
<tr>
<th>Culture result</th>
<th>GDH</th>
<th>CDAB</th>
<th>Toxic type (no. of isolates)</th>
<th>Total no. of isolates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A+B+CDT–</td>
<td>A–B+CDT–</td>
</tr>
<tr>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>35</td>
<td>3</td>
</tr>
<tr>
<td>Positive</td>
<td>Positive</td>
<td>Equivocal</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Positive</td>
<td>Positive</td>
<td>Negative</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Negative</td>
<td>Positive</td>
<td>Equivocal</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Abbreviations: GDH, glutamate dehydrogenase; CDAB, *C. difficile* toxin A&B; CDT, *C. difficile* binary toxin; ND, not done.

Table 2 Performance of VIDAS GDH and VIDAS CDAB detection for diagnosis of CDI

<table>
<thead>
<tr>
<th>Test methods</th>
<th>Sensitivity % (95% CI)</th>
<th>Specificity % (95% CI)</th>
<th>PPV % (95% CI)</th>
<th>NPV % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDH</td>
<td>98.8 (92.7–99.9)</td>
<td>92.6 (89.6–94.8)</td>
<td>73.0 (63.8–80.7)</td>
<td>99.7 (98.3–100.0)</td>
</tr>
<tr>
<td>CDAB</td>
<td>54.2 (42.1–65.8)</td>
<td>100.0 (98.9–100.0)</td>
<td>92.9 (90.1–95.0)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: *Compare to culture; †Compare to toxigenic culture.

Abbreviations: GDH, glutamate dehydrogenase; CDAB, *C. difficile* toxin A&B; PPV, positive predictive value; NPV, negative predictive value.
strains were evaluated for CDI severity score. No severity
clinical isolates

Note: ‘Novel STs identified in the present study.
Abbreviations: ST, sequence type; CDT, C. difficile binary toxin.

among nontoxicigenic strains (Table 3; Figure 2B). Nine of
10 A–B+CDT– strains belonged to ST37. The only one
A-B+CDT+ strain belonged to ST1 (Table 3).

In addition, we found that all isolates of the same ribo-
types belonged to the same STs, and none of the ribotypes
were shared by different STs. Twenty-nine PCR ribotypes
were detected among 72 toxigenic strains. The predominant
ribotype was RT046 (13.9%, 10/72), followed by RT014 and
RT017 (12.5%, 9/72, each), RT001 (11.1%, 8/72), RT012 and
RT020 (9.7%, 7/72, each) (Table 3; Figure 2C). Of note, one
C. difficile isolate from ZCH was confirmed to be hypervirulent
ribotype 027 (1.4%, 1/72). Among 13 nontoxicigenic strains,
ribotypes 009 (46.2%, 6/13) and 456 (23.1%, 3/13) dominated,
and all isolates of these ribotypes belonged to ST3 (Table 3).

Clinical severity score of CDI patients
Seventy-two CDI patients infected by toxigenic C. difficile
strains were evaluated for CDI severity score. No severity

score of 6 was found (Table 4). The average (±SD) severity
score was 2.97±0.90. There was no difference in severity
scores between CDI patients who were CDAB EIA test posi-
tive and those who were CDAB EIA test equivocal or nega-
tive (P<0.05) (Table 4). However, patients with A-B+CDT–
strains had higher severity scores (3.50±0.85) than patients with A+B+CDT– strains (2.59±0.93) (P<0.05).
In addition, differences in CDI severity scores were found
among patients infected by C. difficile of different ribo-
types and STs (Table 4). ST35 strains showed high severity
scores, with a score of 3.69±0.85, which was significantly
higher than those of ST2, ST3 and ST54 strains (P<0.05),
but not significantly different with ST37 (P>0.05), (Table 4).
In patients with CDI scores of ≥4 (n=20), ribotypes RT046
(35.0%) and RT014 (20.0%) were detected more frequently
than RT001 (5.0%) and RT020 (5.0%), PCR ribotype 027
strain isolated from a gastroenterology patient exhibited high
severity with a score of 4 (Table 4). There were 4 patients
with CDI severity scores of 5, and half of them belonged to
the ST35/046 genotype (Table 4).

Antimicrobial resistance
The MICs of 6 antimicrobial agents for 85 C. difficile strains
are shown in Table 5. All the isolates were susceptible to
vancomycin and metronidazole. Thirty out of 85 isolates
(35.3%) were resistant to erythromycin, clindamycin and
ciprofloxacin, and 96.7% (29/30) of the co-resistant isolates
were toxigenic. In contrast, 64.7%, 58.8%, 97.6% and
35.3% of the 85 isolates were resistant to erythromycin,
clindamycin, ciprofloxacin and tetracycline, respectively
(Table 5). Toxigenic strains showed higher resistance rates
to erythromycin, clindamycin and ciprofloxacin than non-
toxicigenic strains (P<0.01, Figure 3A; Table 5). Moreover,
there were differences in antimicrobial resistance rates
among different STs. For instance, ST35 and ST37 exhibited
high resistance rates to erythromycin (92.3% and 77.8%,
respectively), while ST3 and ST54 showed high resistance
rates to clindamycin (87.5% and 85.7%, respectively) (Fig-
ure 3B). There was no significant difference in antimicrobial
resistance rates of C. difficile strains from the 2 hospitals
(Figure 2D).

Correlation between fluoroquinolone-
resistance and gyrA and gyrB gene
mutations
In order to investigate the mechanism responsible for the
high ciprofloxacin resistance, 30 ciprofloxacin-resistant
isolates were selected for analyzing the gyrA and gyrB

<table>
<thead>
<tr>
<th>STs (no. of isolates)</th>
<th>Clade</th>
<th>Toxin genotype (no. of isolates)</th>
<th>Ribotype (no. of isolates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1 (1)</td>
<td>2</td>
<td>A+B+CDT+ (1)</td>
<td>027 (1)</td>
</tr>
<tr>
<td>ST2 (18)</td>
<td>1</td>
<td>A+B+CDT– (18)</td>
<td>014 (9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>020 (7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>006 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>432 (1)</td>
</tr>
<tr>
<td>ST3 (17)</td>
<td>1</td>
<td>A–B–CDT– (9)</td>
<td>009 (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>456 (3)</td>
</tr>
<tr>
<td>ST4 (1)</td>
<td>1</td>
<td>A+B+CDT+ (1)</td>
<td>001 (8)</td>
</tr>
<tr>
<td>ST8 (1)</td>
<td>1</td>
<td>A+B+CDT– (1)</td>
<td>SDR07 (1)</td>
</tr>
<tr>
<td>ST17 (2)</td>
<td>1</td>
<td>A+B+CDT– (2)</td>
<td>SDR06 (1)</td>
</tr>
<tr>
<td>ST27 (1)</td>
<td>1</td>
<td>A+B+CDT– (1)</td>
<td>039 (1)</td>
</tr>
<tr>
<td>ST33 (1)</td>
<td>1</td>
<td>A+B+CDT– (1)</td>
<td>SDR05 (1)</td>
</tr>
<tr>
<td>ST35 (13)</td>
<td>1</td>
<td>A+B+CDT– (13)</td>
<td>046 (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SDR09 (3)</td>
</tr>
<tr>
<td>ST37 (9)</td>
<td>4</td>
<td>A–B–CDT– (9)</td>
<td>017 (9)</td>
</tr>
<tr>
<td>ST42 (1)</td>
<td>1</td>
<td>A+B+CDT– (1)</td>
<td>106 (1)</td>
</tr>
<tr>
<td>ST45 (7)</td>
<td>1</td>
<td>A+B+CDT– (7)</td>
<td>012 (7)</td>
</tr>
<tr>
<td>ST81 (1)</td>
<td>4</td>
<td>A–B–CDT– (1)</td>
<td>PUR09 (1)</td>
</tr>
<tr>
<td>ST102 (2)</td>
<td>1</td>
<td>A+B+CDT– (2)</td>
<td>PUR02 (2)</td>
</tr>
<tr>
<td>ST111 (1)</td>
<td>1</td>
<td>A+B+CDT– (1)</td>
<td>SDR08 (1)</td>
</tr>
<tr>
<td>ST129 (1)</td>
<td>1</td>
<td>A+B+CDT– (1)</td>
<td>PUR13 (1)</td>
</tr>
<tr>
<td>ST205 (2)</td>
<td>1</td>
<td>A–B–CDT+ (2)</td>
<td>SDR04 (2)</td>
</tr>
<tr>
<td>ST319 (1)</td>
<td>1</td>
<td>A+B+CDT– (1)</td>
<td>SDR03 (1)</td>
</tr>
<tr>
<td>ST450 (1)</td>
<td>1</td>
<td>A–B–CDT– (1)</td>
<td>SDR01 (1)</td>
</tr>
<tr>
<td>ST451 (1)</td>
<td>1</td>
<td>A+B+CDT– (1)</td>
<td>SDR02 (1)</td>
</tr>
<tr>
<td>ST452 (1)</td>
<td>1</td>
<td>A–B–CDT– (1)</td>
<td>010 (1)</td>
</tr>
<tr>
<td>ST453 (1)</td>
<td>1</td>
<td>A+B+CDT– (1)</td>
<td>449 (1)</td>
</tr>
<tr>
<td>ST454 (1)</td>
<td>1</td>
<td>A+B+CDT– (1)</td>
<td>610 (1)</td>
</tr>
</tbody>
</table>

Dovepress

Clostridium difficile in Shandong Province, China

© Dovepress

http://www.dovepress.com/doi/full/493

Infection and Drug Resistance downloaded from https://www.dovepress.com/ by 54.70.40.11 on 11-Feb-2019
For personal use only only.
gene sequences (Table 6). Only 10 of the 30 isolates (33.3%) had GyrA amino acid substitutions (Thr82→Ile), including 4 with GyrB substitutions (Ser366→Ala and/or Asp426→Val) at the same time (Table 6). The rest 20 (66.7%) of the isolates had wild-type gyrA and gyrB gene sequences (Table 6).

We further tested moxifloxacin susceptibility among the 30 isolates and found out that moxifloxacin resistance had good correlation with gyrA and gyrB gene mutations; all isolates that had wild-type gyrA and gyrB genes were moxifloxacin susceptible, while isolates with nonsynonymous mutant gyrA→gyrB genes were all moxifloxacin resistant. In addition, isolates with mutations in both gyrA and gyrB genes showed high level resistance to moxifloxacin (MICs of ≥32 mg/L) compared to isolates having mutation only in gyrA gene (MICs of 8–16 mg/L) (Table 6).

Discussion

CDI is a significant and increasing public health threat and is regarded as the leading cause of nosocomial diarrhea related to antimicrobial therapy. The morbidity and mortality of CDI have increased substantially in the last decade.25 On account of limited laboratory diagnostic capacity and low clinical awareness, lack of data on CDI in China makes it an underestimated problem.9,26,27 To our best knowledge, this is the first systematic study on the epidemiology of *C. difficile* from Shandong Province, China.

VIDAS CDAB (bioMérieux) was the first assay approved by China Food and Drug Administration for the laboratory diagnosis of CDI and is to date the most commonly used assay in China. However, our study revealed that 45.8% of the CDI cases would be missed by using CDAB only. GDH assay, in comparison, had notable high NPV (99.7%) but low PPV (73.0%) for diagnosis of CDI. In agreement to previous findings by Cheng et al,26 we also recommend the three-step CDI workflow based on combining GDH and CDAB assays and suggest using molecular detection of toxin genes when any discordant results between GDH and CDAB assays are encountered, and this was described first in the updated ESCMID guidelines in 2016.24
In our study, the majority (84.7%) of the *Clostridium difficile* strains possessed toxin genes, which is similar to previous findings in China, with toxigenic strains accounting for 70%–90% of the strains. Infection and Drug Resistance downloaded from https://www.dovepress.com/ by 54.70.40.11 on 11-Feb-2019
For personal use only. Further, geographic diversity was also observed, e.g., the predominant ST2 clone in the present study (25.0%) was less commonly described between the 1980s and 2012 in this locale. However, this ST has become less common as reported in two recent studies (12.2–13.8%). Meanwhile, ST54 has become more prevalent, rising from 5.7% to 16.4–18.9% (Table 7). Moreover, remarkable variations in molecular epidemiology of *C. difficile* across different countries worldwide have been observed. For example, in Korea and Japan, ST17 is the predominant type (55.7% and 21.5%, respectively), followed by ST2 (8.6% and 10.0%, respectively). However, in Europe, RT027/ST1 is the most prevalent genotype, especially in Western and Eastern Europe.

Of note, RT046/ST35, which has rarely been identified in other countries, but more commonly reported in China.
has scarcely been studied in order to understand its clinical pathogenicity. In this study, RT046/ST35 exhibited higher clinical severity (3.80 ± 0.92) than other RTs, with high morbidity and severe complications, including pseudomembranous colitis and toxic megacolon, and high resistance rates to erythromycin (90.0%). These factors suggest that RT046/ST35 strains could be a major threat in Shandong Province of China and need continued monitoring and implementation of appropriate control measures.

Another interesting finding of this study is the detection of hypervirulent RT027/ST1 strain in this region of China. Similar to the majority of RT027 strains identified worldwide, this isolate was also binary toxin gene positive and had an 18-bp deletion in the tcdC gene.9,11 The concerned patient had symptoms of pseudomembranous colitis and was assigned a high-level severity score of 4. To date, C. difficile RT027 cases have only been reported sporadically in China.9,35 However, nosocomial outbreaks of C. difficile RT027 strains have been reported,36 revealing that the threat of RT027 strains might be underestimated, which highlights the need for increasing the laboratory diagnostic capacity for detection of CDI in China and use of molecular typing tools in surveillance programs.37

In our study, all the C. difficile isolates were susceptible to vancomycin and metronidazole, which is in agreement with other studies,8,31 while nearly all (97.6%, 83/85) the isolates studied were resistant to ciprofloxacin, which was also in accordance with a previous report in China by Cheng et al (ciprofloxacin resistant rates 100%).8 However, our further

Figure 3 Antimicrobial resistant rates among *Clostridium difficile* isolates (A) and among different STs of toxigenic *C. difficile* isolates (B).

Abbreviation: ST, sequence type.
Table 6 Phenotypic and genotypic characteristics of 30 ciprofloxacin-resistant *Clostridium difficile* strains

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Toxin genotype</th>
<th>MLST</th>
<th>Ribotype</th>
<th>Moxifloxacin MIC (mg/L) Criteria</th>
<th>Ciprofloxacin MIC (mg/L) Criteria</th>
<th>GyrA Amino acid substitution</th>
<th>GyrB Amino acid substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>S43</td>
<td>A+B+CDT+</td>
<td>1</td>
<td>027</td>
<td>16 R</td>
<td>128 R</td>
<td>Thr82→Ile</td>
<td>WT</td>
</tr>
<tr>
<td>S25</td>
<td>A+B+CDT–</td>
<td>3</td>
<td>001</td>
<td>8 R</td>
<td>64 R</td>
<td>Thr82→Ile</td>
<td>WT</td>
</tr>
<tr>
<td>S12</td>
<td>A+B+CDT–</td>
<td>3</td>
<td>001</td>
<td>16 R</td>
<td>64 R</td>
<td>Thr82→Ile</td>
<td>WT</td>
</tr>
<tr>
<td>S65</td>
<td>A+B+CDT+</td>
<td>17</td>
<td>PUR34</td>
<td>32 R</td>
<td>64 R</td>
<td>Thr82→Ile Ser366→Ala</td>
<td>WT</td>
</tr>
<tr>
<td>S32</td>
<td>A+B+CDT–</td>
<td>35</td>
<td>046</td>
<td>16 R</td>
<td>32 R</td>
<td>Thr82→Ile</td>
<td>WT</td>
</tr>
<tr>
<td>S81</td>
<td>A+B+CDT–</td>
<td>35</td>
<td>046</td>
<td>16 R</td>
<td>128 R</td>
<td>Thr82→Ile Ser366→Ala</td>
<td>WT</td>
</tr>
<tr>
<td>S74</td>
<td>A–B+CDT–</td>
<td>37</td>
<td>017</td>
<td>64 R</td>
<td>128 R</td>
<td>Thr82→Ile Ser366→Ala</td>
<td>WT</td>
</tr>
<tr>
<td>S53</td>
<td>A–B+CDT–</td>
<td>37</td>
<td>017</td>
<td>64 R</td>
<td>128 R</td>
<td>Thr82→Ile Ser366→Ala</td>
<td>WT</td>
</tr>
<tr>
<td>S5</td>
<td>A–B+CDT–</td>
<td>81</td>
<td>PUR09</td>
<td>64 R</td>
<td>128 R</td>
<td>Thr82→Ile Ser366→Ala Asp426→Val</td>
<td>WT</td>
</tr>
<tr>
<td>S16</td>
<td>A–B+CDT–</td>
<td>111</td>
<td>SDR08</td>
<td>16 R</td>
<td>128 R</td>
<td>Thr82→Ile</td>
<td>WT</td>
</tr>
</tbody>
</table>

Table 7 Review of *Clostridium difficile* studies, ranged by latitude from north to south in mainland China

<table>
<thead>
<tr>
<th>No.</th>
<th>Geographic</th>
<th>Year</th>
<th>MLST prevalence</th>
<th>RTs prevalence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beijing</td>
<td>1980s–2012</td>
<td>ST37 (25.7)</td>
<td>ST3 (17.1)</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>Beijing</td>
<td>2012–2015</td>
<td>ST35 (16.4)</td>
<td>ST3 (14.7)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Beijing</td>
<td>2014–2015</td>
<td>ST54 (18.9)</td>
<td>ST3 (13.5)</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>Hebei</td>
<td>2013–2014</td>
<td>ST54 (29.2)</td>
<td>ST3 (25.7)</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>Shandong</td>
<td>2016–2017</td>
<td>ST2 (25.0)</td>
<td>ST3 (18.1)</td>
<td>This study</td>
</tr>
<tr>
<td>6</td>
<td>Jiangsu</td>
<td>2015–2016</td>
<td>ST54 (32.8)</td>
<td>ST3 (16.4)</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>Shanghai</td>
<td>2012–2013</td>
<td>ST81 (18.8)</td>
<td>ST37 (12.5)</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>Shanghai</td>
<td>2012–2013</td>
<td></td>
<td>RT017 (21.0)</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Sichuan</td>
<td>2012–2013</td>
<td>ST3 (16.1)</td>
<td>RT012 (17.3)</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>Zhejiang</td>
<td>2009–2011</td>
<td>ST54 (23.0)</td>
<td>ST3 (12.9)</td>
<td>42</td>
</tr>
<tr>
<td>11</td>
<td>Zhejiang</td>
<td>2012–2013</td>
<td>ST54 (23.0)</td>
<td>ST3 (19.3)</td>
<td>42</td>
</tr>
<tr>
<td>12</td>
<td>Zhejiang</td>
<td>2013</td>
<td>ST3 (16.5)</td>
<td>ST3 (16.3)</td>
<td>43</td>
</tr>
<tr>
<td>13</td>
<td>Zhejiang</td>
<td>2012–2015</td>
<td>ST37 (16.5)</td>
<td>ST54 (12.9)</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>Hunan</td>
<td>2009–2010</td>
<td></td>
<td>RT017 (48.0)</td>
<td>44</td>
</tr>
</tbody>
</table>

Abbreviations: MLST, multilocus sequence typing; MIC, minimum inhibitory concentration; CDT, *C. difficile* binary toxin; S, susceptible; R, resistant; WT, wild-type.
investigations showed that there were significant differences between moxifloxacin and ciprofloxacin activities against *C. difficile* isolates, and chromosomal mutations in *gyrA* and *gyrB* genes were associated with moxifloxacin rather than ciprofloxacin susceptibilities. Moreover, an observational study in England showed that the incidence of CDI declined by about 80% by restricting national fluoroquinolone prescribing and elimination of fluoroquinolone-resistant isolates. This highlights the importance of fluoroquinolone restriction in the control of CDI.\(^9\) Therefore, antimicrobial stewardship is a key component in CDI prevention.

Conclusion

The study is the first systematic study on CDI in Shandong Province, China. Our findings highlight the importance of calls for improved efforts in the development of laboratory diagnostic capacity for CDIs in China, including utilizing rational and effective algorithms. Continued regional and national monitoring of CDIs, including molecular epidemiology surveillance, and implementation of comprehensive and systemic control strategies, including antimicrobial stewardships, are urgently needed in China.

Acknowledgments

The authors thank Yan Zhao of Zibo Central Hospital for sample collection, Yan Jin and Chun-Hong Shao of the Provincial Hospital Affiliated to Shandong University for the technical support and Fanrong Kong of Westmead Hospital and Ying-Chun Xu of Peking Union Medical College Hospital for critically reviewing the manuscript. This study was financially supported by a Natural Science Foundation of China (grant number 81501807) and a PUMCH Science Fund for Junior Faculty (grant number pumnch-2016-1.2).

Author contributions

All authors contributed toward data analysis, drafting and revising the paper and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.

References

Supplementary material

Table S1 Antimicrobial resistant breakpoint of six antimicrobial agents used in the study

<table>
<thead>
<tr>
<th>Antimicrobial agents</th>
<th>Resistant interpretive criteria (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythromycin</td>
<td>≥8<sup>a</sup></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>≥8<sup>a</sup></td>
</tr>
<tr>
<td>Clindamycin</td>
<td>≥8<sup>a</sup></td>
</tr>
<tr>
<td>Metronidazole</td>
<td>≥32<sup>b</sup></td>
</tr>
<tr>
<td>Tetracycline</td>
<td>≥16<sup>b</sup></td>
</tr>
<tr>
<td>Vancomycin</td>
<td>≥32<sup>b</sup></td>
</tr>
</tbody>
</table>

Notes: ^aBreakpoints per CLSI document M100.²⁰ ^bBreakpoints per Huang et al.²¹