Serum hepatitis B core antibody levels predict HBeAg seroconversion in chronic hepatitis B patients with high viral load treated with nucleos(t)ide analogs

This article was published in the following Dove Press journal: Infection and Drug Resistance

Shaohang Cai*  
Zhandong Li*  
Tao Yu  
Muye Xia  
Jie Peng  
Department of Infectious Diseases and Hepatology Unit, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China  
*These authors contributed equally to this work

Background: Patients with chronic hepatitis B virus (HBV) infection who are hepatitis B virus e antigen (HBeAg) positive are increasingly being treated with nucleos(t)ide analogs (NUCs). However, the predictive value of serum hepatitis B virus core antibody (HBcAb) levels for HBeAg seroconversion among patients with high viral load remains unclear.

Methods: This study consisted of 74 patients with high viral load (HBV DNA >1×10⁷ copies/mL) enrolled in a multicenter, randomized, controlled trial, treated with lamivudine and adefovir (N = 32) or entecavir (N = 42) for up to 96 weeks. Serum HBV DNA, quantitative hepatitis B virus surface antigen (HBsAg), HBeAg, and HBcAb was tested at each visit. Quantitative HBcAb evaluation was conducted for all the available samples in the trial, by using a newly developed double-sandwich anti-HBc immunoassay.

Results: Serum HBcAb levels were significantly higher in patients with a serum alanine aminotransferase (ALT) level more than five times the upper limit of normal (ULN) compared with patients with ALT levels within 5×ULN (4.25±0.61 vs. 3.94±0.47 log₁₀ IU/mL, P = 0.0345). Patients with HBeAg seroconversion were associated with a higher level of HBcAb at baseline, compared with those without HBeAg seroconversion (4.38±0.54 vs. 4.02±0.58 log₁₀ IU/mL, P = 0.029). The area under receiver operating characteristic curve of baseline HBcAb for HBeAg seroconversion was 0.71 (95% CI: 0.55–0.86, P = 0.013). When the baseline HBcAb level was >4.375 log₁₀ IU/mL, the sensitivity and specificity to predict HBeAg seroconversion at week 96 were 62.5% and 74.2%, and the positive likelihood ratio (LR) and negative LR were 2.42 and 0.51, respectively. The multivariate analysis result indicated that baseline serum HBcAb level was the only independent predictor for HBeAg seroconversion at week 96, with an odds ratio of 4.78.

Conclusion: Baseline serum HBcAb level >4.375 log₁₀ IU/mL could satisfactorily predict HBeAg seroconversion among patients with high viral load treated with NUC.

Keywords: chronic hepatitis B, HBV: hepatitis B core antibody, hepatitis B e antigen, seroconversion, high viral load

Introduction

It has been estimated that 240 million people worldwide are chronically infected with hepatitis B virus (HBV). People with chronic HBV infection are at increased risk of developing liver cirrhosis, liver failure, and hepatocellular carcinoma (HCC).1 Five nucleos(t)ide analogs (NUCs) have been approved for antiviral treatment of chronic HBV infection in most countries. The aim of antiviral treatment for chronic HBV infection is to suppress HBV replication and to achieve hepatitis B virus e antigen (HBeAg) seroconversion in HBeAg seropositive patients, to improve health-related quality of
life, and patient survival.\(^2\) The presence of HBeAg seropositivity indicates active replication of HBV and a reflection of high risk of HCC. The relative risk of HCC in chronic HBV infection has been reported as 9.6% for patients who were seropositive for hepatitis B virus surface antigen (HBsAg) alone; the risk increased to 60.2% for patients who were both HBsAg seropositive and HBeAg seropositive.\(^3\) Therefore, it is important to monitor HBeAg status in patients with chronic HBV infection during anti-HBV treatment.

Recently, available evidence suggests that patients with chronic HBV infection with high viral load (HVL) are less likely to achieve HBeAg seroconversion and more likely to be associated with high drug-related resistance and treatment failure. In the 2-year GLOBE trial, data suggested that patients with chronic HBV infection with serum HBV DNA levels at baseline \(<9 \log_{10} \text{copies/mL} \) were confirmed that patients with chronic HBV infection with serum HBV DNA viral load and HVL.\(^4\) However, chronic HBV infection is an infectious disease with a pathogenesis and course that depends on the virus and host interaction. Although previous studies have shown that HBV viral load and HBsAg levels can be used to predict treatment outcomes of anti-HBV treatment, these predictors are virus-dependent.\(^5\)\(^6\) At present, host immune-related predictors for HBeAg seroconversion and immune response in patients with chronic HBV infection with an HVL at baseline are limited. There is currently no specific predictor for HBeAg seroconversion in patients with chronic HBV infection with HVL.

In 2013, a study by Yuan et al reported that increased serum levels of hepatitis B virus core antibody (HBcAb) may indicate a stronger host-adaptive antiviral immune response in chronic HBV infection.\(^7\) This study suggested a possible role for HBcAb as a predictor of host immune response to HBV infection. However, due to the relatively low HBV DNA viral load, the performance of detection of HBcAb as a marker for HBeAg seroconversion in patients with chronic HBV infection and with HVL requires further validation.

The aim of this study was to determine the predictive value of serum HBcAb levels as predictors for HBeAg seroconversion in patients with chronic HBV infection treated with NUCs.

**Methods**

**Patients studied**

This study consisted of 74 patients with HVL (an HVL at baseline defined as serum HBV DNA levels \(>1 \times 10^7 \text{ copies/mL} \)) enrolled in a multicenter, randomized, controlled trial, treated with lamivudine (LAM) and adefovir (ADV) (N = 32) or entecavir (ETV) (N = 42) for up to 96 weeks. Patients enrolled in the trial were HBsAg seropositive for at least 6 months, HBeAg-positive with an HVL at baseline, accompanied by alanine aminotransferase (ALT) levels greater than the upper limit of normal (ULN), documented on two separate occasions, at least 2 weeks apart, with the latest ALT \(\geq 2 \times \text{ULN} \).

The exclusion criteria included patients who had received previous treatment with IFN or NUCs; pregnancy; a history of metabolic liver disease; patients who had diagnostic markers of co-infection with hepatitis C virus, hepatitis D virus, or HIV; autoimmune hepatitis; heavy alcohol intake; liver cirrhosis; or HCC.

**Serological methods**

Serum levels of ALT, HBV serological markers, and HBV DNA viral load were evaluated every 12 weeks from baseline to the end of the study. Levels of HBV serological markers and serum HBV DNA levels were measured at the Central Laboratory of Nanfang Hospital, and serum ALT levels were assessed at local laboratories according to local standard procedures.

Serum ALT levels were measured by automated techniques. HBsAg, HBeAg, and HBcAb were measured using a commercially available radioimmunoassay (ARCHITECT i2000SR; Abbott Laboratories, Abbott Park, IL, USA). Serum HBV DNA viral load was measured using real-time quantitative PCR, with the Cobas Ampliprep and Cobas TaqMan, version 2.0 (CAP/CTM; Hoffman-La Roche Ltd., Basel, Switzerland).\(^8\) According to the manufacturer’s report, the HBV DNA linear range was 20 IU/mL to \(1.7 \times 10^6 \text{IU/mL} \) (1 IU/mL = 5.82 copies/mL).

Quantitative analysis of serum HBcAb levels was performed by using a newly developed, double-sandwich immunoassay (dynamic range 0.1–2.0 IU/mL; Wantai, Beijing, China), a method previously validated by the World Health Organization HBcAb standards.\(^9\) The evaluation was conducted with the investigators blinded to treatment status and other clinical characteristics, for all the available samples in the study. The samples were tested at dilutions of 1:100–1:100000 (10-fold increase) if the HBcAb level was \(>2.0 \text{IU/mL} \) (Figure S1).

In this study, a virologic response was defined as HBV DNA \(<100 \text{IU/mL} \); biochemical responses were defined as normalization of ALT levels; HBeAg seroconversion was defined as HBeAg negative and HBeAb positive.

**Reproducibility and reliability evaluation of the double-sandwich HBcAb assay**

Five serum specimens were used for the evaluation of the reproducibility of the double-sandwich HBcAb assay used in
the study. The HBcAb titers of the five specimens were 0.1, 
0.3, 0.6, 1.2, and 2.0 IU/mL. The reproducibility was assessed 
from ten measurements of the five specimens. The coefficient 
of variation was calculated to estimate the precision of the 
assay. To evaluate the quantitative accuracy of the assay, 80 
randomly selected serum specimens of chronic hepatitis B 
(CHB) patients were independently measured twice by the 
assay (Figure S1).

Statistical analysis
The measurements were expressed as mean ± SD for nor-
normally distributed data, and median (range), for data showing 
a non-normal distribution. Categorical data were expressed as 
a percentage. The HBV DNA levels were expressed in loga-
ithmic units (log10 IU/mL). The χ2-test and Student’s t-test 
were applied when appropriate. Spearman’s rho tests were 
used for correlation analyses. We performed the randomiza-
tion by random numbers generated by Excel. Data analysis 
and quality control procedures were performed using SPSS 
for Windows, version 13.0 (SPSS Inc., Chicago, IL, USA) 
with an alpha level of 0.05.

Ethics statement
The Institutional Review Board of Nanfang Hospital, 
Southern Medical University approved the study (ID: 
ZHF2011206). All procedures were in accordance with the 
ethical standards of the responsible committee on human 
experimentation and the Helsinki Declaration of 1975, as 
revised in 2008. Informed consent was obtained from all 
patients included in the study.

Results
Patient demographics and clinical characteristics
A total of 74 patients who completed a 96-week treatment 
program with NUCs were included in the study, as shown 
in Figure 1. At the end of the study, 16 (21.6%) patients 
achieved HBeAg seroconversion in the cohorts. Of these 
74 patients, there were 32 patients receiving LAM and 
ADV combination therapy with an average age of 32.9 ± 
10.6 years; 42 patients receiving ETV therapy, with an aver-
age age of 30.1 ± 8.4 years. The baseline HBcAb levels in 
patients treated with LAM and ADV combination therapy 
and in ETV therapy were 4.06 ± 0.57 and 4.13 ± 0.61 log10 
IU/mL, respectively. The two groups did not differ in the 
distribution of baseline demographics and clinical charac-
teristics (P > 0.05, Table 1).

Table 1 Demographic and baseline characteristics by group

<table>
<thead>
<tr>
<th>Variables</th>
<th>LAM+ADV group</th>
<th>ETV group</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>32</td>
<td>42</td>
<td>–</td>
</tr>
<tr>
<td>Age (years)</td>
<td>32.9 ± 10.6</td>
<td>30.1 ± 8.4</td>
<td>0.22</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>25/7</td>
<td>31/11</td>
<td>0.67</td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td>226.1 ± 126.9</td>
<td>276.1 ± 144.4</td>
<td>0.12</td>
</tr>
<tr>
<td>HBcAb level (log10 IU/mL)</td>
<td>4.06 ± 0.57</td>
<td>4.13 ± 0.61</td>
<td>0.59</td>
</tr>
<tr>
<td>HBV DNA level (log10 IU/mL)</td>
<td>7.99 ± 0.69</td>
<td>8.03 ± 0.58</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Note: *Expressed as mean ± SD. 
*Abbreviations: ADV, adefovir; ETV, entecavir; LAM, lamivudine, PP, per-protocol.

To explore the relationship between the levels of serum 
HBcAb and the activation of host immune response, we first 
analyzed the correlation between the baseline HBcAb level 
and ALT, as shown in Figure S2. The baseline levels of serum 
HBcAb were positively associated with ALT levels (R value 
0.174, P = 0.0127). Among the patients with chronic HBV 
infection, the HBcAb levels in those who had elevated ALT 
levels of more than 5 × ULN were significantly greater than 
those who had lower elevated ALT levels (4.25 ± 0.61 vs. 
3.94 ± 0.47 log10 IU/mL, P = 0.0345), as shown in Figure S3. 
We also conducted a correlation between HBsAg levels and 
HBcAb levels at baseline. However, we did not find a correla-
tion between HBsAg levels and HBcAb levels in our study.

Evaluation of the serum HBcAb levels during antiviral treatment with NUCs
The HBcAb serum levels of patients were stratified according 
to whether HBeAg seroconversion was confirmed, as shown

Figure 1 Flow chart of patients included in the study. 
*Abbreviations: ADV, adefovir; ETV, entecavir; LAM, lamivudine, PP, per-protocol.

Table 1 Demographic and baseline characteristics by group
in Figure 2. At baseline, the mean levels of HBeAg were 4.38 ± 0.54 and 4.02 ± 0.58 log_{10} IU/mL, respectively (P = 0.029), in patients with and without HBeAg seroconversion. During antiviral treatment, the mean HBeAg level decreased to 3.69 ± 0.39 log_{10} IU/mL at week 24 and 3.42 ± 0.46 log_{10} IU/mL at week 48, in patients with HBeAg seroconversion. Similar results were identified for those without HBeAg seroconversion at week 96. The mean HBeAg level decreased to 3.53 ± 0.57 and 3.27 ± 0.52 log_{10} IU/mL at week 24 and week 48, respectively. Although the HBeAg level in both groups decreased during anti-HBV treatment, no difference was found between the two groups with respect to HBeAg levels at week 24 and week 48 in our study.

Analysis of the performance of HBeAb as a predictor of 96-week HBeAg seroconversion

The area under receiver operating characteristic (AUROC) curve was used to determine whether the serum levels of HBeAb could be an indicator for HBeAg seroconversion at week 96 for patients with chronic HBV infection and HVL (Figure 3). The AUROC was 0.71 (P = 0.013) with 95% CI from 0.55 to 0.86. When baseline HBeAb level >4.375 log_{10} IU/mL, the predictive sensitivity and specificity for HBeAg seroconversion at week 96 during NUC treatment were 62.5% and 74.2%, and the positive likelihood ratio (LR) and negative LR were 2.42 and 0.51, respectively.

In order to further evaluate baseline characteristics in predicting HBeAg seroconversion, a multivariate analysis was conducted with inclusion of gender, age, ALT level, HBV DNA levels, HBeAb levels, and type of treatment in the model. The results showed that baseline serum HBeAb level was the only independent strong predictor for HBeAg seroconversion at week 96 with an odds ratio (OR) of 4.78 (P = 0.009), as shown in Table 2.

To validate the serum HBeAb cut-off value set as 4.375 log_{10} IU/mL to predict the HBeAg seroconversion at week 96, the rates of HBeAg seroconversion between patients with different HBeAb levels were compared. The results showed that 40% (10/25) patients with baseline HBeAb >4.375 log_{10} IU/mL achieved HBeAg seroconversion at week 96 compared with only 12.2% (6/49) of patients with baseline HBeAb ≤4.375 log_{10} IU/mL (P = 0.006), as shown in Figure 4.

Discussion

Serum HBeAb is one of the most widely used serum markers for HBV infection. However, the clinical significance of serum HBeAb levels is poorly understood. There have been few studies to evaluate the performance of quantitative HBeAb in predicting HBeAg seroconversion among patients with chronic HBV infection with HVL. This study has shown that a baseline serum HBeAb level >4.375 log_{10} IU/mL could predict which patients with chronic HBV infection and with an HVL experience HBeAg seroconversion at week 96 during treatment with NUCs.

Previous studies have demonstrated that a high HBV DNA level is an independent predictor of patient outcome with NUC treatment, and a predictor of risk of developing HCC.4,6 For patients with chronic HBV infection and with HVL, there remains a clinical challenge to improve the efficacy of antiviral therapy and to achieve desirable therapeutic endpoints.

A previously published study has reported predictive serological markers in chronic HBV infection, including HBV
DNA viral load and serum ALT levels.\textsuperscript{11} However, measurement of serum HBV DNA levels reflects the pathogen load. Chronic viral hepatitis results from pathogen–host interactions, including the immune status of the host. Serum ALT levels may be raised due to a variety of other diseases, such as neuromuscular disease, myocardial injury, and other liver diseases.\textsuperscript{12–14} However, a high pretreatment ALT level, particularly more than $5 \times ULN$, is a strong predictor of HBeAg seroconversion in both IFN and NUC therapy.\textsuperscript{5–7} In CHB patients, the HBeAb level was positively correlated with the ALT level from $0.5 \times ULN$ to $5 \times ULN$ and reached a plateau at ALT levels greater than $5 \times ULN$, the cut-off value for treatment response prediction.\textsuperscript{10} In the present study, we demonstrated the practical application of measurement of serum HBcAb levels to predict HBeAg seroconversion in patients with chronic HBV infection and HVL; an elevated ALT level more than $5 \times ULN$ and a baseline HBcAb level of $>4.375 \text{ log}_{10} \text{ IU/mL}$ may be applied practically in real-world clinical practice.

Although baseline HBcAb levels showed an independent association with clinical outcome after NUC treatment, AUROC values for serum HBeAg were unsatisfactory at only 0.71. Therefore, a combination formula with several independent predictors may be more effective for predicting clinical outcome in patients with chronic HBV infection treated with NUCs. In 2009, Zeuzem et al reported that virological response at week 24 was a strong predictor of clinical outcomes in patients with chronic HBV infection who received telbivudine treatment, although there was no significant early reduction in serum levels of HBcAb detected between patients with and without HBeAg seroconversion.\textsuperscript{11} The role of HBcAb serum levels in predicting serologic response during NUC treatment should be confirmed in larger, randomized clinical studies.

For patients with chronic HBV infection, the mechanisms underlying the relationship between HBcAb level and host immune status remain poorly understood, but HBV-specific CD4 and CD8 T-cells have an important role in the cellular immune response.\textsuperscript{18,19} Studies have further shown a role for B-cells; HBcAb is produced by HBcAg-activated B-cells.\textsuperscript{20} Recently, Zgair et al reported that HBcAb could inhibit or clear HBV through hepatocytotoxic effects associated with HBcAb-secreting B cells.\textsuperscript{21} Therefore, it is possible that high serum levels of HBcAb may indicate a robust adaptive immune host response against HBV infection, resulting in an improved clinical outcome following NUC treatment.

Another problem is that NUC therapy does not eliminate viral cccDNA and recurrent viremia is the clinical recurring event after treatment cessation in most CHB patients.\textsuperscript{22,23} Combination therapies of NUC with IFN are associated with increased cure rates with HBsAg loss compared to NUC alone.\textsuperscript{24} Therefore, seroconversion from HBeAg to HBeAb is an insufficient marker to eliminate HBV. Although HBeAg seroconversion is a good serum marker in the first few years during treatment, suggesting that risk of end-stage hepatic disease in CHB patients has been reduced.\textsuperscript{25,26} However, for a long-term anti-HBV treatment, HBsAg seroconversion will be a more appropriate marker. A further study about the correlation between HBcAb and HBsAg seroconversion should be done. Recent studies have reported that the innate immune response is critical in the development of adaptive immune responses to HBV, and interventions targeting the innate immune response may improve the efficacy of NUC treatment.

Table 2 Baseline variables associated with HBeAg seroconversion

<table>
<thead>
<tr>
<th>Variables</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (female/male)</td>
<td>0.64 (0.19–2.16, 0.47)</td>
<td>0.64 (0.19–2.16, 0.47)</td>
</tr>
<tr>
<td>Age (year)</td>
<td>0.99 (0.94–1.05, 0.79)</td>
<td>0.99 (0.94–1.05, 0.79)</td>
</tr>
<tr>
<td>ALT level (U/N)</td>
<td>3.28 (0.84–12.8, 0.08)</td>
<td>3.28 (0.84–12.8, 0.08)</td>
</tr>
<tr>
<td>HBV DNA levels (lg IU/mL)</td>
<td>1.67 (0.51–4.43, 0.39)</td>
<td>1.67 (0.51–4.43, 0.39)</td>
</tr>
<tr>
<td>HBcAb levels (lg IU/mL)</td>
<td>4.78 (1.48–15.4, 0.009)</td>
<td>4.78 (1.48–15.4, 0.009)</td>
</tr>
<tr>
<td>Type of treatment (LAM+ADV/ETV)</td>
<td>1.96 (0.64–5.99, 0.24)</td>
<td>1.96 (0.64–5.99, 0.24)</td>
</tr>
</tbody>
</table>

Abbreviation: HBV, hepatitis B virus.
immune response, and multiple innate immune pathways are ultimately induced in chronic HBV infection with relevance to clinical outcome.\textsuperscript{27–30} The innate immune response and adaptive immune response should also be taken into consideration as research targets in further studies.

This study had several limitations. The major limitation was the relatively small sample size. However, the data collected for this study were collected from only four centers. That could remedy the limitation and reduce bias to some extent. We believe that this preliminary study has resulted in findings that warrant future, larger multicenter controlled studies. The approaches used in this study to measure HBcAb levels should be confirmed in future studies and verified with the use of other methods. Therefore, we recommend that to validate these preliminary results further, and to understand the value of serum HBcAb measurement, these findings should be supplemented with the use of examination of liver biopsies to provide information on the histological response.

In conclusion, the findings of this study have shown that in CHB patients with HVL treated with NUCs, a baseline serum HBcAb level $>4.375 \log_{10} \text{IU/mL}$ was predictive for HBeAg seroconversion.

Acknowledgments

This study was supported by grants from Bristol-Myers Squibb and the Chinese Foundation for Hepatitis Prevention and Control (GHF 20116206). We want to thank Dr Yegui Jiang for providing the participants from Southwest Hospital, Third Military Medical University; Dr Yonghong Zhang for providing the participants from Second Xiangya Hospital, Central South University, and Dr Fangfang Lv for providing the participants from Sir Run Run Shaw Hospital, Zhejiang University.

The abstract of this paper was presented at the 26th Annual Conference of APASL (February 15–19, 2017, Shanghai) as an abstract presentation with interim findings. The poster’s abstract was published in Abstracts of the 26th Annual Conference of APASL, February 15–19, 2017, Shanghai, China. *Hepatol Int*. 2017;11(Suppl 1).

Disclosure

The authors report no conflicts of interest in this work.

References


Supplementary materials

Figure S1. Additional performance validation of the double-sandwich anti-HBc assay.

Notes: (A) Reproducibility of the HBcAb assay. (B) Correlation analyses of the results obtained from two independent quantitative HBcAb measurements for 80 chronic hepatitis B serum specimens.

Abbreviations: Con.c, concentration; CV, coefficient of variation.

Figure S2. Correlation between the baseline HBcAb level and ALT.

Note: The baseline HBcAb level was positively associated with ALT ($R = 0.174, P = 0.0127$).
Figure S3 Measurement of serum HBcAb levels in patients with chronic hepatitis B virus infection with different ALT levels, separated as four strata (ALT <2 ULN n = 4, 2 ULN ≤ ALT <5 ULN n = 24, 5 ULN ≤ ALT <10 ULN n = 37, 10 ULN ≤ ALT n = 9). The serum HBcAb levels in patients who had elevated ALT levels more than 5 × ULN were significantly greater than in those who had lower elevated levels (4.25 ± 0.61 vs. 3.94 ± 0.47 log10 IU/mL, P = 0.0345).

Abbreviation: ULN, upper limit of normal.