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Purpose: Despite the numerous reports on biological syntheses of silver nanoparticles (AgNPs), 

little is known about the composition of their capping agents, protein corona of plant extract-

mediated synthesis, and their influence on the properties of AgNPs. Here, orange (Citrus sinensis) 

waste was utilized as a source of an extract for AgNP synthesis (the protein corona composi-

tion of which was elucidated), and also as a starting material for hesperidin and nanocellulose 

extraction, which were used for bio-based AgNP synthesis. A comparison of the results using 

the two methods of synthesis is presented.

Methods: AgNPs were synthesized using orange (C. sinensis) peel extract ( Or-AgNPs) in a 

biological route, and using hesperidin (Hsd-AgNPs) and nanocellulose (extracted from oranges) 

in a green chemical route. Characterization of nanoparticles was carried out using zeta potential 

and hydrodynamic size measurements, transmission electron microscopy, and X-ray diffrac-

tion. Elucidation of proteins from protein corona was performed via ultra performance liquid 

chromatography-tandem mass spectrometer experiments. Antimicrobial activity was assessed 

via minimum inhibitory concentration assays against Xanthomonas axonopodis pv. citri (Xac), 

the bacterium that causes citric canker in oranges.

Results: Or-AgNPs were not completely uniform in morphology, having a size of 48.1±20.5 nm 

and a zeta potential of −19.0±0.4 mV. Stabilization was performed mainly by three proteins, which 

were identified by tandem mass spectrometry (MS/MS) experiments. Hsd-AgNPs were smaller 

(25.4±12.5 nm) and had uniform morphology. Nanocellulose provided a strong steric and electro-

static (−28.2±1.0 mV) stabilization to the nanoparticles. Both AgNPs presented roughly the same 

activity against Xac, with the minimum inhibitory concentration range between 22 and 24 μg mL−1.

Conclusion: Despite the fact that different capping biomolecules on AgNPs had an influence on 

morphology, size, and stability of AgNPs, the antibacterial activity against Xac was not sensitive 

to this parameter. Moreover, three proteins from the protein corona of Or-AgNPs were identified.

Keywords: silver nanoparticles, orange peel, Citrus sinensis, Xanthomonas, hesperidin

Introduction
The fast development of nanomaterials in the quest for green, eco-friendly routes 

for new products often culminates in the utilization of microorganisms1 and plant 

biomasses for the manufacture of sustainable nanocomposites2,3 and nanoparticles,4–6 

which are frequently used in biological approaches.7 In this scenario, the sweet orange 

(Citrus sinensis) presents various possibilities of biomass utilization since, after juice 

extraction, the remaining 50% of the fruit material is composed of peel, albedo, seeds, 
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and bagasse.8 This biomass is rich in bioflavonoids, insoluble 

(22.9%) and soluble fibers (18.6%), as well as proteins (4%),9 

all of which have potential applications in nanobiotechnol-

ogy, such as in the synthesis of silver nanoparticles (AgNPs).

Many biological routes of AgNPs synthesis have been 

reported using plant extracts, such as oranges,10,11 lemons,12 

pepper,13 red cabbage,14,15 Aloe vera,16 Nigella sativa,17 

Pulicaria glutinosa,18 Justicia glauca,19 Mimusops elengi 

L.,20 and coffee.21 However, in most cases, a deep character-

ization of the biomolecule coating is not made. It is known 

that the reducing agents may include flavonoids, membrane 

proteins, NAD(P)+ reductases, dehydrogenases, citric acid, 

polyphenols, and secondary metabolites,22 whereas the cap-

ping agents may be extracellular proteins, enzymes, peptides, 

and tannic acids.23 Previous studies by our research group 

have already elucidated the protein involvement in AgNPs 

synthesis using fungi, which happens through nitrogen- and 

sulfur-containing groups,24,25 but no reports on protein identi-

fication in plant-mediated AgNPs synthesis have been made 

so far. The protein corona is known to be constituted by a soft 

corona and a hard corona, which have distinct dissociation 

constant values.26 Moreover, it has a large influence on silver 

ion release27 and nanoparticle internalization,28 which are 

processes intrinsically related with the antibacterial proper-

ties of AgNPs. Knowing the composition and properties of 

the components involved in plant extract-mediated AgNPs 

syntheses could complement the research field and provide 

insights into protein corona composition and kinetics, which 

could lead to a tailored, scaled-up, industry-oriented process.

On the other hand, carbohydrate-stabilized nanoparticles 

usually involve carboxymethyl polysaccharide29,30 and can 

also be made via biogenic synthesis.31,32 Nevertheless, very 

few reports have been performed on AgNPs stabilized by 

nanocellulose.33 This material can be extracted from various 

types of biomasses, including oranges,34 and presents a great 

potential as a renewable nanomaterial owing to its sustainabil-

ity, high versatility (in the form of nanofibrils, nanowhiskers, 

or nanocrystals), and ease of extraction.

In this paper, orange waste is used to provide distinct 

capping compositions (protein, nanocellulose) to in situ 

synthesized AgNPs to evaluate the effects of distinct surface-

bound biomolecules on the size, morphology, and antibacte-

rial activity of the nanoparticles. For the biological route, 

the composition of the protein corona is elucidated. The 

nanoparticles were assessed regarding their antimicrobial 

potential against Xanthomonas axonopodis pv. citri (Xac), 

the bacterium responsible for the citrus canker disease, often 

observed in oranges.35 Xac causes extensive damage to orange 

production and hence the agricultural economy especially 

in Brazil, where the citriculture is extremely significant.36 

Thus, this study aims to show sustainable alternatives of new 

antimicrobial products based on nanomaterials by utilizing 

orange waste to produce AgNPs that are active toward a 

phytopathogen that affects orange plantations.

Materials and methods
Solvents and silver nitrate were purchased from Labsynth® 

and the reagents used for the culture media were purchased 

from Neogen Corporation, except for the ampicillin salt, 

which was purchased from Sigma-Aldrich.

Preparation of orange peel extract
Fresh orange peel was collected from local establishments 

after the juice extraction. The peel was washed with water and 

cut into small pieces (~0.5 cm2). Fifty gram of fresh orange 

peel was added to 800 mL of water in a 1 L conical flask 

and heated up to ebullition under vigorous stirring. Once the 

solution reached boiling point, the heating was ceased and 

the mixture was filtered by simple filtration to remove coarse 

pieces of peel. Following this, a second filtration step was 

performed using an MF-MilliPore™ membrane filter with 

0.22 μm pores under vacuum. The resulting pale-yellow 

solution was then stored at −20°C for up to a week.

Syntheses of AgNPs using orange peel 
extract
A solution of AgNO

3
 1 mmol L−1 was prepared and added to 

the orange peel extract in a ratio of 1:1 (v:v). The resulting 

solutions were protected from light with aluminum foil and 

mixed in a platform shaker for 2 h before resting.

Extraction of hesperidin from orange 
peel
The extraction procedure of hesperidin from the orange peel 

was adapted from the one reported by Ikan.37 Orange peel 

(C. sinensis) was placed in the oven for 16 h at 60°C and 

consequently ~50 g of dry peel was inserted in a Soxhlet 

extractor. Diethyl ether (250 mL) was used for extraction dur-

ing 1.5 h to eliminate undesirable products such as essential 

oils. Then, methanol (250 mL) was used for extraction during 

4 h. The methanol solution was cooled and evaporated under 

vacuum, yielding a thick brownish liquid. To this viscous 

liquid, 50 mL of 6% acetic acid was added under stirring. 

An orange-yellow precipitate became visible, which was 

separated from the solution using a Büchner funnel under 

vacuum. The solid was dried for 2 h at 60°C and allowed 
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to cool to the room temperature before weighting. For the 

recrystallization step, dimethyl sulfoxide was used to make 

a 20% (w:v) solution of hesperidin. The same volume of 

distilled water was added carefully under stirring; then, the 

formation of pale-yellow crystals was visible. The solution 

was left at 4°C for several hours allowing crystallization to 

occur, followed by centrifugation for 5 min at 5000 rpm, 

washing with cold distilled water and drying under vacuum 

in a Büchner funnel resulting in pale-yellow pure crystals 

of hesperidin. The solid was dried for 2 h at 60°C, cooled to 

room temperature, and weighted.

Extraction of nanocellulose from orange 
bagasse
Industrial orange bagasse was stirred in boiling HCl 0.05 mol 

L−1 for 1 h (17 g for 50 mL) to remove pectin. The solid was 

isolated by filtration, washed with water, and then hydrolyzed 

for 20 min in a NaOH 3% solution at 1 atm and 120°C in an 

autoclave. The solid was bleached twice with NaClO
2
 3% at 

70°C, pH 4.5 for 30 min and the solid was filtered, washed 

with hot water, and dried under vacuum in a Büchner fun-

nel. An aqueous suspension of microfibrillated cellulose was 

sonicated for 5 min in an ultrasonic processor with a tip for 

complete dispersion of the solid, yielding a suspension of 

nanofibrillated cellulose.

Syntheses of AgNPs using hesperidin and 
nanocellulose
This procedure was adapted from the one described by 

Lokanathan et al.33 A solution containing equal volumes 

of AgNO
3
 (1 mmol L−1) and nanocellulose extracted from 

orange bagasse (0.01%) was sonicated in a sonication bath 

for 15 min and filtered using a 0.22 μm pore sized filter to 

eliminate macroscopic particles. Then, a solution of 2.0 mg 

mL−1 hesperidin in NaOH (0.1 mol L−1) extracted from orange 

peel was added to the silver salt solution dropwise under 

stirring. The proportion used for silver nitrate, nanocellu-

lose, and hesperidin solutions was 2:2:1 (v:v:v). An orange 

color appeared after a few minutes, indicating formation of 

nanoparticles. Once the formation was complete, nanopar-

ticles were washed by ultracentrifugation at 14,000 rpm for 30 

min and suspended in water. This procedure lowered the pH to 

neutral and eliminated residual hesperidin from the solution.

Characterization techniques
UV–visible spectroscopy
All spectra were obtained using a UV–vis HP8453 spectro-

photometer from solutions placed in quartz cuvettes with a 

path length of 10 mm. The spectra were taken in the range 

from 300 to 700 nm. The blank solutions were always prepared 

using the same reagents but substituting the silver nitrate 

solution for distilled water. For the kinetic studies, a Peltier 

Temperature Controller was coupled to the spectrometer in 

order to maintain the temperature at 25°C over 48 h with one 

spectrum/30 min (orange peel extract AgNPs) or over 2 h 

with one spectrum/5 min (hesperidin/nanocellulose AgNPs).

Infrared spectroscopy
Spectra were obtained in an Agilent CARY 630 Fourier-

transformed infrared (FTIR) spectrophotometer, from 4000 

to 400 cm−1, 64 scans, and a resolution of 4 cm−1. Orange 

peel extract and the corresponding AgNPs suspensions were 

previously lyophilized. Before freeze-drying, the AgNPs 

suspension was centrifuged three times at 5000 rpm for 30 

min, removing the supernatant every time and redissolving 

the precipitated nanoparticles in half of the original volume. 

This procedure was necessary to remove biomolecules that 

were not attached to AgNPs and that could mask relevant 

bands in the spectrum.

Raman scattering
A Horiba T64000 Raman spectrometer was used for the 

analyses with the 632.8 nm laser in the range from 100 to 900 

cm−1. A Micro Raman XploRa was used to obtain spectra with 

the 785 nm laser between 100 and 4000 cm−1. A sample of 

orange peel extract AgNPs was freeze-dried prior to analysis.

Zeta potential and dynamic light scattering
All the data were acquired in a Zetasizer Nano ZS ( Malvern 

Instruments Corp., Malvern, UK) analyzer. Both Zeta 

potential and size measurements were made at 25°C using a 

disposable folded capillary cell DTS1070 and running three 

manual measurements with 15 scans each.

X-ray diffraction
The analyses were performed in a DRX7000 Shimadzu using 

a copper target with Kα=1.54 Å, 40 kV, 30 mA, in a range 

covering from 2θ=30° to 80°, with a rate of 2° per minute. 

The samples were previously lyophilized.

Transmission electron microscopy
AgNPs suspensions were diluted in deionized water 1:3 (v:v) 

and then dried overnight on the sample holder. Analyses 

were carried out in a Carl-Zeiss Libra 120 microscope using 

HV=80 kV. Particle counting was done with ImageJ software 

(National Institutes of Health).
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Inductively coupled plasma optical emission 
spectroscopy
This technique was utilized to assess the yield of the AgNPs 

syntheses. Samples of both types of AgNPs, washed (cen-

trifugation at 14,000 rpm for 30 min at 25°C; dispersion 

in distilled water) and unwashed, were used. A measured 

quantity of 500 μL of the sample was digested with 500 μL 

of HNO
3 
(conc.) for 16 h period. Then, each solution was 

diluted to 10.0 mL with ultrapure water, and the concentra-

tion of silver ions was detected using Perkin Elmer–Optima 

8300 equipment. The calibration curve was made using an 

Ag standard solution in 2%–5% HNO
3
. The yield of the 

process was calculated as the ratio between the quantity of 

silver detected in the washed samples and the quantity of 

silver in the unwashed samples.

Mass spectrometry
This procedure was optimized from the one described by 

Aragão et al.38 The orange peel extract AgNPs suspen-

sion (Or-AgNPs) was first washed by ultracentrifugation 

(14,000 rpm, 30 min, 25°C) and redispersed in 1/10 of the 

original volume to remove unbound proteins. Digestion 

was carried out using a standard protocol using trypsin 

enzyme (Sequencing Grade Modified Trypsin, Promega). 

Isolation of peptides was then performed using a standard 

procedure for solid phase extraction using acetonitrile (1% 

formic acid). The resulting solution was then concentrated 

by vacuum centrifugation and solubilized in 8 μL of water 

containing 1% formic acid prior to ultra performance liquid 

chromatography-tandem mass spectrometer (UPLC-MS/

MS) analysis. An aliquot of 4.5 μL of proteins resulting 

from peptide digestion was separated by C18 (100 and 

6100 mm) RP-nanoUPLC (nanoAcquity, Waters) coupled 

with a Q-Tof Premier mass spectrometer (Waters) with a 

nanoelectrospray source at a flow rate of 0.6 mL min−1. The 

gradient was 2%–90% acetonitrile in 0.1% formic acid over 

90 min. The nanoelectrospray voltage was set to 3.5 kV, 

with a cone voltage of 30 V, and the source temperature 

was 100°C. The instrument was operated in the “top three” 

mode, in which one MS spectrum is acquired followed by 

MS/MS of the top three most-intense peaks detected. After 

MS/MS fragmentation, the ion was placed on exclusion 

list for 60 s. For data analysis, the spectra were acquired 

using software MassLynx v.4.1 and the raw data files were 

converted to a peak list format (mgf) without summing 

the scans by the software Mascot Distiller v.2.3.2.0, 2009 

(Matrix Science Ltd.) and searched against the database 

C. sinensis 2017 (88,146 sequences, 36,207,566 residues) 

using Mascot engine v.2.3.01 (Matrix Science Ltd.), with 

carbamidomethylation as fixed modifications, oxidation of 

methionine as variable modification; one trypsin missed 

cleavage and a tolerance of 0.1 Da for both precursor and 

fragment ions.

Bioinformatics
The server I-TASSER was used for protein structure predic-

tion, followed by RasMol (v. 2.5.7.2.) for protein modeling. 

The metaserver COACH was used for function prediction, 

and BLAST (Basic Local Alignment Search Tool–National 

Center for Biotechnology Information) was utilized for 

sequence alignments.

Bacterial culture
Strain 306 of Xanthomonas axonopodis pv. citri (Xac) was 

cultivated in solid culture medium containing 5 g L−1 yeast 

extract, 10 g L−1 peptone G, and 15 g L−1 agar. The culture 

medium was sterilized in an autoclave for 15 min at 1 atm and 

120°C and ampicillin was added in a water:ethanol (1:1, v:v) 

solution so that the final concentration would be 50 μg mL−1. 

After inoculation, the agar plate was incubated at 35°C for 

24 h. A liquid culture medium (100 mL) was prepared using 

the same compounds (excluding agar) in which one isolated 

colony from the solid bacterial culture was introduced. The 

liquid culture was grown over 20 h at 200 rpm and 32°C in 

an orbital shaker.

MIC assay
The overnight culture, whose absorbance at 600 nm (A

600
) 

was measured, was diluted to 0.1 (~108–1010 CFU mL−1) 

using sterile NaCl (0.9%) solution. The culture medium 

containing antibiotic (without inoculum) was also used, 

as well as the stock AgNPs suspensions. Using a 96-well 

plate, dilutions of the AgNPs stock suspension were made 

using the sterile culture medium (50, 40, 30, 25, 20, 25, 

10, 5, and 1 μg mL−1) in such way that the final volume 

would be 200 μL, with the posterior addition of 50 μL of 

the inoculum suspension. Moreover, a positive control (100 

μL inoculum+100 μL sterile culture medium) and a negative 

control (100 μL inoculum+100 μL AgNPs suspension) were 

also prepared. All the wells of every row were used for the 

same AgNPs concentration or purpose, and the procedure 

was done in triplicate. The plates were incubated at 35°C 

for 48 h, and then the reading was performed both by visual 

verification of turbidity and by a 96-well plate absorbance 

reader (Molecular Devices SpectraMax® M2; Figure S1). 

Following  completion of this process, a second round of 
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minimum inhibitory concentration (MIC) assays was per-

formed expanding a small AgNPs concentration range that 

comprises the MIC in order to obtain a better accuracy of 

these values.

Results and discussion
Bio-based syntheses using citrus waste 
and AgNPs characterization
AgNPs were synthesized using aqueous orange (C. sinensis) 

peel extract mixed with a silver nitrate solution (Or-AgNPs) 

(Figure 1). The pale-yellowish extract started changing to 

an orange-yellow color as the reaction proceeded and ulti-

mately turned to a dark-orange color after ~5 h (Figure 1A). 

The reaction was monitored by UV–Vis spectroscopy over 

the course of 48 h in order to study the kinetics of the reac-

tion (Figure 1B). The surface plasmon resonance (SPR) 

absorption band was shifted from 430 to 449 nm over the 

course of 48 h, suggesting that nanoparticles grew in size 

during this period. The nanoparticle formation was fast-

est during the first 5 h of the reaction, and then became 

gradually slower (Figure 1C). The reaction was performed 

at room temperature, as a temperature higher than 30°C 

was shown to induce fast formation and aggregation of 

nanoparticles (as seen in preliminary tests). The pH of the 

orange extract (usually situated between 4 and 5) is opti-

mal for the synthesis, as values of pH above 7 also induce 

aggregation, easily seen with a color change. Similarly, 

preliminary tests showed that a more concentrated extract 

as well as a more concentrated silver salt solution leads to 

nanoparticle coalescence.

Figure 1 UV–Vis absorption spectrum of Or-AgNPs after 48 h of reaction displaying the characteristic surface plasmon resonance band at 449 nm. In detail, the photographic 
image of the extract (left) and the corresponding AgNPs suspension (right) (A). The kinetic progression of the Or-AgNPs reaction during the 48 h monitored setting the 
absorbance at 430 nm (B). UV–Vis absorption spectrum of Hsd-AgNPs after 2 h of reaction displaying the characteristic surface plasmon resonance band at 411 nm. In detail, 
the photographic image of the AgNPs suspension (C). The kinetic progression of the Hsd-AgNPs reaction during the 2 h monitored setting the absorbance at 411 nm (D).
Abbreviations: AgNPs, silver nanoparticles; AU, arbitrary unit; Hsd, hesperidin; Or, aqueous orange; UV-vis, ultraviolet-visible.
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Hesperidin had been used as a suitable reduction agent 

for the production of gold39 and silver nanoparticles.40,41 

Here, AgNPs synthesized via reduction with hesperidin and 

stabilized with nanocellulose (Hsd-AgNPs) were produced 

within 2 h in alkali medium (Figure 1D; Figure S2), and 

yielded a clear yellow suspension with SPR band located at 

411 nm (Figure 1C), with no significant shifts. This reaction 

was more sensitive to the silver salt and hesperidin concen-

trations, as it occurred more quickly when compared with 

the extract-mediated synthesis. The pH was around 12.0, as 

the hesperidin molecule needed to be deprotonated in order 

to be soluble in water. High temperature (>30°C) was again 

shown as a factor that induces aggregation.

The size distributions of the nanoparticles were first 

determined using dynamic light scattering (DLS). For Or-

AgNPs, DLS analysis showed nanoparticles with an average 

hydrodynamic diameter of 239±1 nm, with a polydispersity 

(PdI) of 0.287, while for Hsd-AgNPs, the mean diameter 

calculated was significantly smaller (100±39 nm). The zeta 

potential of dispersion refers to the electrostatic voltage at the 

shear layer of a nanoparticle. In this AgNPs system, the zeta 

potential for Or-AgNPs was −19.0±0.4 mV. Usually, a colloid 

system would be considered electrostatically stable when its 

zeta potential values are above +30 mV or below –30 mV. In 

this case, the dispersion was stable for over 3 months as the 

stabilization involved not only electrostatic interactions, but 

also steric hindrance provided by biomolecules that inter-

acted with the nanoparticles acting as physical barriers that 

avoid the coalescence and aggregation of the nanoparticles. 

In the case of Hsd-AgNPs, the zeta potential of −28.2±1.0 

mV indicates a rather strong electrostatic stabilization pos-

sibly caused by negative charges located in the nanocellulose 

layer. The nanocellulose is also a physical barrier that avoids 

coalescence, maintaining the system stable for over a year.

Both types of nanoparticles had their yields determined 

by inductively coupled plasma optical emission spectros-

copy quantification. The chemical synthesis of Hsd-AgNPs 

had a slightly superior silver conversion when compared 

with Or-AgNPs (99% and 83%, respectively). This result is 

somewhat expected as the chemical route allows the addition 

of the reducing agent in excess, whereas the biological route 

does not permit a proper estimation of the concentration of 

reducing agents (without a prior analysis, using liquid chro-

matography, for instance), and therefore, it is not possible 

to purposely induce complete conversion of silver ions to 

elemental silver at the moment of the reaction setup.

The X-ray diffraction spectra of Or-AgNPs and Hsd-AgNPs 

were obtained as seen in Figure 2 A–F. The strongest peak at 

38.1° refers to the (111) plane of the lattice. The peaks at 44.4°, 

64.6°, and 77.4°correspond to the (200), (220), and (311) 

planes, respectively. This pattern confirms the face- centered 

cubic lattice, typical for AgNPs in both cases.42 Despite the fact 

that in several biogenic AgNPs syntheses there is a concomitant 

formation of AgCl nanoparticles,43 the diffraction pattern did 

not show data of Ag/AgCl nanoparticle system.44

The AgNPs were also analyzed under the Transmission 

Electronic Microscope (Figure S2 and Figure 2B, C, E, F), 

and it was observed that the average metallic diameter of 

the nanoparticles was significantly smaller when compared 

with the hydrodynamic diameter obtained by DLS: 48.1±20.5 

nm for Or-AgNPs and 25.4±12.5 nm for Hsd-AgNPs. The 

morphology of Or-AgNPs is not well defined, which can be 

explained by the multiple reduction routes that silver ions 

can find in a rich solution containing various reducing agents, 

such as ascorbic acid, fumaric acid, citric acid, as well as the 

antioxidant flavonoids hesperidin, naringin, and diosmin. On 

the other hand, the green chemical route using only hesperidin 

and nanocellulose yielded spherical, smaller nanoparticles, 

with a higher control of the morphology.

The process of stabilizing AgNPs leads to the fact that 

electron-rich elements such as nitrogen, sulfur, and even 

oxygen establish a chemical bond with the silver atoms. 

Distinct organic capping may result in distinct forms of 

interaction of the nanoparticle surface. In Figure 3A, the 

absorption band at 1598 cm−1 in the extract FTIR spectrum 

is shifted to 1637 cm−1 upon nanoparticles formation. This 

band can be assigned as the amide I band, which corre-

sponds to the C=O stretching and is usually set around 1650 

cm−1 and is highly influenced by the secondary structure 

of the protein.45 The amide III band, which relates to the 

in-phase coupling of N–H bending and C–N stretching, 

is a broad region (1400–1200 cm−1) that is also intrinsi-

cally related to the secondary structure of proteins. In the 

extract spectrum, the amide III band is set at 1259 cm−1, 

which is then shifted to 1243 cm−1 with AgNPs formation. 

This highlights that the nitrogen atom may be involved 

in the AgNPs stabilization, since the electron donation 

from it to silver atoms would preclude the classic amide 

resonance. A decrease in bond strength could then lead to 

a shift to smaller wavenumbers. These data suggest that 

the biomolecule coating that stabilizes biogenic Or-AgNPs 

may interact with the silver atoms through nitrogen atoms 

coming from amide bonds, which are most probably pres-

ent in proteins.

Conversely, the green chemical synthesis of Hsd-AgNPs 

resulted in a completely different infrared absorption 
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 spectrum (Figure 3B). The split band typical of the carbonyl 

group from the hesperidin structure found at 1647 and 

1606 cm−1 is not present in the Hsd-AgNPs, confirming the 

chemical reaction. The nanocellulose spectrum displays C–O 

stretching band at 1021 cm−1, which is shifted to 1034 cm−1 

after Hsd-AgNPs formation, which could suggest an interac-

tion between the cellulose chains with the metallic surface.

It is already well known that in biological media, nanopar-

ticles eventually accumulate proteins on their surface forming 

what is called a protein corona. In biological synthetic routes 

of AgNPs formation, proteins have also been assigned as 

main stabilizers of the nanoparticles. However, there is lack of 

reports on protein corona formation in AgNPs synthesis using 

plant extracts. Considering that oranges have a rather high 

content of proteins in their constitution, a deeper analysis was 

made regarding not only the mode of interaction but also the 

identity of some proteins involved in Or-AgNPs stabilization.

Raman spectra using 632.8 and 785 nm lasers were obtained 

in analyses using a freeze-dried Or-AgNPs suspension. In 

 Figure 4A, an intense peak is seen at 231 cm−1, which is related 

to the Ag–S bond, suggesting that thiol groups coming from 

cysteine residues may be linked to the stabilization of the AgNPs 

dispersion. A weak broad region between 655 and 700 cm−1 

contains the band corresponding to C–S stretching, in this case 

associated with cysteine residues.46,47 A weak band at 1285 cm−1 

(Figure 4B) can be related to an amide III band, whereas the 

sharp band over 587 cm−1 has its closest assignment to a disul-

fide S–S bond deformation, even though this vibration usually 

appears in a lower wavenumber range (499 to 553 cm−1).48

In order to identify which proteins are bound to the 

nanoparticles surface, UPLC-MS/MS analysis was carried 

out. Three proteins were identified via detection of main 

fragments and matching with MASCOT server, followed 

by protein structure prediction using the I-TASSER server 

( Figure 5). None of them have yet been characterized 

empirically; one is hypothetical and the other two have 

been assigned to predicted functions. The molecular masses 

varied from 10 to 39 kDa, and all the three proteins are rich 

in cysteine residues, which contributes to the hypothesis of 

interaction via sulfur-containing groups.

Figure 2 X-ray diffraction pattern of orange peel extract AgNPs (A); images of orange peel extract AgNPs obtained by TEM (B and C); X-ray diffraction pattern of 
hesperidin/nanocellulose AgNPs (D); images of hesperidin/nanocellulose AgNPs obtained by TEM (E and F).
Abbreviations: AgNPs, silver nanoparticles; AU, arbitrary unit; TEM, transmission electron microscopy.
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The gene germin-like protein (Accession number 

XP_006479011.1) is known for having oxalate oxidase activ-

ity in plants and is traditionally linked to plant development. 

Currently, this protein superfamily is also linked to disease 

resistance, as it is responsible for the conversion of oxalic 

acid into H
2
O

2
 and CO

2
. Hydrogen peroxide has the function 

of mediating cross-link reactions in the cell wall, reinforcing 

its structure.49 However, a study has revealed that the coding 

gene of germin-like protein in C. sinensis is downregulated 

in plants infected with Xylella fastidiosa, which could lead 

to reduction in growth and development.50

The predicted homolog protein IN2-1 B-like (Acces-

sion number XP_006471422.1) has a large identity (99%) 

and coverage (88%) when compared with glutathione 

 S-transferase L3-like protein. The function prediction per-

formed by the COACH metaserver also indicates glutathione 

as the most probable ligand of this protein. In plants, the 

glutathione S-transferase is the enzyme responsible for the 

conjugation of glutathione with electrophilic xenobiotics, 

thus being associated with plant defense against diseases 

as the expression levels of glutathione S-transferase raises 

significantly after exposure to stress.51 Lo Piero et al isolated 

cDNA and genomic clones of glutathione S-transferases from 

C. sinensis L. Osbeck, suggesting the most probable role of 

vacuolar import of anthocyanin.52

The hypothetical protein CISIN_1g014537 (Accession 

number KDO42750.1) also had its function predicted by 

the COACH metaserver, following molecular structure 

prediction. The highest similarity template protein is an 

aspartic-type endopeptidase (PDB entry: 1OD1A), which is 

a common protein type found in plants. This enzyme is a pro-

tease with an aspartate residue in the binding site that binds 

Figure 3 Comparison of FTIR spectra of freeze-dried samples of orange peel 
extract and Or-AgNPs (A) and Hsd-AgNPs (B).
Abbreviations: AgNPs, silver nanoparticles; AU, arbitrary unit; FTIR, Fourier-
transformed infrared spectroscopy; Hsd, hesperidin; Or, aqueous orange.
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to an activated water molecule, promoting the hydrolysis of 

a peptide chain in acidic environment.53 Its tertiary structure 

comprises mostly β-strands and low α-helix content.54 Not 

much is known about the biological functions of this enzyme, 

although some studies have suggested protein degradation 

and viral polyprotein processing.55 However, in citrus plants, 

this enzyme type has been assigned to the proteolysis of 

ribulose-1,5-biphosphate carboxylase/oxygenase, which is a 

protein known for nitrogen storage in plants during growth 

stages of new organs.56

Minimum inhibitory concentration assay
There are many possible explanations for the antimicrobial 

activity of AgNPs, all of which can contribute to the anti-

microbial action.57 Le Ouay and Stellacci58 state that there 

are two steps in the mode of action of AgNPs. The first step 

comprises the physical and chemical modifications that occur 

in the system that affect the metal availability, whereas the 

second step is related to the actual interactions that take place 

between AgNPs and the bacterial cell. Regarding the first 

step, in interactions where proteins (Or-AgNPs) or carbohy-

drates (Hsd-AgNPs) are involved, the preexistence of capping 

agents avoids the attachment of new biomolecules present in 

the medium directly onto the nanoparticles’ surface. However, 

protein–protein, protein–peptide, carbohydrate–protein, and 

carbohydrate–peptide interactions may occur via adsorption, 

modifying the original biomolecules capping.59 The newly 

formed corona is then the portion of the nanoparticle complex 

that gets in contact with the bacterial cells. The second step 

involving the actual interactions between the metal and the 

bacterial surface is highly dependent on the bacterium Gram 

type. Xac is a Gram-negative bacterium and therefore pos-

sesses an outer membrane that is lacking in Gram-positive 

bacteria. This outer membrane is crucial in the selective 

permeability of the cell. Studies have shown that in the 

presence of AgNPs, Gram-negative bacteria have their outer 

membrane selectivity modified, with the subsequent intake 

of AgNPs that could then interfere with enzymes involved in 

the respiratory chain of the cell.60 Additionally, AgNPs may 

cause the appearance of “pits” on the cell membrane and 

accumulation on its surface.61 Another possible mechanism 

involves the release of silver ions; Feng et al62 state that 

the presence of these ions on the bacterial cell wall surface 

shrank or detached the membrane from the cell wall and they 

invaded the cell. Moreover, silver ions can either interact with 

thiol groups from proteins, inactivating them, or can interact 

with DNA, arresting its replication ability. However, in the 

presence of biomolecule capping, this mechanism is hindered 

by the interaction between the newly released silver ions and 

the capping agents.27

Figure 5 Proteins identified as capping agents in Or-AgNPs in UPLC-MS/MS experiments, with tridimensional structures predicted by I-TASSER server.
Abbreviations: AgNPs, silver nanoparticles; Or, aqueous orange; UPLC-MS/MS, ultra performance liquid chromatography-tandem mass spectrometer.
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In this case, both types of AgNPs were able to inhibit Xac 

growth in low concentrations: 22±2 μg mL−1 for Or-AgNPs 

and 24±2 μg mL−1 for Hsd-AgNPs. The very similar values 

of MICs reveal that the biomolecule coating has little to no 

effect on the bacteriostatic effect. Both the nanoparticles 

stabilized mainly by proteins (Or-AgNPs) and nanocellulose 

(Hsd-AgNPs) have similar actions, even when considering the 

smaller size of Hsd-AgNPs. Previous studies of the group24,25 

have already reported on the biosynthesis of AgNPs from 

fungi and MIC value against Xac, which was lower (6.55±0.22 

μg mL−1) compared with the AgNPs reported here. The bac-

terium Xanthomonas perforans, which affects tomato crops, 

was also shown to be susceptible to silver in the form of a 

silver–DNA–graphene oxide nanocomposite (Ag@dsDNA@

GO) at 100 ppm during in vivo assays.63,64 It is worth noting 

that, despite the fact the orange extracts are known for con-

taining antibacterial compounds themselves,65–67 this extract 

was unable to inhibit Xac growth in MIC assays mimicking 

the same conditions used for the AgNP suspensions.

Conclusion
Although the Or-AgNPs have a rather simple synthetic 

procedure and are more environmental friendly, the reaction 

is not easy to be controlled due to the existence of many 

biomolecules in solution that can interfere in the synthesis, 

which leads to an average reproducibility. On the other hand, 

Hsd-AgNPs are more laborious to produce (having seen all 

the extraction steps for both hesperidin and nanocellulose), 

but the nanoparticles are smaller and more homogeneous in 

size range and shape, with a higher electrostatic stabilization.

Or-AgNPs are stabilized by proteins which were identified 

by MS/MS experiments, being one germin-like protein with 

oxalate oxidase activity, one protein with glutathione S-trans-

ferase function, and a hypothetical protein assigned to aspartic-

type endopeptidase structure and function. These proteins 

interact with AgNPs surface mainly by nitrogen-containing 

(as seen through FTIR experiments) and sulfur-containing (as 

seen through Raman scattering experiments) groups.

The antibacterial activity of both types of AgNPs is 

essentially equal, situated between 22 and 24 μg mL−1. This 

evidence can suggest that both protein and carbohydrate 

coatings enable a similar mode of action against Xac regard-

less of morphology and size of the nanoparticles. Thus, this 

study not only provides a comparison of distinct biomolecule 

coatings on nanoparticle properties using the same starting 

material but also presents a prospective method of citrus 

canker control using orange waste for the sustainable pro-

duction of AgNPs.

Acknowledgments
The authors gratefully acknowledge FAPESP, grant number: 

2015/12534-5, for the scholarship for Barros. The authors 

would like to thank the Mass Spectrometry Group from 

the Brazilian Biosciences National Laboratory for UPLC-

MS/MS analysis and for approving our proposal under 

number MAS-21531. The authors also thank the Multiuser 

Laboratory for Advanced Optical Spectroscopy (LMEOA/

IQ-UNICAMP, FAPESP grant number: 2009/54066-7). The 

authors also thank Mr Douglas Soares da Silva for conduct-

ing TEM analyses, as well as the Laboratório Multiusuários 

do Instituto de Física Gleb Wataghin (LAMULT) for the 

Raman scattering analysis using a Micro Raman XploRa 

spectrometer. Miss Danijela Stanisic is kindly acknowledged 

for her help in DLS measurements during the Or-AgNPs 

stability tests.

Author contributions
CHNB performed experiments and contributed to the article 

writing. GCFC and WM performed experiments. LT contrib-

uted to the project planning, execution, and article writing. All 

authors contributed toward data analysis, drafting and critically 

revising the paper, gave final approval of the version to be pub-

lished, and agree to be accountable for all aspects of the work.

Disclosure
The authors report no conflicts of interest in this work.

References
 1. Kiran GS, Dhasayan A, Lipton AN, Selvin J, Arasu MV, Al-Dhabi NA. 

Melanin-templated rapid synthesis of silver nanostructures. J Nanobio-
technol. 2014;12:18.

 2. Lee HV, Hamid SB, Zain SK. Conversion of lignocellulosic biomass 
to nanocellulose: structure and chemical process. Scientific World J. 
2014;2014:1–20.

 3. Tian D, Hu J, Bao J, Chandra RP, Saddler JN, Lu C. Lignin valoriza-
tion: lignin nanoparticles as high-value bio-additive for multifunctional 
nanocomposites. Biotechnol Biofuels. 2017;10:19.

 4. Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP. Green silver 
nanoparticles of Phyllanthus amarus: as an antibacterial agent against 
multi drug resistant clinical isolates of Pseudomonas aeruginosa. J 
Nanobiotechnol. 2014;12:40.

 5. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract 
mediated synthesis of silver nanoparticles for antimicrobial applications: 
a green expertise. J Adv Res. 2016;7:17–28.

 6. Duman F, Ocsoy I, Kup F. Chamomile flower extract-directed CuO 
nanoparticle formation for its antioxidant and DNA cleavage properties. 
Mater Sci Eng C. 2016;60:333–338.

 7. Jewett MC, Patolsky P. Nanobiotechnology: synthetic biology meets 
materials science. Curr Opin Biotechnol. 2013;24:551–554.

 8. Saenz C, Estevez AM. Utilización de residuos de la indústria de 
jugos de naranja como fuente de fibra dietética en la elaboraición de 
alimentos [Utilization of residues from the orange juice industry as 
a source of dietary fibers in processed food]. Arch Latinoam Nutr. 
2007;57:186–191. Spanish.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Nanotechnology, Science and Applications 2018:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

11

Bio-based synthesis of silver nanoparticles from orange waste

 9. Romero-Lopez MR, Osorio-Diaz P, Bello-Perez LA, Tovar J, Ber-
nardino-Nicanor A. Fiber concentrate from orange (Citrus sinensis L.) 
bagase: characterization and application as bakery product ingredient. 
Int J Mol Sci. 2011;12(4):2174–2186.

 10. Barros Santos E, Madalossi N, Sigoli FA, Mazali IO. Silver nanopar-
ticles: green synthesis, self-assembled nanostructures and their applica-
tion as SERS substrates. New J Chem. 2015;39:2839–2846.

 11. Awad M, Hendi A, Ortashi K, et al. Silver nanoparticles biogenic syn-
thesized using an orange peel extract and their use as an anti-bacterial 
agent. Int J Phys Sci. 2014;9:34–40.

 12. Vankar P, Shukla D. Biosynthesis of silver nanoparticles using lemon 
leaves extract and its application for antimicrobial finish on fabric. Appl 
Nanosci. 2012;2:163–168.

 13. Augustine R, Kalarikkal N, Thomas S. A facile and rapid method for 
the black pepper leaf mediated green synthesis of silver nanoparticles 
and the antimicrobial study. Appl Nanosci. 2014;4:809–818.

 14. Demirbas A, Welt B, Ocsoy I. Biosynthesis of red cabbage extract 
directed Ag NPs and their effect on the loss of antioxidant activity. 
Mater Lett. 2016;179:20–23.

 15. Ocsoy I, Demirbas A, McLamore E, Altinsoy B, Ildize N, Baldemir A. 
Green synthesis with incorporated hydrothermal approaches for silver 
nanoparticles formation and enhanced antimicrobial activity against 
bacterial and fungal pathogens. J Mol Liq. 2017:238;263–269.

 16. Medda S, Hajra A, Dey U, Bose P, Mondal NK. Biosynthesis of silver 
nanoparticles from Aloe vera leaf extract and antifungal activity against 
Rhizopus sp. and Aspergillus sp. Appl Nanosci. 2015;5:875–880.

 17. Amooaghaie R, Saeri M, Azizi M. Synthesis, characterization and 
biocompatibility of silver nanoparticles synthesized from Nigella sativa 
leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol 
Environ Saf. 2015;120:400–408.

 18. Khan M, Khan M, Adil S, et al. Green synthesis of silver nanoparticles 
mediated by Pulicaria glutinosa extract. Int J Nanomed. 2013;8: 
1507–1516.

 19. Emmanuel R, Palanisamy S, Chen S, et al. Antimicrobial efficacy of 
green synthesized drug blended silver nanoparticles against dental car-
ies and periodontal disease causing microorganisms. Mater Sci Eng C. 
2015;56:374–379.

 20. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M. 
Green synthesis of silver nanoparticles from leaf extract of Mimusops 
elengi, Linn. for enhanced antibacterial activity against multi drug 
resistant clinical isolates. Colloids Surf B. 2013:108;255–259.

 21. Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B. Green 
synthesis of silver nanoparticles using Coffea arabica seed extract and 
its antibacterial activity. Mat Sci Eng C. 2016;58:36–43.

 22. Karatoprak G, Aydin G, Altinsoy B, Altinkaynak C, Koşar M, Ocsoy 
I. The Effect of Pelargonium endlicherianum Fenzl. root extracts on 
formation of nanoparticles and their antimicrobial activities. Enzyme 
Microb Technol. 2017;97:21–26.

 23. Akhtar M, Panwar J, Yun Y. Biogenic synthesis of metallic nanoparticles 
by plant extracts. ACS Sustainable Chem Eng. 2013;1:591−602.

 24. Ballottin D, Fulaz S, Cabrini F, et al. Antimicrobial textiles: biogenic 
silver nanoparticles against Candida and Xanthomonas. Mater Sci Eng 
C Mater Biol Appl. 2017;75:582–589.

 25. Ballottin D, Fulaz S, Souza ML, et al. Elucidating protein involvement 
in the stabilization of the biogenic silver nanoparticles. Nanoscale Res 
Lett. 2016;11:1–9.

 26. Durán N, Silveira C, Durán M, Martinez DST. Silver nanoparticle pro-
tein corona and toxicity: a mini-review. J Nanobiotechnol. 2015;13:55.

 27. Wen Y, Geitner NK, Chen R, et al. Binding of cytoskeletal proteins with 
silver nanoparticles. RSC Adv. 2013;3:22002–22007.

 28. Lesniak A, Fenaroli F, Monopoli M, Åberg C, Dawson KA, Salvati 
A. Effects of the presence or absence of a protein corona on silica 
nanoparticle uptake and impact on cells. ACS Nano. 2012;6:5845–5857.

 29. Garza-Navarro M, Aguirre-Rosales J, Llanas-Vázquez E, Moreno-
Cortez IE, Torres-Castro A, González-González V. Totally ecofriendly 
synthesis of silver nanoparticles from aqueous dissolutions of polysac-
charides. Int J Polym Sci. 2013;2013:1–8.

 30. Sanyasi S, Majhi R, Kumar S, et al. Polysaccharide-capped silver 
Nanoparticles inhibit biofilm formation and eliminate multidrug-
resistant bacteria by disrupting bacterial cytoskeleton with reduced 
cytotoxicity towards mammalian cells. Sci Rep. 2016;6:1–16.

 31. Sathiyanarayanan G, Seghal Kiran G, Selvin J. Synthesis of silver 
nanoparticles by polysaccharide bioflocculant produced from marine 
Bacillus subtilis MSBN17. Colloids Surf B. 2013;102:13–20.

 32. Vasquez R, Apostol J, Leon J, et al. Polysaccharide-mediated green 
synthesis of silver nanoparticles from Sargassum siliquosum J.G. 
Agardh: assessment of toxicity and hepatoprotective activity. Open 
Nano. 2016;1:16–24.

 33. Lokanathan AR, Uddin KM, Rojas OJ, Laine J. Cellulose nanocrystal-
mediated synthesis of silver nanoparticles: role of sulfate groups in 
nucleation phenomena. Biomacromolecules. 2014;15:373–379.

 34. Mariño M, Lopes da Silva L, Durán N, Tasic L. Enhanced materials from 
nature: nanocellulose from citrus waste. Molecules. 2015;20(4):5908–5923.

 35. Li N, Huang L, Liu L, Li D, Dai S, Deng Z. The relationship between 
PthA expression and the pathogenicity of Xanthomonas axonopodis pv. 
citri. Mol Biol Rep. 2014;41(12):967–975.

 36. Tasic L, Borin PF, Khater LC, Ramos CH. Cloning and characterization 
of three hypothetical secretion chaperone proteins from Xanthomonas 
axonopodis pv. citri. Protein Expr Purif. 2007;53(2):363–369.

 37. Ikan R. Natural Products: A Laboratory Guide. San Diego, CA: Aca-
demic Press; 1991.

 38. Aragão AZB, Belloni M, Simabuco FM, et al. Novel processed form of 
syndecan-1 shed from SCC-9 cells play a role in cell migration. PLoS 
One. 2012;7(8):e43571.

 39. Sierra JA, Vanoni CR, Tumelero MA, et al. Biogenic approaches 
using citrus extracts for the synthesis of metal nanoparticles: the 
role of flavonoids in gold reduction and stabilization. New J Chem. 
2016;40:1420–1429.

 40. Stephen A, Seethalakshmi S. Phytochemical synthesis and preliminary 
characterization of silver nanoparticles using Hesperidin. J Nanosci. 
2013:2013:1–6.

 41. Sahu N, Soni D, Chandrashekhar B, et al. Synthesis of silver nanopar-
ticles using flavonoids: hesperidin, naringin and diosmin, and their 
antibacterial effects and cytotoxicity. Int Nano Lett. 2016;6:173–181.

 42. Mukherjee P, Roy M, Mandal BP, et al. Green synthesis of highly 
stabilized nanocrystalline silver particles by a non-pathogenic and 
agriculturally important fungus T. asperellum. Nanotechnology. 
2008;19(7):075103.

 43. Picoli SU, Durán M, Andrade PF, Duran N. Silver nanoparticles/silver 
chloride (Ag/AgCl) synthesized from Fusarium oxysporum acting against 
Klebsiella pneumouniae carbapenemase (KPC) and extended spectrum 
beta-lactamase (ESBL). Front Nanosci Nanotech. 2016;2:107–110.

 44. Durán N, Nakazato G, Seabra AB. Antimicrobial activity of biogenic 
silver nanoparticles, and silver chloride nanoparticles: an overview and 
comments. Appl Microbiol Biotechnol. 2016;100:6555–6570.

 45. Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta. 
2007;1767:1073–1101.

 46. Dollish FR. Characteristic Raman Frequencies of Organic Compounds. 
New York, NY: Wiley & Sons; 1974.

 47. Huang GG, Han XX, Hossain MK, Ozaki Y. Development of a 
heat-induced surface-enhanced Raman scattering sensing method 
for rapid detection of glutathione in aqueous solutions. Anal Chem. 
2009;81(14):5881–5888.

 48. Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska 
M. Raman spectroscopy of proteins: a review. J Raman Spectrosc. 
2013;44:1061–1076.

 49. Çaliskan M. Germin, an oxalate oxidase, has a function in many aspects 
of plant life. Turk J Biol. 2000;24:717–724.

 50. Souza AA, Takita MA, Colleta-Filho HD, et al. Analysis of expressed 
sequence tags from Citrus sinensis L. Osbeck infected with Xylella 
fastidiosa. Genet Mol Biol. 2007;30:957–964.

 51. Edwards R, Dixon DP, Walbot, V. Plant glutathione S-transferases: 
enzymes with multiple functions in sickness and in health. Trends Plant 
Sci. 2000;5:193–198.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Nanotechnology, Science and Applications 2018:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

12

Barros et al

 52. Lo Piero AR, Puglisi I, Petrone G. Gene isolation, analysis of expression, 
and in vitro synthesis of glutathione S-transferase from orange fruit 
(Citrus sinensis L. [Osbeck]). J Agric Food Chem. 2006;54:9227−9233.

 53. Darabi M, Seddigh S. Bioinformatic characterization of aspartic prote-
ase (AP) enzyme in seed plants. Plant Syst Evol. 2015;301:2399–2417.

 54. Simões I, Faro C. Structure and function of plant aspartic proteinases. 
Eur J Biochem. 2004;271:2067–2075.

 55. Rawlings ND, Barrett AJ. Families of aspartic peptidases, and those of 
unknown catalytic mechanism. Methods Enzymol. 1995;248:105–120.

 56. Garcia-Marttnez JL, Moreno J. Proteolysis of ribiilose-l,5-bisphos-
phate carboxylase/oxygenase in Citrus leaf extracts. Physiol Plant. 
1986;66:377–383.

 57. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial 
action, synthesis, medical applications, and toxicity effects. Int Nano 
Lett. 2012;2:1–10.

 58. Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a 
surface science insight. Nano Today. 2015;10:339–354.

 59. Bertoli F, Garry D, Monopoli M, Salvati A, Dawson KA. The intracel-
lular destiny of the protein corona: a study on its cellular Internalization 
and evolution. ACS Nano. 2016:10;10471−10479.

 60. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antibacte-
rial activity and mechanism of silver nanoparticles on Escherichia coli. 
Appl Microbiol Biotechnol. 2010;85:1115–1122.

 61. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: 
a case study on E. coli as a model for Gram-negative bacteria. J Colloid 
Sci. 2004;275:177–182.

 62. Feng QL, Chen GQ, Cui FZ, Cui FZ, Kim TN, Kim JO. A 
mechanistic study of the antibacterial effect of silver ions on 
Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 
2000;52:662–668.

 63. Ocsoy I, Gulbakan B, Chen T, et al. DNA-Guided-Metal nanoparticle 
formation on graphene oxide surface. Adv Mater. 2013:25;2319–2325.

 64. Ocsoy I, Paret M, Ocsoy M, et al. Nanotechnology in plant disease 
management: DNA-directed silver nanoparticles on graphene oxide 
as an antibacterial against Xanthomonas perforans. ACS Nano. 
2013;7:8972–8980.

 65. Shetty S, Mahin-Syed-Ismail P, Varghese S, et al. Antimicrobial effects 
of Citrus sinensis peel extracts against dental caries bacteria: an in vitro 
study. J Clin Exp Dent. 2016;8(1):e70–e77.

 66. Corciova A, Ciobanu C, Poiata A, et al. Antibacterial and antioxidant 
properties of hesperidin: β-cyclodextrin complexes obtained by different 
techniques. J Incl Phenom Macrocycl Chem, 2015:81;71–84.

 67. Bevilacqua A, Corbo M, Sinigaglia M. In vitro evaluation of the 
antimicrobial activity of eugenol, limonene, and Citrus extract against 
bacteria and yeasts, representative of the spoiling microflora of fruit 
juices. J Food Prot, 2010;73:888–894.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cui%20FZ%5BAuthor%5D&cauthor=true&cauthor_uid=11033548
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20TN%5BAuthor%5D&cauthor=true&cauthor_uid=11033548
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20JO%5BAuthor%5D&cauthor=true&cauthor_uid=11033548


Nanotechnology, Science and Applications 2018:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

13

Bio-based synthesis of silver nanoparticles from orange waste

Supplementary materials

Figure S1 Example of MIC assay after incubation for 48 h at 35°C using fresh peel extract AgNPs.
Notes: The first row is a positive control, containing culture medium and the bacteria; the second row is a negative control, containing culture medium and AgNPs 
suspension; the third row contains only the stock AgNPs suspension and, from rows 12 to 4, there is a positive gradient of AgNPs concentration.
Abbreviations: AgNPs, silver nanoparticles; MIC, minimum inhibitory concentration.
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Figure S2 TEM micrographs of AgNPs: (A–D) correspond to fresh orange peel extract AgNPs; (E–H) correspond to hesperidin and nanocellulose produced AgNPs.
Abbreviations: AgNPs, silver nanoparticles; TEM, transmission electron microscopy.
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