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Background: Follistatin (Fst) promotes brown adipocyte characteristics in adipose tissues.

Methods: Abdominal fat volume (CT scan), glucose clearance (GTT test), and metabolomics 

analysis (mass spectrometry) of adipose tissues from Fst transgenic (Fst-Tg) and wild type 

(WT) control mice were analyzed. Oxygen consumption (Seahorse Analyzer) and lipidomics 

(gas chromatography) was analyzed in 3T3-L1 cells.

Results: Fst-Tg mice show significant decrease in abdominal fat content, increased glucose clear-

ance, improved plasma lipid profiles and significant changes in several conventional metabolites 

compared to the WT mice. Furthermore, overexpression of Fst in 3T3-L1 cells resulted in up 

regulation of key brown/beige markers and changes in lipidomics profiles. 

Conclusion: Fst modulates key factors involved in promoting metabolic syndrome and could 

be used for therapeutic intervention.
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Introduction
Follistatin (Fst) binds several members of the transforming growth factor-β super-

family including activins and Mst to neutralize their biological activities.1–3 Several 

genetic studies have demonstrated an essential role for Fst in skeletal muscle devel-

opment3–6; however, the role of Fst in other metabolic tissues is poorly understood. 

Fst KO pups die just after birth due to defects in musculoskeletal system4 making it 

difficult to assess the functional role of Fst in other metabolically relevant tissues. 

We utilized MEF cultures from WT and Fst KO embryos and analyzed differentially 

expressed genes and proteins.7 We demonstrated that Fst promotes “browning” of 

adipocytes, increases cellular bioenergetics through increased expression of mark-

ers for brown adipose, FA oxidation and mitochondrial markers.7 More recently, 

we have demonstrated that Fst-Tg mice have increased expression of BAT-specific 

proteins in both Epi and SC WAT and BAT when compared to WT mice. While Fst 

targets Myf5+ cells in BAT, it promotes phosphorylation of p38MAPK and ERK1/2 

in WAT to promote adipose browning.8 Activation of white adipose browning pro-

gram plays a critical role in positively regulating overall systemic metabolism as 

Epi and SC adipose tissues are the main site of energy storage and mobilization.9–13 

Biochemical changes occurring during adipose browning are linked with alteration 

in several metabolic pathways.14–15 We therefore sought to determine whether Fst 

expression regulates (in addition to browning) the metabolic repertoire of adipocytes 

and adipose tissues.
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Emerging technologies developed in recent years have 

allowed high-throughput profiling of various metabolites 

from blood and tissue specimens and have been help-

ful in predicting the risk for several diseases.16–18 These 

metabolites are particularly relevant for studying metabolic 

diseases and for prediction of potential biomarkers. Metabo-

lomics and principal component analysis have identified 

several key metabolites that showed strongest difference 

between obese and lean groups and are strong predictors 

of metabolic conditions including insulin resistance and 

glucose intolerance.17

In this study, we have performed comprehensive metabo-

lomics profiling of Epi and SC adipose tissues isolated from 

WT and Fst-Tg mice to identify key metabolites that are 

differentially present in these tissues and correlated their 

functional role in regulating various metabolic parameters. 

We demonstrated, for the first time, that Fst overexpression 

in Fst-Tg mice and in differentiating 3T3-L1 cells favorably 

alters key metabolites including BCAA and their catabolic 

pathways, carbohydrates, and lipoprotein profiles. We have 

further demonstrated that in both Tg adipose tissues and 

in differentiating 3T3-L1 cell culture models, Fst targets 

AdipoQ/FGF21/pAMPK axis which has been implicated 

as a key regulator of metabolic syndrome. Collectively, our 

data suggest that Fst favorably influences key adipose tissue 

metabolites and suggest a therapeutic role for Fst in the treat-

ment of obesity and related metabolic conditions.

Materials and methods
animals used and tissue collection
Fst-Tg expressing Fst under the control of a skeletal muscle-

specific myosin light chain promoter/enhancer3 were used for 

our experiments. Since Fst transgene in Fst-Tg was found 

to be on Y chromosome,3 all experiments were performed 

using male Fst-Tg mice and age matched control mice. Food 

consumption was monitored in alternate days and body 

weights were measured every week. Epi and SC WAT were 

harvested from 5 week’s old Fst-Tg and WT (C57BL6/J) male 

mice.3 Mice were housed at a constant temperature (68°F) 

under artificial light/dark cycle (12 h/12 h) and allowed to 

have free access to water and food. The Charles R Drew 

University of Medicine and Science Institutional Animal 

Care and Use and Committee approved all animal experi-

ments that were conducted by following the guidelines of 

United States Department of Agricultural Animal Care and 

Animal Welfare Act.

cT scan
Abdominal fat volume of WT and Fst-Tg mice were ana-

lyzed using MicroCAT II small animal CT system (Siemens 

Preclinical Solutions, Knoxville, TN, USA) and freely 

available software AMIDE (http://amide.sourceforge.

net/) as previously described by Suckow and Stout19 and 

Wang et al.20 

glucose tolerance test
Four weeks old male WT and Fst-Tg mice were fasted 

overnight and anesthetized with an IP injection of sodium 

pentobarbitone (100 mg/kg). A silastic catheter filled with 

heparinized saline (20 µ/ml) was inserted into left carotid 

artery. A bolus of glucose (1g/kg body weight) was injected 

into the IP cavity. 25 µl of blood was collected at 0, 30, 

60, 120, 180, and 240 minutes for plasma glucose using 

HemoCue Glucose 201 analyzer (Ängelholm, Sweden) 

analysis. 

Serum analysis
Serum levels of TG, FFA, TC and HDL were determined 

by enzymatic colorimetric assays as described previously.21 

Cloning of full-length mouse Fst into 
Piggyback vector and generation of Fst by 
overexpressing 3T3-L1 cell line
Full-length mouse Fst (NM_008046) was cloned into Pig-

gyback Transposon cargo plasmid vector (Transposagen Inc.) 

and the sequence was verified. 3T3-L1 cells were transfected 

with Piggyback transposon containing CMV-Fst PuroTK 

along with the piggyback transposase, using standard trans-

fection techniques (Figure S1A). The Piggyback transposase 

recognizes PB transposon sequence (IRT’s), cuts transposon 

carrying Fst out of the plasmid, and integrates it stably in the 

genome. Stable clones were selected in presence of 10 µg/ml 

puromycin. Confirmation of the puromycin resistant Fst over-

expressing 3T3-L1 cells (3T3-L1 Fst) in PiggyBac backbone 

was performed by PCR analysis of the genomic DNA using 

T7 forward (1268–1283) and Fst reverse (2141–2121) primer 

sets (Figure S1B). Both control 3T3-L1 and 3T3-L1 Fst cells 

were allowed to differentiate under standard differentiation 

conditions for 6–9 days.8,22

real-time quantitative Pcr analysis
Gene expression analysis was performed using 2 µg of 

total RNA that were reverse transcribed using RNA High 
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Capacity cDNA kit (Applied BioSystems, Foster City, CA, 

USA). The Power SYBR Green PCR master mix was used 

with 7500 fast real-time PCR system (Applied BioSystems). 

Gene-specific primer pairs were designed and experimental 

mRNA starting quantities were calculated from the standard 

curves and averaged using 7500 software v1.4 as previously 

described.7,8,23

immunoblot analysis
Total cellular proteins (50–100 µg) were resolved on sodium 

dodecyl sulfate-polyacrylamide gels (10–15%), electro-

transferred on polyvinylidene difluoride membranes and 

analyzed using the following antibodies-anti-Fst (1:1,000 

dilutions, cat# ab64490; Abcam, Cambridge, MA, USA), 

anti-UCP1 (1:1,000 dilutions, cat# 10983; Abcam), p38 

MAPK (1:1,000 dilutions, cat# 92125; Cell Signaling, 

MA, USA), anti-pp38 MAPK (1:1,000 dilutions, cat# 

92115; Cell Signaling), anti-ERK1/2(1:1,000 dilutions, cat# 

91025; Cell Signaling), anti-pERK1/2 (1:1,000 dilutions, 

cat# 91015; Cell Signaling), anti-COX-IV (1:1,000 dilu-

tion, cat# ab14744; Abcam), anti-SirT1 (1:1,000 dilution, 

cat# ab110304; Abcam), anti-SirT3 (1:1,000 dilution, cat# 

ab86671; Abcam), anti-BCAT2 (1:1,000 dilutions, cat# 

ab95976; Abcam); anti-BCKDHA (1:1,000 dilutions, cat# 

ab90691; Abcam); anti-AdipoQ (1:1,000 dilutions, cat# 

MAB 1119; R & D Systems); anti-AMPK/anti-pAMPK 

(1:1,000 dilutions, cat# 2532; 2535; Cell Signaling); 

anti-FGF21 (1:1,000 dilutions, cat# MAB25371; R & D 

Systems); anti-PGC-1α (1: 1,000 dilution, cat# ab54481; 

Abcam), anti-AdipoR1 (1: 1,000 dilution, cat# sc99183; 

Santa Cruz Biotech, Dallas, TX, USA), and anti-Mup1 

(1: 1,000 dilution, cat# sc66976; Santa Cruz Biotech), 

anti-β-actin (1:5,000 dilutions, cat# sc-81178; Santa Cruz 

Biotech) or anti-GAPDH (1:5,000 dilutions, cat# MAB374; 

Millipore) antibodies with secondary antibodies (1:1,000 

dilution) linked to horseradish peroxidase (Cell Signal-

ing). Immunopositive bands were scanned and analyzed 

as described before.7,8 

Analysis of cellular oxygen consumption
OCR of cells (4 × 104 cells per well) were analyzed in a XF24 

Extracellular Flux Analyzer (Seahorse Bioscience Inc., North 

Billerica, MA, USA) as previously described.7 

lipidomics analysis
Analysis of various lipids in differentiated 3T3-L1 control 

and Fst overexpressing 3T3-L1-Fst cells were performed 

using gas chromatography time-of-flight technology plat-

form at UC Davis Metabolomics Core Laboratory (http://

metabolomics.ucdavis.edu/core-services/metabolomics-

central-service-core). The workflow involves sample extrac-

tion in methyl tert-butyl ether with addition of internal 

standards, followed by ultra-high pressure liquid chroma-

tography on a Waters CSH column, interfaced to a quad-

rupole–time-of-flight mass spectrometer (high resolution, 

accurate mass), with a 15 minute total run time. Peak areas 

of lipid species within the range of calibration curves were 

analyzed by comparing the individual peak areas with those 

of corresponding internal standards for determining the 

final concentrations. Data were collected in both positive 

and negative ion mode and analyzed using MassHunter 

(Agilent). Approximately 400 lipids species including 

mono-, di-, and triacylglycerols, glycerophospholipids, 

sphingolipids, cholesterol esters, ceramides, and FAs can 

be identified from plasma, with additional unknowns. The 

method is highly stable and has been validated on large 

datasets (>8,000 samples) collected over long time periods 

(>1 year).24

Metabolomic and statistical analysis
Entire metabolomics analysis of Epi and SC adipose tissues 

from WT and Fst-Tg mice was performed at Metabolon Inc 

(Morrisville, NC, USA) (www.metabolon.com). Samples 

were prepared using the automated MicroLab STAR® system 

from Hamilton Company and processed either with liquid 

chromatography/mass spectrometry or gas chromatography/

mass spectrometry as described before.25 Accurate mass 

determination, compound identification, bioinformatics, and 

statistical analysis (R, version 2.6.0, http://www.r-project.

org/ and SPSS for Windows version PASW 17.0; SPSS Inc: 

Chicago, USA) were done by Metabolon Inc. essentially as 

described before.25

general statistical analysis
Data are presented as mean ± SD. Differences between the 

groups were analyzed by ANOVA using GraphPad Prism 

Version 5.3 (GraphPad Software, San Diego, CA, USA). If 

the overall ANOVA revealed significant differences, then 

pair-wise comparisons between groups were performed by 

Newman-Keuls multiple group test. All comparisons were 

two-tailed and P-values ≤ 0.05 were considered statisti-

cally significant. The experiments were repeated at least 

three times, and data from representative experiments are 

shown.25
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Results 
Fst-Tg mice have decreased abdominal fat 
volume, increased glucose clearance and 
improved serum lipid profiles
We recently demonstrated that adipose browning of Epi 

and SC WAT is increased in Fst-Tg mice.8 To test whether 

increased adipose browning in Fst-Tg mice tissues alters 

their abdominal fat mass, we performed CT scans of 6 

weeks old WT and Fst-Tg male mice fed a normal chow 

diet. Weekly food consumption was significantly decreased 

(11.3%; P≤0.05) in Fst-Tg mice compared to the WT 

mice (Figure 1A). Fst-Tg mice had higher body weights 

(24.8±1.7 g vs. 18.5±1.1 g) compared to the WT (Figure 1B) 

because of significant increase in muscle mass as previously 

reported.3 Analysis of fat content by quantitative analysis of 

CT scans showed significantly lower percentage of abdomi-

nal fat in Fst-Tg mice (15.2±3.6%) compared to the WT 

(28.4±6.2%) mice (Figure 1C and D). Comparative analysis 

of whole body glucose disposal in fasting Fst-Tg and WT 

mice by glucose tolerance test after IP injection of glucose 

(1 g/kg) showed a significant decrease in glucose levels after 

1 and 2 hours, but no significant difference in subsequent 

time points (3–4 h) (Figure 1E). Comparison of serum 

TG, TC, HDL, FFA, and glucose levels show significantly 

decreased levels of TG, UC, FFA and glucose in Fst-Tg 

mice compared to the WT mice (Figure 1F). However, the 

changes in TC and HDL levels were not significantly altered 

between the groups. Mup1 is a key regulator of glucose 

and lipid metabolism,26 and increases energy expenditure 

through enhanced mitochondrial function.27 We have previ-

ously identified Mup1 as an Fst-inducible gene7 and in this 

study, we show that Mup1 gene and protein expression are 

upregulated in liver tissues isolated from WT and Fst-Tg 

mice (Figure S2A–D), suggesting a potential role for Mup1 

in Fst-mediated metabolic changes. These data collectively 

suggest that Fst upregulation in distant muscle tissues could 

affect whole body metabolism through increased systemic 

levels of Fst as reported previously by our group.8

Differentiated 3T3-L1 cells 
overexpressing Fst have significantly 
higher levels of key adipose browning 
markers and increased maximum OCRs 
We cloned the full-length mouse Fst gene into Piggyback 

Transposon cargo plasmid vector (Transposagen Inc.) 

and generated 3T3-L1 Fst stable cell line as described in 

the “Materials and methods” section. Cellular Fst protein 

content (Figure 2A), Fst gene expression (Figure 2B) and 

secreted Fst in cell culture supernatants (Figure 2C) were 

all significantly higher in 3T3-L1 Fst cells compared to the 

control 3T3-L1 cells. Next, we performed a comprehensive 

gene expression analysis in 3T3-L1 Fst and 3T3-L1 cells 

that were allowed to differentiate under standard adipogenic 

differentiation conditions for 9 days. Key beige adipocyte-

related genes including Cd137, Tmem26, Tbx1, Th, and 

Ptgs2a, mitochondrial markers Ucp1, Cox7a1, Cox8b, and 

Cpt1a and other key genes implicated in regulating overall 

energy and lipid metabolism including Fgf21, Bmp7, and 

Pgc1a were all significantly increased in 3T3-L1 Fst cells 

compared to 3T3-L1 cells (Figure 2D). Fasn, a key lipogenic 

marker, and Mst levels were also significantly decreased in 

3T3-L1 Fst cells (Figure 2D). Moreover, key beige-related 

proteins (UCP1, Cd137), mitochondrial protein (COX-IV) 

along with AdipoQ and SirT-1 and -3 (Figure 2E) were also 

significantly increased in 3T3-L1 Fst cells, underscoring the 

role of Fst in adipose browning and regulation of energy 

metabolic pathways. Furthermore, two key signaling path-

ways implicated in adipose browning p38 MAP kinase and 

ERK1/2 phosphorylation,8 were upregulated in differenti-

ated 3T3-L1 Fst cells compared to the 3T3-L1 cells (Figure 

2E). Analysis of OCR further suggest significant increase 

(~62%) in maximal OCR in 3T3-L1 Fst cells compared to 

3T3-L1 cells undergoing adipogenic differentiation (Figure 

2F), suggesting increased mitochondrial biogenesis. Taken 

together, our results in cell culture and mice show that Fst 

is a potent inducer of browning related signaling pathways 

and may influence overall energy and lipid metabolism. 

Analysis of lipidomic profiles of 
differentiated 3T3-L1 Fst and 3T3-L1 
cells 
To test the effect of Fst overexpression on various endogenous 

lipid metabolites, we performed lipid profiling of day 9 differ-

entiated cells. There was a general reduction in diglycerides, 

TG; ceramide (d42:0), FA, PC, PE, lysophosphatidylethanol-

amine (16:0), and LPC (16:1) levels in differentiated 3T3-L1 

Fst cells compared to the control 3T3-L1 cells (Table 1). 

On the other hand, we found significant increase in several 

LPCs including LPC (16:0), LPC (18:0), and LPC (18:1) in 

3T3-L1 Fst cells in comparison to 3T3-L1 cells (Table 1). 

Ceramide (d42:0) was found to be significantly decreased in 

3T3-L1 Fst cells compared to the control 3T3-L1 cells. Our 

cell culture data, therefore, suggest that Fst overexpression 

in 3T3-L1 Fst cells favorably alters overall lipid profiling by 

1) decreasing lipid metabolites known to contribute toward 
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Figure 1 Analysis of abdominal fat volume, glucose clearance, and serum profiles of WT and Fst-Tg mice. (A) Analysis of weekly total food consumption, (B) body weight, 
(C) abdominal fat volume by CT-scan, and (D) quantitative analysis of abdominal fat volume in 10 week-old male WT and Fst-Tg mice fed on normal chow. (E) glucose 
tolerance test (GTT), 10-week-old male WT and Fst-Tg mice were fasted overnight and given D-glucose (1 g/kg) by IP injection. Blood glucose was measured at different 
time points. (F) Analysis of serum profiles of 10-week-old WT and Fst-Tg mice. Data are expressed as mean ± SD. *P≤0.05, **P≤0.01 (n=10).
Abbreviations: WT, wild type; Fst-Tg, follistatin transgenic; TG, triglyceride; HDL. high-density lipoprotein; UC, unesterified cholesterol; FFA, free fatty acid.
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Figure 2 Comparative analysis of Fst expression, key brown/beige related markers and oxygen consumption in Fst overexpressing 3T3-L1 Fst and 3T3-L1 cells. Analysis of 
relative Fst protein (A), gene expression (B), and Fst release in cultured medium (30 µl supernatant) (C) in 3T3-l1 and 3T3-l1 Fst grown under normal growth conditions. 
(D) Quantitative gene expression analysis of key markers involved in adipose browning, mitochondrial biogenesis pathway in cells allowed to differentiate under standard 
adipogenic differentiation conditions for 9 days. (E) Western blot analysis of key proteins involved in adipose browning and regulation of key signaling pathway involved during 
the process in differentiated 3T3-L1 and 3T3-L1 Fst cells. (F) Analysis of OCR in differentiated 3T3-L1 and 3T3-L1 Fst cells after 9 days using Seahorse Bioscience XF24 
extracellular flux analyzer. Data are expressed as mean ± SD. *P≤0.05, **P≤0.01, and ***P≤0.001. (n=3).
Abbreviations: Fst, follistatin; GADPH, glyceraldehyde 3-phosphate dehydrogenase; OCR, oxygen consumption rate; UCP, uncoupling protein; MAPK, mitogen-activated 
protein kinase; ERK, extracellular-signal-regulated kinase; COX, cyclooxygenase; SirT, sirtuin; AdipoQ, adiponectin.
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development of obesity and related metabolic diseases28,29 and 

2)  significantly increasing several LPCs which are reported to 

be reduced in obesity and type 2 diabetes associated change 

in body fat mass.30,31

Metabolomics profiling of Epi and SC 
adipose tissues from Fst-Tg and WT 
control mice 
Adipose tissue, a key endocrine organ, has been widely 

implicated not only in the regulation of glucose and lipid 

homeostasis but also plays an important role in systemic 

protein and amino acid metabolism. Next, we have per-

formed comprehensive metabolomics analysis of adipose 

tissues isolated from 6-week-old male WT and Fst-Tg mice. 

We have also analyzed adipose tissue for our metabolomics 

analysis to avoid possible confounding effects of secreted 

Fst produced from muscle tissues in these Fst-Tg mice. We 

observed significant differences in key metabolites includ-

ing amino acids, components of FA and carnitine metabo-

lism, carbohydrates, and nucleotides as well as some other 

chemicals and cofactors (Tables 2 and 3). These differences 

in various metabolites between WT and Fst-Tg were more 

prominent in Epi (Table 2) compared to the SC adipose 

tissues (Table 3). 

energy and lipid metabolism
Comparative analysis of metabolites involved in energy and 

lipid metabolism in the two adipose tissue depots from WT 

and Fst-Tg mice display significant differences between the 

groups. Krebs cycle components including citrate, succinyl-

carnitine, and fumarate were significantly downregulated in 

Fst-Tg Epi tissues compared to the WT tissues (Table 2), 

whereas, only succinate was found to be downregulated in 

Fst-Tg SC adipose tissues compared to the WT (Table 3). 

Phosphate levels were significantly decreased in both Fst-Tg 

Epi and SC tissues. Significant decreases in several long chain 

FA levels were observed in both adipose tissues obtained from 

Fst-Tg group; however, the differences in medium chain FA 

levels were observed only in Epi adipose tissues. Compara-

tive analysis of several components of carnitine metabolism 

display significant decrease in acetylcarnitine and propionyl-

carnitine levels in both adipose depots. However, there was 

also significant decrease in other carnitine metabolites (car-

nitine, 3-dehydroxycarnitine, butyrylcarnitine), and ketone 

bodies (3-hydroxybutyrate) selectively in Epi adipose tissue 

(Table 2). Glycerolipid levels were also significantly lower in 

Fst-Tg groups. Levels of several lysolipids were also found 

to be significantly lower in Fst-Tg groups compared to the 

Table 1 Lipidomics profiling of differentiated 3T3-L1 and 3T3-L1 
Fst cells by gas chromatography time-of-flight (n=8).

Compound P value Ratio (3T3-L1 Fst vs. 
3T3-L1)

Dg (34:1) 0.0341 0.4
Dg (36:2) 0.0354 0.3
Pc (32:1) 0.0306 0.32
Pc (32:2) 0.0485 0.03
TG (14:0/14:0/14:0) 0.0154 0.07
Tg (46:1) 0.0171 0.014
Tg (46:2) 0.0218 0.014
Tg (46:2) 0.0032 0.004
Tg (46:3) 0.0031 0.004
Tg (48:1) 0.0536 0.11
Tg (48:2) 0.02 0.01
Tg (48:3) 0.0042 0.004
Tg (49:1) 0.0002 0.08
Tg (49:3) 0.0019 0.02
Tg (50:2) 0.0081 0.03
Tg (50:4) 0.0099 0.015
Tg (51:2) 0.013 0.083
Tg (51:3) 0.0063 0.05
Tg (52:3) 0.0036 0.038
Tg (53:2) 0.0328 0.13
Tg (53:3) 0.0437 0.122
Tg (54:1) 0.0052 0.136
Tg (54:2) 0.0492 0.154
Tg (54:5) 0.032 0.45
Tg (54:6) 0.0177 0.154
Tg (56:1) 0.0143 0.18
Tg (56:2) 0.0042 0.08
Tg (56:3) 0.0184 0.1
Tg (56:7) 0.0166 0.29
Tg (58:1) 0.0068 0.33
Tg (58:2) 0.0022 0.2
Tg (58:3) 0.0049 0.21
Tg (60:2) 0.007 0.37
ceramide (d42:0) 0.0436 0.59
Fa (14:1) 0.0027 0.06
Fa (17:1) 0.0009 0.29
Fa (18:1) 0.028 0.37
Fa (18:3) 0.0121 0.83
lPe (16:0) 0.0008 0.24
Pc (32:2) 0.0006 0.02
Pc (33:1) 0.0001 0.22
Pc (33:2) 4.64e–06 0.25
Pc (34:2) 0.0111 0.2
Pc (34:3) 0.0166 0.36
Pe (34:1) 0.019 0.03
Pe (36:2) 0.0154 0.4
Pe (p-34:1) or Pe (0-34:2) 0.0083 0.4
Pe (p-34:2) or Pe (0-34:3) 0.0091 0.08
lPc (16:0) 1.64e–05 5.16
lPc (18:0) 2.77e–06 9.12
lPc (18:1) 0.0019 2.81
lPc (0–16:0) 5.55e–08 14.5
lPc (p-16:0) 1.82e–06 9.9
lPc (p18:0) 0.0006 53.1

Abbreviations: DG, diacylglycerols; TG, triglyceride; FA, fatty acids; PC, phosphat- 
idylcholines; Pe, phosphatidylethanolamines; lPe, lysophosphatidy-lethanolamine; lPc, 
lysophosphatidylcholine. 
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WT (Tables 2 and 3). Interestingly, cholesterol levels were 

selectively lower only in Epi adipose tissues.

amino acids 
Several key amino acids involved in alanine and aspartate 

metabolism (asparagine), glutamate metabolism (glutamate) 

gamma-methyl ester, tyrosine, tryptophan metabolism, 

valine, leucine and isoleucine metabolism, cysteine, methio-

nine, taurine metabolism as well as several key components 

of urea cycle metabolism including arginine, ornithine, 

proline, citrulline, and trans-4-hydroxyproline were sig-

nificantly downregulated in Fst-Tg Epi adipose tissues 

compared to the WT (Table 2). On the other hand, SC adi-

pose tissues displayed a significant but only a less dramatic 

decrease in certain amino acids including alanine, 3-indoxyl 

sulfate, and hydroxyisovaleroyl carnitine (Table 3). The 

levels of beta-alanine however was significantly increased 

in Fst-Tg SC adipose tissues compared to the WT control 

group (Table 3). Levels of 3-indoxyl sulfate, a key trypto-

phan metabolism component known to be upregulated in 

diabetic patients,25 was also found to be significantly lower 

in SC adipose depots of Fst-Tg mice (Table 3). However, in 

both adipose tissue depots, a general trend toward decreased 

amino acid levels were observed in Fst-Tg group compared 

to the WT group. Interestingly, several of these metabolites 

including BCAA (leucine, isoleucine, and valine) are known 

to be significantly induced in obese subjects compared to 

the lean humans and contribute to increased risk of type 2 

diabetes insulin resistance in humans and in some rodent 

models.16–18, 32–36

carbohydrates
In our metabolomics analysis, we observed several carbohy-

drate metabolites including maltose, mannose 6-phosphate, 

glucose-6-phosphate, fructose-6-phosphate, lactate as well 

as 3-phosphoglycerate were significantly lower in Fst-Tg 

groups compared to the WT (Tables 2 and 3). We also found 

significantly decreased levels of several purine metabolism 

components including xanthine/hypoxanthine, inosine, 

3′-AMP, cytidine, uracil, guanosine, and adenine in Fst-Tg 

groups (Tables 2 and 3). Levels of several other metabolites 

including nicotinamide, pantothenate, and benzoate as well 

as xenobiotics such as glycerol 2-phosphate and equol sulfate 

were selectively decreased in Epi adipose tissues obtained 

from Fst-Tg groups compared to the WT group (Table 2). On 

the other hand, levels of stachydrine/homostachydrine were 

Table 2 Metabolomics analysis (Metabolon Inc.) of Epi adipose tissues obtained from 6 weeks old WT and Fst-Tg mice showing relative 
differences in various metabolites involved in the regulation of key metabolic pathways (n=3).

Super pathway Sub pathway Biochemical name Platform Fst-Tg vs WT-Epi
 (fold; P-value)

 Mass

amino acids alanine and aspartate metabolism asparagine LC/MS pos 0.62 (P=0.03) 133.1
glutamate metabolism glutamate gamma-methyl ester LC/MS pos 0.68 (P=0.03) 162.1

Tyrosine metabolism Tyrosine LC/MS pos 0.48 (P=0.04) 182.1

Tryptophan metabolism c-glycosyltryptophan LC/MS pos 0.64 (P=0.01) 367.1

3-indoxyl sulfate LC/MS pos 0.27 (P=0.02) 212

Valine, leucine, and isoleucine 
metabolism

isoleucine LC/MS pos 0.47 (P=0.04) 132.1

3-hydroxyisobutyrate GC/MS 0.61 (P=0.01) 177.11

isobutyl carnitine LC/MS pos 0.36 (P=0.02) 232.2

isovalerylcarnitine LC/MS pos 0.21 (P=0.01) 246.2

Hydroxyisovaleroyl carnitine LC/MS pos 0.56 (P=0.002) 262.1

cysteine, methionine, SaM, and 
taurine metabolism

hypotaurine GC/MS 0.35 (P=0.04) 188

Methionine LC/MS pos 0.55 (P=0.01) 150.1

n-acetyl methionine LC/MS neg 0.47 (P=0.02) 190.1

Urea cycle; arginine, and proline 
metabolism

arginine LC/MS pos 0.73 (P=0.01) 175.2

Ornithine GC/MS 0.41 (P=0.04) 141.9

Proline LC/MS pos 0.64 (P=0.01) 116.1

citrulline LC/MS pos 0.6 (P=0.01) 176.1

Trans-4-hydroxyproline GC/MS 0.35 (P=0.02) 140

(Continued)
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Super pathway Sub pathway Biochemical name Platform Fst-Tg vs WT-Epi
 (fold; P-value)

 Mass

carbohydrate Fructose, mannose, galactose, 
starch, and sucrose metabolism

Maltose GC/MS 0.21 (P=0.04) 204.1

Mannose-6-phosphate GC/MS 0.32 (P=0.02) 387.2

glucose-6-phosphate (g6P) GC/MS 0.29 (P=0.001) 387.2

Fructose-6-phosphate GC/MS 0.25 (P=0.01) 315.1

lactate GC/MS 0.45 (P=0.03) 116.9

energy Krebs cycle citrate GC/MS 0.57 (P=0.03) 273.1

Succinylcarnitine LC/MS pos 0.44 (P=0.001) 262.1

Fumarate GC/MS 0.68 (P=0.04) 245

Oxidative phosphorylation Phosphate GC/MS 0.46 (P=0.02) 298.9

Medium chain fatty acid caproate (6:0) LC/MS neg 0.56 (P=0.03) 115.2

caprate (10:0) LC/MS neg 0.26 (P=0.008) 171.2

laurate (12:0) LC/MS neg 0.24 (P=0.03) 199.3

Long chain fatty acid Myristate (14:0) LC/MS neg 0.52 (P=0.04) 227.3

Myristoleate (14:1n5) LC/MS neg 0.4 (P=0.0002) 225.3

arachidonate (20:4n6) LC/MS neg 0.75 (P=0.03) 303.4

Fatty acid metabolism (also BCAA 
metabolism)

Propionylcarnitine LC/MS pos 0.65 (P=0.02)) 218.2

Butyrylcarnitine LC/MS pos 0.29 (P=0.01) 232.2

carnitine metabolism carnitine LC/MS pos 0.47 (P=0.02) 162.2

3-dehydrocarnitine LC/MS pos 0.43 (P=0.04) 160.2

acetylcarnitine LC/MS pos 0.57 (P=0.005) 204.2

choline phosphate LC/MS pos 0.59 (P=0.01) 184.1

glycerolipid metabolism glycerol GC/MS 0.6 (P=0.005) 205

Ketone bodies 3-hydroxybutyrate (BHBA) GC/MS 0.5 (P=0.03) 116.9

lysolipid 1-palmitoylglycerophosphocholine LC/MS pos 8.31 (P=0.04) 496.4

1-stearoylglycerophosphocholine LC/MS pos 11.6 (P=0.04) 524.4

2-stearoylglycerophosphocholine LC/MS pos 2.01 (P=0.02) 524.4

1-palmitoylglycerophosphoinositol LC/MS neg 0.48 (P=0.04) 571.3

1-stearoylglycerol (1-monostearin) LC/MS neg 0.48 (P=0.02) 399.4

Sphingolipid Palmitoyl sphingomyelin GC/MS 0.49 (P=0.03) 311.3

cholesterol GC/MS 0.8 (P=0.04) 329.3

nucleotide Purine metabolism, (hypo)xanthine/
inosine containing

Xanthine LC/MS pos 0.67 (P=0.03) 153.1

Hypoxanthine LC/MS pos 0.51 (P=0.04) 135.1

inosine LC/MS neg 0.49 (P=0.02) 267.2
adenosine 3’-monophosphate (3’-aMP) LC/MS pos 0.58 (P=0.02) 348.1

guanosine LC/MS neg 0.5 (P=0.02) 282.1

Purine metabolism, guanine 
containing

cytidine LC/MS pos 0.51 (P=0.02) 244

Pyrimidine metabolism, orotate 
containing

Uracil GC/MS 0.6 (P=0.03) 241

Cofactors and 
vitamins

nicotinate and nicotinamide 
metabolism 

nicotinamide LC/MS pos 0.54 (P=0.01) 123.1

Pantothenate and coa metabolism Pantothenate LC/MS pos 0.44 (P=0.02) 220.1

Riboflavin metabolism Benzoate GC/MS 0.56 (P=0.04) 179

 Xenobiotics chemical glycerol 2-phosphate GC/MS 0.36 (P=0.04) 243

Stachydrine LC/MS pos 0.46 (P=0.006) 144.1

homostachydrine LC/MS pos 0.6 (P=0.008) 158.2

Equol sulfate LC/MS neg 0.51 (P=0.03) 321.2

Abbreviations: Fst-Tg, follistatin transgenic; WT, wild type; Epi, epididymal; LC/MS, liquid chromatography–mass spectrometry; pos, positive; neg, negative; GC/MS, gas 
chromatography–mass spectrometry; SAM, S-adenosylmethionine; BCAA, branched chain amino acid; CoA, coenzyme A.

Table 2 (Continued)
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found to be significantly decreased in both adipose tissues 

obtained from Fst-Tg mice (Tables 2 and 3). 

Omega-3 PUFas
Comparative analysis of omega-3 levels PUFAs between the 

Fst-Tg and WT adipose tissue metabolites display highly 

significant increase in two key PUFAs including docosapen-

taenoate (n3; 22:5n3) (1.42 fold; P=0.006), and docosahexae-

noate (22:6n3) (1.5 fold; P=0.03) selectively in SC adipose 

tissues (Table 3). However, these levels were not statistically 

different in the Epi adipose tissues obtained from WT and 

Fst-Tg groups. These n-3 long chain PUFAs are reported 

to improve obesity-associated metabolic orders including 

chronic inflammation, insulin resistance, and dyslipidemia 

in several studies by directly regulating several aspects of 

lipid metabolism, energy expenditure, and inflammation.37–40 

Future studies will determine the role of Fst in the regulation 

of these additional pathways.

Selective induction of BCAA catabolic 
enzyme expression in Epi adipose tissues 
obtained from Fst-Tg mice
The specific decrease in BCAA observed in Epi tissues of the 

Fst-Tg could be explained either by decreased synthesis or 

by increased catabolism. We therefore, analyzed the expres-

sion levels of BCAT2 that catalyzes the first and reversible 

step in BCAA catabolism as well as components of BCKD 

complex that irreversibly catalyzes subsequent deamination 

steps to generate final BCAA metabolites (Figure 3). We 

found a significant increase in Bcat2 gene (1.8±0.2 fold) 

and BCAT2 protein (1.45±0.24 fold) expression selectively 

in Epi adipose tissues of Fst-Tg mice compared to the WT 

mice (Figure 4A–C). There was no significant change in its 

gene or protein expression in SC adipose tissues (Figure 4D 

and E). Further analysis of key genes of BCKDH complex 

show significant increase in Bckdhb (1.76±0.3 fold), Dbt 

Table 3 Metabolomics analysis (Metabolon Inc.) of SC adipose tissues obtained from 6-weeks-old WT and Fst-Tg mice showing 
relative differences in various metabolites involved in the regulation of key metabolic pathways (n=3).

Super pathway Sub pathway Biochemical name Platform Fst-Tg vs WT-SC 
(fold; P-value)

Mass

amino acids alanine and aspartate 
metabolism

Beta-alanine GC/MS 1.94 (P=0.04) 174
alanine GC/MS 0.53 (P=0.02) 115.9

Tryptophan metabolism 3-indoxyl sulfate LC/MS pos 0.39 (P=0.04) 212
Valine, leucine, and isoleucine 
metabolism

Hydroxyisovaleroyl carnitine LC/MS pos 0.58 (P=0.02) 262.1

carbohydrate aminosugars metabolism erythronate GC/MS 0.37 (P=0.01) 292.1

Fructose, mannose, galactose, 
starch, and sucrose metabolism

Maltose GC/MS 0.55 (P=0.04) 204.1

glycolysis, gluconeogenesis, 
andpyruvate metabolism

glycerate GC/MS 0.59 (P=0.02) 189
3-phosphoglycerate GC/MS 0.49 (P0.01) 299

energy Krebs cycle Succinate LC/MS neg 0.8 (P=0.01) 117.1
Oxidative phosphorylation Phosphate GC/MS 0.64 (P=0.04) 298.9

 lipids  Essential fatty acids Docosapentaenoate (n3 DPa; 22:5n3) LC/MS neg 1.42 (P=0.006) 329.4
Docosahexaenoate (DHA; 22:6n3) LC/MS neg 1.5 (P=0.03) 327.3

Long chain fatty acid Myristate (14:0) LC/MS neg 0.56 (P=0.03) 227.3

Myristoleate (14:1n5) LC/MS neg 0.53 (P=0.002) 225.3

Palmitoleate (16:1n7) LC/MS neg 0.76 (P=0.008) 253.3

Fatty acid, monohydroxy 4-hydroxybutyrate (GHB) GC/MS 0.36 (P=0.03) 233.1
Fatty acid, dihydroxy Propionylcarnitine LC/MS pos 0.71 (P=0.03) 218.2
carnitine metabolism acetylcarnitine LC/MS pos 0.7 (P=0.002) 204.2
inositol metabolism chiro-inositol GC/MS 0.31 (P=0.01) 318.1
glycerolipid metabolism glycerol 3-phosphate (g3P) GC/MS 0.41 (P=0.04) 357.1
lysolipid 1-palmitoylglycerophosphoinositol LC/MS neg 0.53 (P=0.04) 571.3
Sterol/Steroid corticosterone LC/MS pos 0.55 (P=0.02) 347.2

nucleotide Purine metabolism adenine GC/MS 0.16 (P=0.02) 264
Pyrimidine metabolism Pseudouridine LC/MS neg 0.64 (P=0.03) 243.1

 Xenobiotics  Food component/plant Stachydrine LC/MS pos 0.45 (P=0.005) 144.1
homostachydrine LC/MS pos 0.58 (P=0.03) 158.2

Abbreviations: Fst-Tg, follistatin transgenic; WT, wild type; SC, subcutaneous; GC/MS, gas chromatography–mass spectrometry; LC/MS, liquid chromatography–mass 
spectrometry; pos, positive; neg, negative.
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(1.61±0.21 fold), and Dld (1.58±0.06 fold) gene expression 

selectively in Epi adipose tissues of Fst-Tg mice compared to 

WT mice (Figure 4A). Once again, SC adipose tissue display 

no significant difference in any of the BCKDH complex genes 

(Figure 4D). Furthermore, protein expression of BCKDHA 

was also selectively upregulated (1.3±0.16 fold) only in Epi 

adipose tissues (Figure 4B to C) obtained from Fst-Tg mice 

compared to the WT mice but not in SC adipose tissues 

(Figure 4E and F). It is not clear at this point as to why Fst 

selectively upregulates Epi adipose tissue BCAA catabolism 

in Fst-Tg mice; however, it is important to mention that 

Epi adipose tissues are known to play major role in BCAA 

homeostasis because of their larger capacity to catabolize 

BCAAs.41 Effect of Fst overexpression on quantitative gene 

expression profiles of these BCAA catabolizing enzymes 

in differentiating 3T3-L1 Fst cells were also analyzed. 

Our data clearly suggest a small but significant increase in 

Bcat2 (1.45±0.22 fold), Bckdha (1.34±0.08 fold), Backdhb 

(1.43±0.11 fold), Dbt (1.76±0.08 fold), and Dld (1.53±0.07 

fold) (Figure 4G). We also observed that overexpression of 

Fst in C2C12 cells leads to significant induction of key BCAA 

catabolic genes (Figure S3). Therefore, our data suggest low 

but significant upregulation of BCAA catabolizing enzymes 

both in vitro and in vivo and provide putative mechanism for 

the decrease in several of these BCAA levels in Epi tissues 

of Fst-Tg mice (Table 2). 

Upregulation of FGF21/ AdipoQ/ AMPK 
signaling pathway in both epi and Sc 
adipose tissues compared to the WT 
mice 
FGF21/AdipoQ/AMPK pathway is known to regulate key 

metabolic functions including energy homeostasis, glucose 

and lipid metabolism, and insulin sensitivity and has been 

implicated in metabolic diseases including diabetes, obesity, 

and hypertension.42–47 Previously, we had identified AdipoQ, 

Pgc1α, and FGF21 binding partner Klb as differentially 

expressed genes in differentiating Fst-KO MEF cultures 

compared to the WT group, suggesting that AdipoQ/ FGF21 

axis may be a primary target of Fst action during its regula-

tion of adipose tissue metabolic function.7 Since AdipoQ 

has been reported to be a downstream effector of FGF21,42 

a well-known adipose browning and important regulator of 

key metabolic functions,43–46 we explored the potential role of 

FGF21/AdipoQ/pAMPK signaling pathway in eliciting Fst 

metabolic actions in both Epi and SC adipose tissues from 

WT and Fst-Tg mice. We observed significant increase in 

AdipoQ, FGF21, and PGC-1α, proteins as well pAMPK/

AMPK ratio in both Epi and SC adipose tissues obtained from 

Fst-Tg mice compared to the WT control mice (Figure 5A). 

This effect of Fst-induced upregulation of FGF21/AdipoQ/

pAMPK signaling pathway was also confirmed in our in 

vitro studies using differentiated 3T3-L1 cells treated either 

with recombinant Fst protein (0.5 µg/ml) or treatment of cell 

supernatant (500 µl in confluent 3T3-L1 cells on T25 flask) 

from 9-day differentiated 3T3-L1 Fst cells (Figure 5B). We 

have also observed basal expression of AdipoR1 (AdipoQ key 

adipose receptor) and SirT1 in differentiated 3T3-L1 cells, 

which were induced following treatment of these cells either 

with recombinant Fst protein or cell supernatant from 3T3-

L1 Fst cells (Figure 5B). We next analyzed gene expression 

profile of key FGF21 target genes (Egr1, c-Fos), receptors 

(Fgfr1, Fgfr2, and Fgfr3), and its catalytic partner Klb along 

with Pgc1α in both Epi and SC adipose tissues from WT and 

Fst-Tg mice (Figure 5C and D). 

We found significant increase in Fgf21 (Epi: 1.4±0.24 

fold, P≤0.05; SC: 3.4±0.24 fold), Egr1 (Epi: 3.48±0.16 

fold; SC: 11.25±1.37 fold), c-Fos (Epi: 3.55±0.5 fold; SC: 

1.8±0.14 fold), Fgfr1 (Epi: 1.87±0.07 fold; SC: 3.25±0.49 

Figure 3 Schematic presentation of key enzymes and metabolites involved in branched-chain amino acid (valine, isoleucine, leucine) catabolic pathways. 
Abbreviations: BCAT, branched chain amino transferase; BCKD, branched chain α-keto acid dehydrogenase (complex).

Valine

Isobutyrylcarnitine

Cytosol 3-methyl-2-oxobutyrate 3-methyl-2-oxovalerate

2-methylbutyryl-CoA

2-methylbutyrylcarnitine 3-methylcrotonyl-CoA

4-methyl-2-oxopentanoate

3-hydroxyisovaleryl-CoA

3-hydroxyisovalerylcarnitine

Mitochondria

Isobutyryl-CoA

3-hydroxyisobutyrate

Isoleucine Leucine

BCAT

BCKD

BCAT

BCKD

BCAT

BCKD

Isovaleryl-CoA
Isovalerylcarnitine

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2018:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

76

Singh et al

Figure 4 Analysis of key genes and proteins involved in BCAA catabolic pathways. (A) Quantitative gene expression analysis of mitochondrial Bcat2 and key BCKDH 
complex enzymes in Epi adipose tissues isolated from male 10-week-old WT and Fst-Tg mice. Western blot analysis using 100 µg total cell lysates (B) and densitometric 
quantitation (C) of BCAT2 and BCKDHA proteins in Epi adipose tissues isolated from male WT and Fst-Tg mice. (D) Real-time quantitative gene expression analysis 
of mitochondrial Bcat2 and key BCKDH complex enzymes in SC adipose tissues isolated from male WT and Fst-Tg mice. Western blot analysis (E) and densitometric 
quantitation (F) of BCAT2 and BCKDHA proteins in SC adipose tissues isolated from male WT and Fst-Tg mice. Data are expressed as mean ± SD. *P≤0.05 (n=3). (G) real-
time quantitative gene expression analysis of mitochondrial Bcat2 and key BCKDH complex enzymes in differentiating 3T3-L1 and 3T3-L1 Fst cells. *P≤0.05, **P≤0.01 (n=3). 
Abbreviations: WT, wild type; Fst-Tg, follistatin transgenic; Epi, epididymal; BCAT, branched chain aminotransferase; BCKDHA, branched chain ketoacid dehydrogenase; 
BCAA, branched chain amino acid; SC, subcutaneous.
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fold), Fgfr2 (SC: 7.56±1.6 fold), Fgfr3 (SC: 7.14±1.27 fold), 

Klb (SC: 2.93±0.6 fold) and Pgc1a (Epi: 2.4±0.29 fold; SC: 

6.35±1.8 fold), gene expression in Fst-Tg compared to the 

WT adipose tissues (Figure 5C and D). These differences 

in FGF21-associated genes and protein were also evident 

in other metabolic tissues including interscapular BAT and 

liver (Figure S4A–C). Our data, therefore suggest a role for 

FGF21/AdipoQ/pAMPK signaling pathway in regulating key 

metabolic targets of Fst in both Epi and SC adipose tissues. 

Discussion
We have recently identified Fst as a novel inducer of brown 

adipose characteristics and a regulator of key lipid and 

energy metabolism.7 Fst promotes browning of Epi and 

SC adipose tissues in Fst-Tg mice by targeting p38MAPK/

ERK1/2 signaling pathways.8 Agents promoting adipose 

browning have recently been reported to provide significant 

therapeutic advantage for the treatment of obesity and related 

metabolic diseases because of their unique energy burning 

capacity.10,11,14 Fst-Tg mice have previously been reported to 

have significantly increased body weight and muscle mass 

because of muscle-specific overexpression of Fst, a well-

known inducer of muscle mass.3 Our previous studies using 

these Fst-Tg male mice suggested that irrespective of the 

site of Fst production increased systemic Fst levels could 

significantly impact the metabolic outcomes of distant tis-

sues, including both Epi and SC adipose tissues via increased 

adipose browning.8 

In the present study, using Fst-Tg mice and 3T3-L1 Fst 

cells, we have applied a comprehensive set of lipidomics and 

biochemical analysis tools to gain a deeper understanding 

of key metabolic targets of Fst both in vivo and in cultured 

adipocytes. Our data demonstrate that despite having sig-

nificantly increased body weight, the abdominal fat volume 

of Fst-Tg mice was significantly lower compared to the 

age-matched control WT mice, suggesting a role for Fst in 

regulating both muscle and fat mass. A strong relationship 

between glucose and lipid metabolism has been demonstrated 

in several studies.48–50 Increased lipolysis followed by increase 

in circulating FFAs in fasted state results in augmented  

FA oxidation to provide energy. Under these conditions, 

glucose oxidation is reduced partly because of the gen-

eration of FA oxidation byproducts. In addition, consequent 

accumulation of bioactive lipid species during obese states 

is known to interfere with insulin signaling.51 Since key 

metabolic characteristics including improved glucose clear-

ance rate and serum lipid profiles observed in Fst-Tg mice 

could be confounded by reciprocal changes in muscle and 

fat content in these mice, we assessed the effect of Fst on 

key metabolites in adipose tissues and in differentiated 3T3-

L1 Fst cells to dissect out its precise role in modulating key 

metabolic mediators. 

Lipidomic profiling has been used effectively to analyze 

global lipid alterations during obesity and other metabolic 

diseases as well as in several animal studies.52–54 Our lipido-

mics data show significant decrease in several lipid metabo-

lites including several TG, FA, PC, and PE of varying chain 

lengths in 3T3-L1 Fst cells compared to the 3T3-L1 cells. 

Levels of several LPCs which are reported to be decreased 

in obese patients30,31 were found to be significantly higher 

in Fst overexpressing cells. Several studies using liver and 

serum samples from obesity-resistant and obesity-prone mice 

on high fat diet and in obese subjects have shown similar 

changes in many of these lipid metabolites.52,55

In one or both adipose tissues from Fst-Tg mice, our data 

demonstrates that several amino acids including BCAA are 

less abundant. Many BCAA catabolites en route to TCA 

cycle including alanine, and several C3 and C5 acylcarnitines 

including isobutyl carnitine (valine catabolism intermedi-

ate), isovalerylcarnitine (leucine catabolism intermediate), 

and propionylcarnitine (isoleucine and valine catabolism 

intermediate) were also less abundant in Fst-Tg in one or 

both adipose tissues. Furthermore, expression levels of two 

key BCAA catabolic proteins BCAT2 and BCKDHA were 

significantly higher specifically in Fst overexpressing Epi 

adipose tissues, suggesting a predominant role for BCAA 

catabolic pathway in adipose tissues metabolism in Fst-Tg 

mice. Significantly, increased levels of tyrosine has been 

reported in several studies including obese subjects.17,56 The 

association between BCAA and amino acid with insulin 

resistance and type 2 diabetes have been noted in multiple 

studies over the years.33,34 Data obtained from our current 

findings therefore, strongly suggest that Fst could signifi-

cantly inhibit local production of BCAA associated metabo-

lites in adipose tissues and elicit metabolic advantage. A 

recent metabolic profiling identified significant association 

between visceral fat lactate levels and markers of type 2 

diabetes, and insulin resistance, suggesting a metabolic link 

between perturbed lactate levels in visceral fat and cardio-

metabolic diseases.57 Increased mitochondrial activity and 

FA oxidation in Fst-Tg mice could reduce glycolysis lead-

ing to reduced lactate levels. Our metabolomics data in Epi 

adipose tissues from Fst-Tg mice demonstrate significant 

lower lactate levels compared to the WT along with several 

other carbohydrate metabolites, further suggest that Fst 

may favorably modulate overall carbohydrate metabolism 
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and provide protection against these diseases. A detailed 

analysis of these sugar metabolites and their possible role 

needs to be investigated in future to assess the potential 

therapeutic use of Fst specifically in the context of diabetic 

atherosclerosis and hyperglycemia. Several studies includ-

ing global metabolomic profiling of childhood obesity58 and 

high-fat-diet induced metabolic changes59 have identified 

lysolipids as important metabolic regulators. Our data identi-

fied significantly higher levels of three major lysolipids that 

are reported to be significantly lower in obese child in Fst 

Figure 5 Effect of Fst overexpression on AdipoQ/FGF21/pAMPK pathway and FGF21 target genes. Western blot analysis of key proteins in Epi and SC adipose tissues from 
WT and Fst-Tg mice (A), and recombinant Fst protein (0.5 µg/ml) or Fst-enriched supernatant treatment of differentiated 3T3-L1 cells (B) using 100 µg of total tissue or cell 
lysates. Real-time quantitative gene expression analysis of FGF21, its receptors (Fgfr1-r3) and target genes in Epi (C), and Sc (D) adipose tissues obtained from 10-week old 
WT and Fst-Tg mice. Data are expressed as mean ± SD. *P≤0.05, **P≤0.01, and ***P≤0.001 (n=3). 
Abbreviations: WT, wild type; Fst-Tg, follistatin transgenic; DM, differentiation medium; AdipoQ, adiponectin; FGF, fibroblast growth factor; AMPK, AMP-activated protein 
kinase; PGC, peroxisome proliferator-activated receptor-gamma coactivator; SirT1, sirtuin1; GADPH, glyceraldehyde 3-phosphate dehydrogenase; Epi, epididymal; SC, 
subcutaneous.
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overexpressing Epi adipose tissues.58 However, the levels of 

1-palmitoylglycerophosphoinositol was found to be lower in 

both adipose tissue depots from Fst-Tg mice as compared to 

the WT group. Epi adipose tissues from Fst-Tg mice display 

significantly lower levels of betahydroxybutyric acid, an 

end-product of FA β-oxidation which is often associated 

with metabolic syndrome. In general, our metabolomics data 

show a clear pattern of favorable changes in key metabolites 

that have been implicated in several metabolic conditions and 

warrants future studies to explore in detail the therapeutic 

benefits of Fst. 

In our previous studies, we had identified Fst as a novel 

inducer of adipose browning characteristics both in in vitro 

cultures of differentiating cells under adipogenic conditions 

and in adipose tissues from Fst-Tg mice. To explore the pos-

sible connection between Fst-induced adipose browning and 

observed metabolic alterations in adipose tissues in Fst-Tg 

mice, we assessed the possible role of FGF21/AdipoQ/pAMPK 

axis, which is known to regulate key metabolic functions 

including energy homeostasis, glucose and lipid metabolism 

and insulin sensitivity.42–47 While adipose-derived FGF21 can 

act in an autocrine/paracrine manner to increase thermogenic 

genes and adipose browning, it is also known to improve lipid 

profiles and influence glucose homeostasis as well as insulin 

sensitivity. FGF21 is reported to rapidly and robustly stimulate 

AdipoQ secretion.44 AdipoQ is a key target of Fst in differen-

tiating MEF7 and reported to mediate the systemic effects of 

FGF21 in regulating energy metabolism and exerting its gly-

cemic and insulin sensitizing effects.42 Furthermore, AdipoQ 

has also been shown to correct altered BCAA metabolism 

caused by high-fat diet in AdipoQ KO mice.59 Our data in both 

adipose tissues and 3T3-L1 cells treated either with recombi-

nant Fst protein or cell supernatant highly enriched in secreted 

Fst from Fst overexpressing 3T3-L1 Fst cells display robust 

activation of FGF21/AdipoQ/pAMPK signaling pathway. Fst 

overexpression was associated with significant upregulation of 

FGF21 receptors, and its downstream targets in both adipose 

tissue depots compared to the WT group. Levels of AMPK 

phosphorylation was also significantly higher in both adipose 

tissues and in Fst treated 3T3-L1 cells. While AMPK activa-

tion has been known to inhibit acetyl CoA carboxylase, a key 

player in FA synthesis;60 decreased AMPK levels in adipocytes 

are known to promote insulin resistance and hepatic steatosis 

through brown and beige adipose tissue function.61 Our find-

ings using these Fst-Tg mice thus clearly supports a cross-talk 

between muscle and adipose tissues resulting in modulation of 

key browning and associated metabolic characteristics. Recent 

studies have identified several myokines including myostatin, 

FGF21, IL-4, IL-6, IL-7, irisin, and sarcolipin among several 

others in regulating key metabolic characteristics in adipose 

tissues.62–65 Our findings, therefore, suggest for the first time 

that Fst released from skeletal muscle could directly target 

FGF21/AdipoQ/pAMPK signaling pathway and influence the 

levels of adipose tissue metabolites involved in regulating key 

metabolic processes implicated in obesity, type 2 diabetes, and 

insulin resistance. 

Abbreviations
AdipoQ, adiponectin

AMP, adenosine monophosphate

AMPK, AMP-activated protein kinase

ANOVA, analysis of variance

BAT, brown adipose tissues

BCAA, branched chain amino acid

BCAT, branched chain aminotransferase 

BCKDHA, branched chain ketoacid dehydrogenase 

COX, cyclooxygenase

Epi, epididymal

ERK, extracellular-signal-regulated kinase

FA, fatty acid

FFA, free fatty acid

FGF, fibroblast growth factor 

Fst, follistatin

Fst-KO, Fst knockout

Fst-Tg, Fst transgenic

LPC, lysophosphatidylcholine 

IL, interleukin

IP, intraperitoneal

Klb, beta-klotho 

MAPK, mitogen-activated protein kinase 

MEF, mouse embryonic fibroblast

Mst, myostatin

Mup, major urinary protein

OCRS, oxygen consumption rates

PC, phosphotidylcholine
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PUFA, polyunsaturated fatty acid
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SirT, sirtuin

TC, total cholesterol

TG, triglyceride

UCP, uncoupling protein

WAT, white adipose tissues

WT, wild type

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2018:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

80

Singh et al

Acknowledgments
The authors would like to acknowledge Metabolon Inc. (Mor-

risville, NC, USA) (www.metabolon.com) and UC Davis 

Metabolomics Core Services (http://metabolomics.ucdavis.

edu/core-services/metabolomics-central-service-core) for 

adipose tissue metabolomics profiling and cell lysate lipido-

mics profiling, respectively. They would also like to thank the 

expert technical assistance from Melissa Braga and Dr Meher 

Parveen. This work was supported by National Institute of 

Health Grants SC1AG049682 (RS) and SC1CA1658650 

(SP), and in part by RO1HL071776 (STR), R01AR060636 

(SJL), and S21MD000103 (RS, SP) grants. CT scanning was 

done at UCLA Molecular Imaging services core.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Singh R, Braga M, Pervin S. Regulation of brown adipocyte metabolism 

by myostatin/follistatin signaling. Front Cell Dev Biol. 2014;2:60.
2. Sidis Y, Mukherjee A, Keutmann H, Delbaere A, Sadatsuki M, Schneyer 

A. Biological activity of follistatin isoforms and follistatin-like-3 
is dependent on differential cell surface binding and specificity for 
activin, myostatin, and bone morphogenetic proteins. Endocrinol. 
2006;147(7):3586–3597.

3. Lee SJ, Lee YS, Zimmers TA, et al. Regulation of muscle mass by fol-
listatin and activins. Mol Endocrinol. 2010;24(10):1998–2008.

4. Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A. Mul-
tiple defects and perinatal death in mice deficient in follistatin. Nature. 
1995;374(6520):360–363.

5. Jasuja R, Costello JC, Singh R, et al. Combined administration of 
testosterone plus an ornithine decarboxylase inhibitor as a selective 
prostate-sparing anabolic therapy. Aging Cell. 2014;13(2):303–310.

6. Braga M, Bhasin S, Jasuja R, Pervin S, Singh R. Testosterone inhibits 
transforming growth factor-β signaling during myogenic differentiation 
and proliferation of mouse satellite cells: potential role of follistatin in 
mediating testosterone action. Mol Cell Endocrinol. 2012;350(1):39–52.

7. Braga M, Reddy ST, Vergnes L, et al. Follistatin promotes adipo-
cyte differentiation, browning, and energy metabolism. J Lipid Res. 
2014;55(3):375–384.

8. Singh R, Braga M, Reddy ST, et al. Follistatin targets distinct pathways 
to promote brown adipocyte characteristics in brown and white adipose 
tissues. Endocrinology. 2017;158(5):1217–1230.

9. Hill BG. Insights into an adipocyte whitening program. Adipocyte. 
2015;4(1):75–80.

10. Cummins TD, Holden CR, Sansbury BE, et al. Metabolic remodeling 
of white adipose tissue in obesity. Am J Physiol Endocrinol Metab. 
2014;307(3):E262–E277.

11. Roberts LD, Boström P, O’Sullivan JF, et al. β-Aminoisobutyric 
acid induces browning of white fat and hepatic β-oxidation and is 
inversely correlated with cardiometabolic risk factors. Cell Metab. 
2014;19(1):96–108.

12. Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking 
obesity to its source. Cell. 2007;131(2):242–256. Erratum in: Cell. 
2008;135(2):366.

13. Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat. Nature. 
2014;510(7503):76–83. 

14. Abdullahi A, Jeschke MG. Taming the flames: targeting white adi-
pose tissue browning in hypermetabolic conditions. Endocr Rev. 
2017;38(6):538–549.

15. Fabbiano S, Suárez-Zamorano N, Rigo D, et al. Caloric restriction leads 
to browning of white adipose tissue through type 2 immune signaling. 
Cell Metab. 2016;24(3):434–446.

16. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk 
of developing diabetes. Nat Med. 2011;17(4):448–453.

17. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-
related metabolic signature that differentiates obese and lean humans 
and contributes to insulin resistance. Cell Metab. 2009;9(4):311–326.

18. Würtz P, Mäkinen VP, Soininen P, et al. Metabolic signatures of insulin 
resistance in 7,098 young adults. Diabetes. 2012;61(6):1372–1380.

19. Suckow CE, Stout DB. MicroCT liver contrast agent enhancement over 
time, dose, and mouse strain. Mol Imaging Biol. 2008;10(2):114–120.

20. Wang H, Stout DB, Chatziioannou AF. A deformable atlas of the labora-
tory mouse. Mol Imaging Biol. 2015;17(1):18–28.

21. Mehrabian M, Qiao JH, Hyman R, Ruddle D, Laughton C, Lusis AJ. 
Influence of the apoA-II gene locus on HDL levels and fatty streak 
development in mice. Arterioscler Thromb. 1993;13(1):1–10.

22. Singh R, Artaza JN, Taylor WE, et al. Testosterone inhibits adipogenic 
differentiation in 3T3-L1 cells: nuclear translocation of androgen 
receptor complex with beta-catenin and T-cell factor 4 may bypass 
canonical Wnt signaling to down-regulate adipogenic transcription 
factors. Endocrinology. 2006;147(1):141–154.

23. Braga M, Pervin S, Norris K, Bhasin S, Singh R. Inhibition of in vitro 
and in vivo brown fat differentiation program by myostatin. Obesity 
(Silver Spring). 2013;21(6):1180–1188.

24. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. 
Lipid extraction by methyl-tert-butyl ether for high-throughput lipido-
mics. J Lipid Res. 2008;49(5):1137–1146.

25. Suhre K, Meisinger C, Döring A, et al. Metabolic footprint of diabetes: 
a multiplatform metabolomics study in an epidemiological setting. PLoS 
One. 2010;5(11):e13953.

26. Zhou Y, Jiang L, Rui L. Identification of MUP1 as a regulator for glucose 
and lipid metabolism in mice. J Biol Chem. 2009;284(17):11152–11159.

27. Hui X, Zhu W, Wang Y, et al. Major urinary protein-1 increases energy 
expenditure and improves glucose intolerance through enhancing mito-
chondrial function in skeletal muscle of diabetic mice. J Biol Chem. 
2009;284(21):14050–14057.

28. Xia JY, Holland WL, Kusminski CM, et al. Targeted induction of 
ceramide degradation leads to improved systemic metabolism and 
reduced hepatic steatosis. Cell Metab. 2015;22(2):266–278.

29. Chimin P, Andrade ML, Belchior T, et al. Adipocyte mTORC1 deficiency 
promotes adipose tissue inflammation and NLRP3 inflammasome 
activation via oxidative stress and de novo ceramide synthesis. J Lipid 
Res. 2017;58(9):1797–1807.

30. Barber MN, Risis S, Yang C, et al. Plasma lysophosphatidylcho-
line levels are reduced in obesity and type 2 diabetes. PLoS One. 
2012;7(7):e41456.

31. Kim JY, Park JY, Kim OY, et al. Metabolic profiling of plasma in over-
weight/obese and lean men using ultra performance liquid chromatog-
raphy and Q-TOF mass spectrometry (UPLC-Q-TOF MS). J Proteome 
Res. 2010;9(9):4368–4375.

32. She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-
related elevations in plasma leucine are associated with alterations in 
enzymes involved in branched-chain amino acid metabolism. Am J 
Physiol Endocrinol Metab. 2007;293(6):E1552–E1563.

33. McCormack SE, Shaham O, McCarthy MA, et. al. Circulating 
branched-chain amino acid concentrations are associated with obesity 
and future insulin resistance in children and adolescents. Pediatr Obes. 
2013;8(1):52–61.

34. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signal-
ling and insulin resistance. Nat Rev Endocrinol. 2014;10(12):723–736.

35. Boulet MM, Chevrier G, Grenier-Larouche T, et al. Alterations 
of plasma metabolite profiles related to adipose tissue distribu-
tion and cardiometabolic risk. Am J Physiol Endocrinol Metab. 
2015;309(8):E736–E746.

36. Giesbertz P, Padberg I, Rein D, et al. Metabolite profiling in plasma and 
tissues of ob/ob and db/db mice identifies novel markers of obesity and 
type 2 diabetes. Diabetologia. 2015;58(9):2133–2143.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
file:///C:\Users\fatinzakeri\Downloads\www.metabolon.com
http://metabolomics.ucdavis.edu/core-services/metabolomics-central-service-core
http://metabolomics.ucdavis.edu/core-services/metabolomics-central-service-core


Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2018:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

81

Fst therapy for metabolic diseases

37. Martínez-Fernández L, Laiglesia LM, Huerta AE, Martínez JA, 
Moreno-Aliaga MJ. Omega-3 fatty acids and adipose tissue function in 
obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat. 
2015;121(Pt A):24–41.

38. Kunesová M, Braunerová R, Hlavatý P, et al. The influence of n-3 
polyunsaturated fatty acids and very low calorie diet during a short-
term weight reducing regimen on weight loss and serum fatty acid 
composition in severely obese women. Physiol Res. 2006;55(1):63–72.

39. Krebs JD, Browning LM, McLean NK, et al. Additive benefits of long-
chain n-3 polyunsaturated fatty acids and weight-loss in the management 
of cardiovascular disease risk in overweight hyperinsulinaemic women. 
Int J Obes (Lond). 2006;30(10):1535–1544.

40. Kim J, Okla M, Erickson A, Carr T, Natarajan SK, Chung S. Eicosa-
pentaenoic acid potentiates brown thermogenesis through FFAR4-
dependent Up-regulation of miR-30b and miR-378. J Biol Chem. 
2016;291(39):20551–205562.

41. Lackey DE, Lynch CJ, Olson KC, et al. Regulation of adipose branched-
chain amino acid catabolism enzyme expression and cross-adipose 
amino acid flux in human obesity. Am J Physiol Endocrinol Metab. 
2013;304(11):E1175–E1187.

42. Lin Z, Tian H, Lam KS, et al. Adiponectin mediates the metabolic effects 
of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell 
Metab. 2013;17(5):779–789.

43. Fisher FM, Kleiner S, Douris N, et al. FGF21 regulates PGC-1α and 
browning of white adipose tissues in adaptive thermogenesis. Genes 
Dev. 2012;26(3):271–281.

44. Holland WL, Adams AC, Brozinick JT, et al. An FGF21-adiponectin-
ceramide axis controls energy expenditure and insulin action in mice. 
Cell Metab. 2013;17(5):790–797.

45. Gimeno RE, Moller DE. FGF21-based pharmacotherapy–poten-
tial utility for metabolic disorders. Trends Endocrinol Metab. 
2014;25(6):303–311.

46. Potthoff MJ, Inagaki T, Satapati S, et al. FGF21 induces PGC-
1alpha and regulates carbohydrate and fatty acid metabolism dur-
ing the adaptive starvation response. Proc Natl Acad Sci U S A. 
2009;106(26):10853–10858.

47. Chau MD, Gao J, Yang Q, Wu Z, Gromada J. Fibroblast growth factor 
21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-
1alpha pathway. Proc Natl Acad Sci U S A. 2010;107(28):12553–12558.

48. Parhofer KG. Interaction between glucose and lipid metabolism: more 
than diabetic dyslipidemia. Diabetes Metab J. 2015;39(5):353–362.

49. Rendell M, Hulthén UL, Törnquist C, Groop L, Mattiasson I. Rela-
tionship between abdominal fat compartments and glucose and lipid 
metabolism in early postmenopausal women. J Clin Endocrinol Metab. 
2001;86(2):744–749.

50. Boden G, Laakso M. Lipids and glucose in type 2 diabetes: what is the 
cause and effect? Diabetes Care. 2004;27(9):2253–2259.

51. Savage DB, Petersen KF, Shulman GI. Disordered lipid metabo-
lism and the pathogenesis of insulin resistance. Physiol Rev. 
2007;87(2):507–520.

52. Nam M, Choi MS, Jung S, et al. Lipidomic profiling of liver tissue 
from obesity-prone and obesity-resistant mice fed a high fat diet. Sci 
Rep. 2015;5:16984.

53. Wang W, Yang J, Qi W, et al. Lipidomic profiling of high-fat diet-induced 
obesity in mice: importance of cytochrome P450-derived fatty acid 
epoxides. Obesity (Silver Spring). 2017;25(1):132–140.

54. Graessler J, Schwudke D, Schwarz PE, Herzog R, Shevchenko A, 
Bornstein SR. Top-down lipidomics reveals ether lipid deficiency in 
blood plasma of hypertensive patients. PLoS One. 2009;4(7):e6261.

55. Liu TW, Heden TD, Matthew Morris E, Fritsche KL, Vieira-Potter VJ, 
Thyfault JP. High-fat diet alters serum fatty acid profiles in obesity 
prone rats: implications for in vitro studies. Lipids. 2015;50(10): 
997–1008.

56. Mohorko N, Petelin A, Jurdana M, Biolo G, Jenko-Pražnikar Z. Elevated 
serum levels of cysteine and tyrosine: early biomarkers in asymptomatic 
adults at increased risk of developing metabolic syndrome. Biomed Res 
Int. 2015;2015:418681.

57. Menni C, Migaud M, Glastonbury CA, et al. Metabolomic profiling to 
dissect the role of visceral fat in cardiometabolic health. Obesity (Silver 
Spring). 2016;24(6):1380–1388.

58. Butte NF, Liu Y, Zakeri IF, et al. Global metabolomic profiling target-
ing childhood obesity in the Hispanic population. Am J Clin Nutr. 
2015;102(2):256–267.

59. Liu Y, Turdi S, Park T, et al. Adiponectin corrects high-fat diet-induced 
disturbances in muscle metabolomic profile and whole-body glucose 
homeostasis. Diabetes. 2013;62(3):743–752.

60. Smith BK, Steinberg GR. AMP-activated protein kinase, fatty acid 
metabolism, and insulin sensitivity. Curr Opin Clin Nutr Metab Care. 
2017;20(4):248–253.

61. Mottillo EP, Desjardins EM, Crane JD, et al. Lack of adipocyte ampk 
exacerbates insulin resistance and hepatic steatosis through brown and 
beige adipose tissue function. Cell Metab. 2016;24(1):118–129.

62. Rodríguez A, Becerril S, Ezquerro S, Méndez-Giménez L, Frühbeck 
G. Crosstalk between adipokines and myokines in fat browning. Acta 
Physiol (Oxf). 2017;219(2):362–381.

63. Vamvini MT, Aronis KN, Panagiotou G, et al. Irisin mRNA and circulat-
ing levels in relation to other myokines in healthy and morbidly obese 
humans. Eur J Endocrinol. 2013;169(6):829–834.

64. Bal NC, Singh S, Reis FCG, et al. Both brown adipose tissue and skele-
tal muscle thermogenesis processes are activated during mild to severe 
cold adaptation in mice. J Biol Chem. 2017;292(40):16616–16625.

65. Feldman BJ, Streeper RS, Farese RV, Yamamoto KR. Myostatin modu-
lates adipogenesis to generate adipocytes with favorable metabolic 
effects. Proc Natl Acad Sci U S A. 2006;103(42):15675–15680.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2018:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

82

Singh et al

Supplementary materials

Figure S1 (A) Vector map of PiggyBac-CMV-Fst-Puro. (B) Polymerase chain reaction analysis confirming Fst insertion in the PiggyBac-CMV-Fst-Puro construct.  
Abbreviation: Fst, follistatin.
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Figure S2 Analysis of Mup1 expression in liver tissues from WT and Fst-Tg mice. Immunohistochemical analysis (A) and quantitative image analysis (B) of tissues sections. 
integrated optical density (immunopositive area × intensity). Quantitation was performed using 20 images from 4 different areas as described previously.1–3 Analysis of Mup1 
protein (C) and gene expression (D) by Western blot and quantitative real-time polymerase chain reaction analysis using standard procedures. Data are expressed as mean 
± SD. *P≤0.05; **P≤0.01. 
Abbreviations: WT, wild type; Fst-Tg, follistatin transgenic; IHC, immunohistochemistry; Mup, major urinary protein; IOD, integrated optical density; GADPH, 
glyceraldehyde 3-phosphate dehydrogenase.
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Figure S3 Real-time quantitative polymerase chain reaction analysis of C2C12 and Fst overexpressing (C2C12-Fst) myoblast cells to compare gene expression profiles of 
key BCAA metabolizing enzymes. Data are expressed as mean ± SD. *P≤0.05; **P≤0.01 (n=3). 
Abbreviations: Fst, follistatin transgenic; BCAA, branched chain amino acid.
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Figure S4 Analysis of FGF21-associated markers in BAT and liver tissues from 6-weeks-old male WT and Fst-Tg mice. (A) Western blot analysis of FGF21, PGC-1α, and 
il-6 proteins. (B to C) Quantitative gene expression analysis of FGF21, its receptors (Fgfr1-3), and beta-klotho (Klb) in BAT and liver tissues from WT and Fst-Tg mice. Data 
are expressed as mean ± SD. *P≤0.05; **P≤0.01; ***P≤0.001 (n=3). 
Abbreviations: WT, wild type; Fst-Tg, follistatin transgenic; FGF, fibroblast growth factor; PGC, peroxisome proliferator-activated receptor-gamma coactivator; IL, 
interleukin; GADPH, glyceraldehyde 3-phosphate dehydrogenase; BAT, brown adipose tissue.
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