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Introduction: Colorectal cancer is one of the most frequently diagnosed malignancies and a 

common cause of cancer-related mortality. The aim of this study was to develop and validate 

a clinical predictive model for 1-year mortality among patients with colon cancer who survive 

for at least 30 days after surgery.

Methods: Patients diagnosed with colon cancer who had surgery for the first time and who 

survived 30 days after the surgery were selected prospectively. The outcome was mortality 

within 1 year. Random forest, genetic algorithms and classification and regression trees were 

combined in order to identify the variables and partition points that optimally classify patients 

by risk of mortality. The resulting decision tree was categorized into four risk categories. Split-

sample and bootstrap validation were performed. ClinicalTrials.gov Identifier: NCT02488161.

Results: A total of 1945 patients were enrolled in the study. The variables identified as the main 

predictors of 1-year mortality were presence of residual tumor, American Society of Anesthe-

siologists Physical Status Classification System risk score, pathologic tumor staging, Charlson 

Comorbidity Index, intraoperative complications, adjuvant chemotherapy and recurrence of 

tumor. The model was internally validated; area under the receiver operating characteristic curve 

(AUC) was 0.896 in the derivation sample and 0.835 in the validation sample. Risk categorization 

leads to AUC values of 0.875 and 0.832 in the derivation and validation samples, respectively. 

Optimal cut-off point of estimated risk had a sensitivity of 0.889 and a specificity of 0.758.

Conclusion: The decision tree was a simple, interpretable, valid and accurate prediction rule 

of 1-year mortality among colon cancer patients who survived for at least 30 days after surgery.

Keywords: clinical prediction rules, colonic neoplasms, colorectal surgery, tree-based methods, 

prediction model, 1-year-mortality

Introduction
Currently, colorectal cancer is among the most common cancers1–3 with high incidence 

and mortality rates, despite improved rates of survival during the last few years.4 

Previous scientific work broadly investigated diagnosis and treatment of colorectal 

cancer. However, work on the development of clinical prediction rules for patients with 

colorectal cancer in order to predict adverse events and mortality after surgical treat-

ment needs to be properly validated and translated into easy-to-use tools for clinical 

practice.5–6 Ideally, studies should investigate robust clinical outcomes such as mortality 

and/or complications, in order to identify related factors, as well as patient-reported 

outcomes, such as health-related quality of life, and their determinants of change.7–9 

Some predictive scores of short-term evolution outcomes, 30 days, have been devel-

oped, such as the various versions of the Physiological and Operative Severity Score 
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 scoring,10–12 although most of them are not properly validated 

in most settings. Furthermore, to our knowledge, there are 

no validated prediction models for medium-term follow-up, 

1–2 years, on colorectal cancer outcomes, a period during 

which the majority of adverse outcomes after treatment and/

or surgery are observed.13

Classification and regression trees (CART) have been 

used extensively as an alternative to the classic linear 

and additive prediction models. Results are presented in 

tree form of a decision rule with a hierarchical sequential 

structure that can be easily understood and applied in clini-

cal practice. CART models have been used previously for 

prognosis classification in cancer and other diseases.14–16 

Various studies have performed CART analysis in colorectal 

cancer patients to search for biomarkers highly predic-

tive of response to therapy in order to select patients for 

 treatment17–19 or to select genes for phenotypic classifica-

tion.20,21 However, to our knowledge, there are no validated 

prediction models, including CART models, for medium-

term mortality among patients with colon cancer. Other 

relatively modern modeling techniques, known as machine 

learning methods, which include random forests (RF), 

neural networks (NN) or support vector machine (SVM), 

have received increasing attention in medical research as 

they may potentially provide more accurate results.22–24 

In 2011, Manilich et al developed a prognostic model for 

colorectal cancer including several outcomes to investigate 

competing-risk survival for 5 years using RF methods; 

this model was based on multiple clinical factors with the 

objective of evaluating the accuracy of patient staging solely 

based on the tumor–node–metastasis (TNM).25 Moreover, 

several machine learning techniques have been ensembled 

into a single algorithm that provides a prediction rule with 

the best mean-squared error (MSE).26 However, the use of 

these complex classifying techniques is not common in 

clinical research for predictive purposes.

The Results and Health Services Research in Colorectal 

Cancer (CCR-CARESS) project is a prospective cohort study 

that recruited incident colorectal cancer patients receiving 

surgical treatment and that followed them during 5 years. 

It is, therefore, an appropriate study design for developing 

clinical predictive rules. In line with one of the main purposes 

of the CCR-CARESS project, the aim of this study was to 

combine RF and CART modeling approaches in order to 

develop and validate a clinical predictive model for 1-year 

mortality among patients with colon cancer who survive for 

at least 30 days after receipt of a surgical intervention. The 

objectives were first to identify clinical factors that most 

accurately predict 1-year mortality among this group of 

patients post surgery, and second, to develop and validate a 

clinically applicable predictive rule.

Methods
Study design
The CCR-CARESS prospective observational cohort is 

a multicenter study of patients diagnosed with colorectal 

cancer who had undergone surgical interventions that were 

carried out between June 2010 and December 2012 in 22 

public hospitals in Spain. Those hospitals represented nine 

provinces from six regions in Spain and all of them operate 

under the Spanish National Health Service. Patients have a 

follow-up period of up to 5 years after surgery.

The design and purposes of the study have been thor-

oughly described previously.27

Patient selection
Patients were eligible for the CCR-CARESS study if they 

were diagnosed with colon cancer (up to 15 cm above the anal 

margin) or rectum cancer (between the anal margin and 15 cm 

above it), and received curative or palliative surgery for the first 

time. Patients were identified from the surgical waiting lists 

of each hospital and were invited to participate during a clini-

cal visit or by letter. Colorectal cancer diagnosis was mainly 

based on anatomopathologic diagnosis after a biopsy by colo-

noscopy.28–30 Exclusion criteria were in situ cancer, inoperable 

tumor, severe mental or physical pathologies that could prevent 

patients from responding to the questionnaires, and terminal 

illness. Patients were informed of the study and they were 

asked to sign an informed consent before participating. In the 

current study, patients were considered if they had a diagnosis 

of colon cancer and survived 30 days after the intervention.

Variable collection
Qualified and trained reviewers collected clinical data from 

the medical records, employing data collection forms and an 

instructions manual to ensure consistency among hospitals 

and reviewers. Baseline data collected upon hospital admis-

sion included sociodemographic, clinical (including onset of 

symptoms, habits, personal and family background, comor-

bidities, diagnostic tests and preintervention treatments), 

preoperative (including laboratory parameters, tumor mark-

ers, diagnostic tests and preintervention clinical staging) and 

pathology information; and outpatient anesthesia information 

on the surgical intervention (American Society of Anesthe-

siologists Physical Status Classification System [ASA] risk 
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score31). Data related to the hospital admission included 

information on the surgical intervention, anatomic pathology 

data, length of stay, presence or degree of complications and 

data related to the remaining days of admission (including 

the presence of complications, the need for reintervention or 

death). The Charlson Comorbidity Index (CCI) was calcu-

lated based on general comorbidities.32 TNM classification 

was assessed according to the 7th Edition of the American 

Joint Committee on Cancer,29 and focused on the prein-

tervention/clinical TNM (cTNM) and the histopathologic 

report for TNM (histopathologic tumor–node–metastasis 

[pTNM]). For the final-stage grouping, pTNM was grouped 

into three categories: 0–II, III and IV. The surgical margins 

were examined for the presence of residual tumor, which was 

described using the residual tumor (R) classification: R0 was 

microscopically free proximal and distal margins; R1 was 

microscopically involved margins and R2 was macroscopic 

residual cancer.29 Lymph node ratio (LNR), defined as the 

ratio of tumor-infiltrated lymph nodes to total number of 

resected lymph nodes, was calculated and categorized as 

suggested by Rosenberg et al.33 Data on laboratory results, 

diagnostic tests, presence of complications, readmissions, 

reintervention or death were collected up to 30 days after 

surgery. Finally, information was collected throughout 

the year, regarding the need for radiation therapy and/or 

chemotherapy, including treatment schedule, cycles, com-

plications and supportive care required; laboratory results 

and diagnostic tests performed; presence of complications; 

tumor recurrence; readmission or reintervention and death.

Further information, which includes the full study pro-

tocol, has been published elsewhere.27

Outcome measures
The primary outcome was mortality within 1 year of surgery 

among those who survived for at least 30 days after surgery. 

Vital status was established by reviewing medical records and 

examining the hospital databases and National Death Index. 

Deaths were considered confirmed if the name, gender, and 

date of birth and identity card on the record matched those 

of the participant.

Statistical analysis
The study sample was randomly divided into a derivation 

sample (50%) and a validation sample (50%). Both samples 

were described using means and SDs for continuous variables 

and as frequencies and percentages for categorical variables. 

Differences between the derivation and the validation samples 

were tested for the distribution of each variable using the 

two-sample Student’s t-test for continuous variables and 

the chi-square test for categorical variables; nonparametric 

methods were used when necessary. The same methods were 

used to test univariate associations between predictors and 

1-year mortality.

When a missing observation was observed for any 

recorded symptom or complication, it was assumed to be 

asymptomatic or that no complication occurred. When 

pTNM was fully unobserved, it was replaced by the analo-

gous cTNM. Any other unrecorded or unobserved value was 

considered as a missing value. Frequency and percentage of 

missing values were reported for each variable.

Various tree-based methods were used in order to identify 

the variables and partition points that optimally classified 

patients by risk of mortality. First, the best predictors were 

selected using RF methods for the whole sample; 1000 trees 

were used in the RF model. Importance for each variable in 

the model was measured as the mean decreases in accuracy 

(error rate) and in node impurity (Gini Index).34 In addition, 

categorization of continuous variables or new encoding of 

categorical variables was controlled during the modeling 

phase in order to avoid the overimportance of categorical 

variables that could occur in tree-based models.34 Therefore, 

as to optimally categorize continuous predictors, such as 

hemoglobin or hematocrit levels, cut-off points were selected 

using genetic algorithms.35 The final decision tree based on 

a simple recursive partitioning algorithm was created in the 

derivation sample to identify 1-year mortality risk factors 

with the highest discriminative power, including the predic-

tors identified by the RF as most important. To internally 

validate the risk of 1-year mortality derived from the decision 

tree, we used bootstrap resampling with N=2000 repetitions 

and estimated 95% confidence interval (CI).36 We report the 

median of these 2000 repetitions as the parameter estimate 

and the 2.5 and 97.5 percentiles as the 95% CI. Validation 

sample was solely used for evaluating the performance of the 

final tree derived. The MSE was calculated in the validation 

sample in order to evaluate the magnitude of the differences 

between the observed and predicted probabilities of mortality.

To make the tree more user friendly, we simplified the 

resulting algorithm into a manageable number of risk classes 

based mainly on the estimated risk of 1-year mortality. We 

applied the risk classification derived from the derivation 

sample to the validation sample. Model discrimination of the 

tree and the risk categories was assessed by the area under the 

receiver operating characteristic (ROC) curve (AUC) and esti-

mated risk dichotomization for optimal sensitivity–specificity 

combination.37 The Cochran–Armitage trending statistic was 
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performed to assess whether classification provided by the tree 

could differentiate low-risk patients from high-risk patients in 

a fashion of graded response based on the level of risk present.

Multiple logistic regression (LR) was also fitted to data 

in the derivation sample. The same covariates that were 

previously selected by the recursive partitioning algorithm 

were included in the LR model. Firth’s penalized maximum 

likelihood estimation was used when necessary to reduce 

bias in the parameter estimates when data separation 

occurred because of the small number of events.38,39 The lin-

ear predictor function obtained from the derivation sample 

was applied to the validation sample. Categorization of the 

predicted risk of mortality was also performed for the LR 

model using the same criteria as before. Model discrimina-

tion of the LR model was evaluated in the same way as we 

did for the decision tree. Comparison of the discrimination 

ability between the decision tree and the LR model was 

performed using a bootstrap test with N=2000 repetitions 

to compare AUCs obtained from two ROC curves.40,41

Effects were considered statistically significant at a=0.05. 

Statistical analyses were performed using SAS for Windows© 

version 9.1 and R version 3.4.

Ethics approval and consent to 
participate
Patients were informed of the CCR-CARESS study objectives, 

invited to voluntarily participate and were included in the study 

sequentially. All of them signed a written informed consent to 

participate in the study. The Institutional Review Boards of the 

participating hospitals approved this project. In particular, the 

Clinical Research Ethics Committee of the Basque Country 

(CEIC-E), the Clinical Research Ethics Committee of the 

Hospital Galdakao-Usansolo, the Clinical Research Ethics 

Committee of the Hospital Txagorritxu, the Clinical Research 

Figure 1 Variable importance for the top 30 predictors of 1-year mortality selected by the random forest.
Abbreviations: ASA, American Society of Anesthesiologists; CA, carbohydrate antigen; CEA, carcinoembryonic antigen; CRC, colon or rectum cancer; ICU, intensive care 
unit; pTNM, histopathologic tumor–node–metastasis.

Variables
Residual tumor
Surgical approach

Complications at ICU/Reanimation Unit
Medical complications up to 30 days
Aggravating pathology
Infectious complications up to 30 days
Past history of CRC
Cancer complications up to 30 days
Surgical complications up to 30 days

Mean Decrease Gini Index

Admission to ICU/Reanimation Unit

Tumor localization
Recurrence up to 1 year
Adjuvant chemotherapy
Readmission up to 30 days
Hematocrit level
ASA
Gender
Intraoperative complications
Invasion of adjacent organs

K-ras
CA 19-9

Charlson Comorbidity Index
Smoking habit
Surgical severity
Age
Complications during hospitalization

pTNM stage

Hemoglobin
CEA
Reintervention during hospitalization

19.5
13.3

3.0
2.5
2.4
2.1
1.9
1.2
1.1

6.4

6.0
5.8
5.5
5.5
5.3
5.0
5.0
4.3
4.0

6.1
6.3

10.2
7.5
7.5
7.0
6.5

11.3

4.0
3.7
3.0

Importance
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Ethics Committee of the Área Sanitaria de Gipuzkoa, the 

Clinical Research Ethics Committee of the Hospital Basurto, 

the Clinical Research Ethics Committee of the Hospital Uni-

versitario La Paz, the Clinical Research Ethics Committee of 

the Hospital Universitario Fundación Alcorcón, the Clinical 

Research Ethics Committee of the Hospital Clínico San Car-

los, the Regional Committee of Clinical Trials of Andalucía 

(Sevilla), the Clinical Research Ethics Committee of the 

Agencia Sanitaria Costa del Sol, the Clinical Research Ethics 

Committee of the Parc Taulí Sabadell-University Hospital, the 

Clinical Research Ethics Committee of the Hospital del Mar 

and the Clinical Research Ethics Committee Fundació Unio 

Catalana d’Hospitals approved the study.

Results
A total of 1945 patients were enrolled in the study: 981 (50%) 

and 964 (50%) were randomized to the derivation and the 

validation samples, respectively. Differences between the two 

samples were not statistically significant (P>0.05), except for 

surgical complications up to 30 days after surgery (P=0.049). 

Table S1 shows these results in more detail.

Figure 1 shows the importance scores for the top 30 

predictors used in the RF model for 1-year mortality. Asso-

ciation between predictors and 1-year mortality is shown 

using univariate analysis in the derivation sample (Table 1). 

Significant variables from univariate analysis and the top 30 

predictors provided by the RF model were included in the 

splitting process for building the classification tree using 

CART modeling in order to investigate 1-year mortality 

(Figure 2). Variables selected using the CART model were 

the presence of residual tumor (R0, R1 vs R2), ASA risk 

score categorized into two groups (I–III vs IV), pTNM, 

CCI, intraoperative complications, chemotherapy treat-

ment after surgery and tumor recurrence during the 1-year 

period. The mortality rate was <5% in all those patients 

with residual tumors classified as R0 or R1, ASA below 

IV, no intraoperative complications and pTNM less than or 

equal to III, with the exception of those in a pTNM III stage 

without adjuvant chemotherapy. Generally, mortality rates 

were >10% among patients with residual tumors classified 

as R0 or R1 and patients with an ASA risk score of IV, with 

intraoperative complications or with pTNM between III or 

IV. Among patients with residual tumors classified as R2, 

mortality rates were >35%. MSE of the classification tree 

in the validation sample was 0.0026.

The ROC curve of predicted 1-year mortality for the 

CART in the derivation and validation samples is shown 

in Figure 3 along with the cut-off point of estimated risk 

dichotomization for the optimal sensitivity–specificity com-

bination for the derivation sample. The AUC of the CART 

model was 0.896 (95% CI: 0.856, 0.936) and 0.835 (95% 

CI: 0.776, 0.895) in the derivation and validation samples, 

respectively. More detailed results on the internal bootstrap 

validation of the CART analysis are shown in the additional 

material (Figure S1; Table S2).

The LR model provided AUC estimates of 0.883 (95% 

CI: 0.834, 0.933) and 0.817 (95% CI: 0.752, 0.882) in the 

derivation and validation samples, respectively. Difference 

between AUCs obtained from the CART and the LR was not 

statistically significant in any of the two subsamples.

Using data from the derivation sample, the CART cre-

ated four 1-year mortality risk classes: low (<0.03), medium 

(≥0.03 and <0.1), high (≥0.1 and <0.2) and very high (≥0.2). 

The AUC provided by the stratified risk categories in the 

derivation sample was 0.875 (95% CI: 0.823, 0.926). This 

risk classification was validated in the validation sample 

with AUC=0.832 (95% CI: 0.777, 0.888) (Table 2). The 

Cochran–Armitage test showed a statistically significant 

trend in both samples (P<0.0001). The cut-off point for 

dichotomization of estimated mortality risk investigating the 

optimal sensitivity– specificity combination in the derivation 

sample was achieved at point 0.03, leading to a sensitivity of 

0.889 and a specificity of 0.758 for risk of mortality at 1 year.

Risk of mortality predicted by the LR model was also 

categorized, using the same criteria as that for the CART. The 

AUCs for the stratified risk classification obtained from the 

LR model were 0.869 (95% CI: 0.809, 0.929) in the derivation 

sample and 0.817 (95% CI: 0.757, 0.878) in the validation 

sample. Comparison between the AUCs obtained with the 

stratified risk categories from the CART and the LR model 

provided no statistically significant differences.

Discussion
In the current study, this combination of different statistical 

techniques has enabled us to obtain a simple and easy-to-use 

decision tree with obtainable variables that are routinely used 

in daily clinical practice. The tree was obtained from a large 

prospective cohort of patients who underwent surgery for 

colon cancer and were followed for 1-year post surgery. The 

presence of residual tumors (based on R classification) was 

the first variable detected using the tree that was associated 

with mortality within 1 year for patients with colon cancer 

who survived for at least 30 days after surgery. The following 

branches included the ASA risk score, intraoperative com-

plications, pTNM stage, adjuvant chemotherapy, recurrence 

of the tumor in 1 year and CCI score.
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Table 1 Univariate relation of explanatory variables and 1-year mortality in the derivation sample is shown

Variables Missing One-year mortality for up to  
30 days survivors

P-valuea

Yes (n=50) No (n=931)

Before surgery
Gender –

Male 30 (4.9) 582 (95.1) 0.721
Female 20 (5.4) 349 (94.6)

Ageb 2 73.7 (10.5) 68.7 (10.7) 0.001
Smoking habit 10

Smoker 26 (5.6) 442 (94.4) 0.776
Former smoker 5 (4.0) 120 (96.0)
Nonsmoker 19 (7.0) 359 (95.0)

Charlson Comorbidity Indexb – 3.9 (2.2) 2.9 (1.3) 0.002
≤2 18 (3.5) 493 (96.5) 0.02

>2 32 (6.8) 438 (93.2)
Past history of CRC –

No 46 (5.1) 855 (94.9) 0.967
Yes 4 (5.0) 76 (95.0)

CEA 5
No 14 (6.5) 204 (93.6) 0.324
Yes 36 (4.8) 722 (95.2)

CA 19-9 16
No 31 (5.5) 537 (94.5) 0.643
Yes 19 (4.8) 378 (95.2)

Hemoglobinb 16 14.4 (19.6) 14.7 (15.7) 0.914
Hematocritb 28 34.4 (8.5) 37.4 (14.4) 0.029
ASA 27

I, II and III 41 (4.5) 875 (95.5) <0.001
IV 8 (21.0) 30 (79.0)

Hospitalization
Aggravating pathologyc –

No 41 (4.5) 875 (95.5) 0.004
Yes 9 (13.9) 56 (86.1)

Surgical approach 1
Open surgery 24 (5.8) 393 (94.2) 0.631
Laparoscopy 13 (5.6) 218 (94.4)
Both 11 (3.7) 286 (96.3)
Others 2 (5.7) 33 (94.3)

Surgical severity 1
Minor 0 0 <0.001
Moderate 3 (42.9) 4 (57.1)
Major 35 (4.7) 708 (95.3)
Complex major 12 (5.2) 218 (94.8)

Tumor site –
Right-transverse side 27 (9.5) 388 (93.5) 0.086
Left 23 (4.1) 543 (95.9)

Adjacent organ invasion –
0 36 (4.1) 844 (95.9) <0.001
1 8 (9.6) 75 (90.4)
>1 6 (33.3) 12 (66.7)

Lymph node ratiob 79 0.24 (0.28) 0.08 (0.16) <0.001
<0.17 24 (3.1) 748 (96.6) <0.001
[0.17–1.41) 9 (8.7) 95 (91.4)
[1.41–0.69] 7 (15.9) 37 (84.1)
>0.69 3 (17.7) 14 (82.4)

Intraoperative complications –
No 35 (3.9) 865 (96.1) <0.001
Yes 15 (18.5) 66 (81.5)

(Continued)
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Variables Missing One-year mortality for up to  
30 days survivors

P-valuea

Yes (n=50) No (n=931)

pTNM stage 3
0, I, II 13 (2.3) 561 (97.7) <0.001
III 20 (6.4) 295 (93.6)
IV 16 (18.2) 73 (82.0)

Residual tumor 40
R0 33 (3.8) 849 (96.3) <0.001
R1 3 (9.1) 30 (90.9)
R2 11 (42.3) 15 (57.7)

K-ras –
Not done 36 (4.7) 737 (95.3) 0.010
No mutation 7 (4.1) 165 (95.4)
Mutation 5 (16.7) 25 (83.3)

Complications after surgery –
No 22 (3.9) 548 (96.1) 0.038
Yes 28 (6.8) 383 (93.2)

Reintervention –
No 47 (5.2) 858 (94.8) 0.635
Yes 3 (4.0) 73 (96.1)

Admission at reanimation/ICU –
No 30 (3.9) 734 (96.1) 0.002
Yes 20 (9.2) 197 (90.8)

Complications at reanimation/ICU –
No 45 (5.1) 839 (94.9) 0.978
Yes 5 (5.2) 92 (94.8)

Up to 30 days after surgery
Cancer complications –

No 49 (5.0) 930 (95.0) 0.100
Yes 1 (50.0) 1 (50.0)

Medical complications –
No 44 (4.6) 906 (95.4) 0.004
Yes 6 (19.4) 25 (80.6)

Surgical complications –
No 49 (5.2) 898 (94.8) 0.561
Yes 1 (2.9) 33 (97.1)

Infectious complications –
No 48 (5.3) 862 (94.7) 0.573
Yes 2 (2.8) 69 (97.2)

Readmission –
No 44 (4.9) 862 (95.1) 0.266
Yes 6 (8.0) 69 (92.0)

One-year follow-up
Adjuvant chemotherapy 7

No 26 (3.3) 519 (95.2) 0.801
Yes 19 (4.4) 410 (95.6)

Readmission –
No 22 (2.9) 749 (97.1) <0.001
Yes 28 (13.3) 182 (86.7)

Recurrence of the tumor –
No 31 (3.6) 838 (96.4) <0.001
Yes 19 (17.0) 93 (83.0)

Notes: Frequency and percentage are shown for all categorical variables. aResult provided by the Student’s t-test for continuous variables and the chi-square test for 
categorical variables, nonparametric methods were used when necessary. bMean and SD are shown for continuous variables. cAggravating pathology is defined as having one 
of the following diagnoses: occlusion, perforation, fistula, abscess, bleeding and diffuse location peritonitis.
Abbreviations: ASA, American Society of Anesthesiologists; CA, carbohydrate antigen; CEA, carcinoembryonic antigen; CRC, colon or rectum cancer; ICU, intensive care 
unit; pTNM, histopathologic tumor–node–metastasis.

Table 1 (Continued)
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Figure 2 Results of the CART analysis for 1-year mortality in the derivation sample.
Notes: Each branch shows the classification variable and each node shows the number of subjects and the estimated probability of 1-year mortality on that node. Final nodes 
are in bold using different line types for stratified risk groups: low (dotted), medium (dashed), high (dotted dash) and very high (solid). Application to the validation sample is 
shown below each node in light gray-colored boxes.
Abbreviations: ASA, American Society of Anesthesiologists; CART, classification and regression trees; CCI, Charlson Comorbidity Index; Chem, adjuvant chemotherapy; 
IntraCom, intraoperative complications; pTNM, histopathologic tumor–node–metastasis; R1y, recurrence of the tumor; ResTum, residual tumor.
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As regards the comparison of our results with other 

results reported in the literature, there are other studies that 

conclude that the presence of residual tumor after surgery 

could be interpreted as a surrogate of the severity of the dis-

ease, as well as an indicator of surgery effectiveness.42 Other 

predictors identified of 1-year mortality were related to the 

general condition of patient before surgery, such as ASA and 

comorbidities (based on the CCI), or directly related to the 

severity of the disease as determined using the pTNM stage. 

Comorbidities, in conjunction with age, have been previously 

reported to have an impact on mortality,13,43,44 as well as the 

ASA score.25,45 Previous studies have determined that the 

severity of the colon cancer, as measured by the TNM stage, 

lymph node status, number of lymph nodes positive for tumor, 

or depth of primary tumor penetration, is a predictor of 1-year 

mortality.46 With regard to adjuvant chemotherapy, several tree 

nodes showed that it was a predictor of 1-year mortality; this 

same finding has been demonstrated in other studies.47 Finally, 

variables related to the condition of the patient during and after 

surgery, such as intraoperative complications and recurrence 

of the tumor in 1 year, are also present in the tree and have 

been previously identified as predictors in other studies.42,48

Tree-based methods, such as RF and CART, are advanta-

geous compared to linear and additive models, such as regres-

sion models. Tree-based methods do not require parametric 

specification of the relationship between the predictors and 

the outcome, whereas regression methods do require. It basi-

cally means that while regression models are fitted based on 

an equation that defines how in theory the predictors and 

the outcome are related, tree-based models do not assume 

any predefined relationship between the variables. Thanks 

to this feature of tree-based models, these allow for the 

natural incorporation of complex interactions and relation-

ships between covariates, aside from what is already known, 

and various competing and inter-related variables can be 

explored simultaneously. Generally, importance of predic-

tors in a univariate regression framework and in a tree-based 

framework could differ considerably, as occurs in our study, 

probably due to the interaction effects. The final tree showed, 

for instance, an interaction effect between adjuvant chemo-

therapy and pTNM stage, with significant splits depending 

on adjuvant chemotherapy for pTNM stage III when there 

were not intraoperative complications and for pTNM stages 

III and IV in the presence of intraoperative complications, 

for patients with ASA I, II or III and residual tumor classified 

as R0 or R1, while the same split was not present for other 

combinations of the same variables. Moreover, in practice, 

the main advantage of tree-based methods is that the result 

provided in a decision tree form can be easily interpreted by 

clinicians and researchers and somehow mimics the clinical 

practice in the decision-making process. RF is based on an 

algorithm that uses bootstrapping in conjunction with CART, 

thereby randomly selecting individuals and predictors from 

the original sample in an iterative way, and protecting the 

model from overfitting. RF is computationally more efficient 

than other tree-based methods, such as simple CART models, 

and it is robust to a noisy response.34 RF allowed us to select 

the most important variables to be incorporated into the 

tree. Encoding of categorical variables is an important issue 

during the modeling phase in tree-based methods because 

categorical variables could artificially gain importance over 

the continuous variables.34 Prevention against favoring cat-

egorical predictors with a large number of categories over 

continuous or dichotomous predictors was incorporated in 

the modeling phase. In addition, categorization of some 

predictors, for easy interpretation of the results, has been 

optimized by selecting the optimal number and location of 

cut-off points using a prediction framework based on genetic 

algorithms, recently proposed in the literature.35

One recent publication concludes that modern machine 

learning techniques, such as RF, SVM and NN, showed 

instability and a high optimism even with >200 events per 

Table 2 Distribution of the subjects depending on the estimated risk of 1-year mortality

Derivation sample (981) Validation sample (964)

Risk group No (931) Yes (50) No (893) Yes (71)
Unclassified 60 (92.3) 5 (7.7) 51 (85.0) 9 (15.0)
Low 634 (99.4) 4 (0.6) 594 (98.3) 10 (1.7)
Medium 115 (95.0) 6 (5.0) 130 (95.6) 6 (4.4)
High 71 (85.5) 12 (14.5) 66 (79.5) 17 (20.5)
Very high 51 (68.9) 23 (31.2) 52 (64.2) 29 (35.8)
AUC 0.875 (0.823–0.926) 0.832 (0.777–0.888)

Notes: Estimated mortality rate (P) was categorized and classified as mortality risk as follows: low (P<0.03), medium (0.03≤P<0.1), high (0.1≤P<0.2) and very high (P≥0.2). 
Dashed horizontal line shows the cutoff point for dichotomization of estimated 1-year mortality risk looking for optimal sensitivity–specificity combination in the derivation 
sample, leading to a sensitivity of 0.889 and a specificity of 0.758.
Abbreviation: AUC, area under the receiver operating characteristic curve.
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variable.49 They may need over 10 times as many events per 

variable to achieve a stable validated AUC and a small opti-

mism as the more conventional modeling techniques such as 

LR and CART. These findings imply that such modern tech-

niques should only be used in medical prediction problems 

if very large data sets are available. When we performed RF 

with the whole sample (n=1945), high classification error was 

obtained. However, we relied on results obtained from RF 

with regard to variable importance, and this information was 

retained to significantly reduce the number of predictors to 

be incorporated in order to develop a classification tree using 

CART. In practice, when we look for higher accuracy, most 

of the models become more complex and their interpretation 

becomes more difficult. This is always the tradeoff we make 

when prediction accuracy is the primary goal.34 However, 

the simple result obtained from the CART method provided 

an interpretable tree. Moreover, the split-sample validation 

and the bootstrap internal validation of the CART showed 

stability of the results even with <5% of events in the sample. 

Our final tree was developed with 50 events and 7 variables, 

which is low compared to the usual recommendation for 

binary outcomes of 10 events per predictor.50,51 Hence, the 

results of combining more complex techniques, such as RF 

and genetic algorithms, with more simple approaches, such 

as CART, yield to not only accurate but also valid and stable 

results, as it is shown in our final decision tree. When results 

from the CART and the LR approaches were compared in 

terms of discrimination ability, we have observed that differ-

ence between both methods was not statistically significant. 

Whereas in terms of interpretability, results in a tree form are 

easier to interpret by clinical researchers than the formulae 

provided by regression approaches.

Other studies have used decision trees based on recur-

sive partitioning techniques to predict prognosis in patients 

with cancer.15,52 Radespiel-Tröger et al studied factors that 

predict recurrence of colon cancer after resection using 

tree-based methods.53 Moreover, Manilich et al developed 

an RF prognostic model using clinical and histopathologic 

factors to predict 5-year survival of patients with colorectal 

cancer.25 Their study was, however, limited to patients with 

a complete radical resection of tumor with negative radial or 

distal margins (R0). Investigators concluded that the main 

predictor was LNR, which was not a significant predictor in 

our study. However, other significant variables in that study, 

such as ASA score, tumor stage and treatment, were similar 

to those in our study.

The present study was a large prospective cohort study, 

including 22 hospitals; therefore, there was variability in 

individuals and clinical practice, and the number of vari-

ables that were collected as potential predictors of 1-year 

mortality was high. The whole sample included a 4% of 

patients who underwent palliative resection, who were likely 

to be different on prognostic to those undergoing curative 

resection. However, results excluding these patients were 

very similar to the presented results in terms of prediction 

(correlation coefficient r=0.989). In contrast, from our point 

of view, one value of the present study is to reflect the type 

of patients that appear in hospitals in real life, preserving a 

certain natural heterogeneity. Furthermore, the predictive tree 

was developed following the current structured guidelines 

for the development of prediction models, as detailed in the 

Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis (TRIPOD) statement.54 In 

combining statistical techniques, we gained validity, accuracy 

and interpretability. Although the predictors identified were 

similar to those in other studies, the simple result obtained 

using the CART method provided an interpretable tree with 

a good predictive ability. Moreover, the internal validation 

of the CART carried out by the bootstrap analysis showed 

stability of the results, even with a low rate of events in the 

sample. Therefore, this prediction rule may help clinicians 

to easily classify patients by prognosis and guide them in the 

follow-up process. Other authors have combined multiple 

machine learning techniques to develop a prediction algo-

rithm with the best MSE.26 However, the result provided by 

that single algorithm is not as intuitive and easy to use as our 

classification tree and therefore, its use in clinical practice 

is more limited than the prediction rule we have proposed.

Given that some of the variables included in the tree, 

such as pTNM, intraoperative complications or adjuvant 

chemotherapy, are only available in the postoperative period, 

main application of this tool would be in the planning of 

the clinical follow-up. Patients with a higher risk of 1-year 

mortality could benefit from a more intensive surveillance 

of their oncologic disease and potential comorbidities and 

complications, while those with a low risk could be scheduled 

to a less intensive follow-up. For more severe patients (ASA 

IV or residual tumor 2), our CART provides information 

about the chances of survival, though the sample size is small. 

Patients with residual tumor 2 seem to have low survival 

expectancy, though chemotherapy increases the likelihood 

of surviving. Among the milder cases (stage 0–II), the result 

of the surgery (residual tumor) marked an important differ-

ence having a high probability of surviving 1 year in those 

with residual tumor 0. In cases with stage III, it helps us to 

see how depending on the result of the surgery as opting for 
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chemotherapy can significantly increase the survival chances. 

This may be able to guide the oncologist about the use of 

more or less aggressive treatments. This tree could also be 

used by health care workers to provide patients with more 

precise prognostic information than that based solely on the 

TNM staging system. Taking into account the high negative 

predictive value of the model, it could be especially useful to 

inform patients classified in the low-risk groups, for which a 

high 1-year survival probability could be reassuring.

Limitations
The limitations that are common in prospective multicenter 

studies with 1 year of follow-up were also present in our 

study. One of these limitations is related to losses to follow-

up, which obviously could be a source of bias, and in our 

study 6% of the patients in the sample were not classified by 

the tree because of missing values in some of the predictive 

variables included in the model. Another limitation we must 

mention is that no inter- or intraobserver reliability studies 

were performed to assess the quality of the data collection 

process. Nevertheless, reviewers were trained at each site and 

were provided with a common manual for the data collection. 

Our study included a few tumor biomarkers, as carcinoem-

bryonic antigen levels and CA 19.9. Prediction ability of the 

models could be increased in the future by including genetic 

and biologic prognostic markers. The influence of variables, 

such as differences in the health care provided to the patients 

or adherence to treatment, was not well documented and 

consequently they were not included in the model; all of these 

factors could have an influence on mortality. Interpretation 

of the stratified risk results in terms of screening must be 

cautious because low positive predictive values (15%–17%) 

could be due to the low mortality rate. This kind of data is 

likely to be clustered within hospitals and it was not taken 

into consideration in the analysis. A mixed-effects approach 

for RF and CART could probably improve the results. This 

kind of methodology has been proposed in the literature for 

continuous outcomes,55 although as far as our knowledge, 

it has not been developed yet for dichotomous responses. 

However, the clustering of patients into hospitals has been 

checked in a generalized mixed-effects model framework, 

showing a negligible effect in this particular data. Finally, 

an important limitation of CART is that including higher-

order interactions without considering the main effects could 

lead to spurious relations between predictors, leading to an 

overestimation of the effect of some predictors. However, 

the use of combined split-sample and bootstrap validation 

techniques provided internally validated results to minimize 

this drawback. Further research is needed in order to validate 

this decision tree using other samples and populations. Such 

studies will provide guidance as the models’ applicability in 

clinical practice and/or what modifications might be needed 

in order to improve its validity.

Conclusion
This clinical prediction rule, which combined RF and CART, 

was a simple, interpretable, valid and accurate prediction 

model for 1-year mortality among colon cancer patients who 

survived for at least 30 days after surgery. This decision tool 

could be provided to clinicians in order to assist in clinical 

decision-making processes.
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Supplementary materials

Table S1 Descriptive statistics for explanatory variables stratified by sample (derivation vs validation)

Variables Missing Randomly split samples P-valuea

Derivation
981 (50.4%)

Validation
964 (49.6%)

Before surgery
Gender –

Male 612 (62.4) 593 (61.5) 0.693
Female 369 (37.6) 371 (38.5)

Ageb 2 68.9 (10.7) 68.9 (10.9) 0.883
Smoking habit 20

Smoker 468 (48.2) 443 (50.6) 0.551
Former smoker 125 (12.9) 114 (12.0)
Nonsmoker 378 (38.9) 357 (37.4)

Charlson Comorbidity Indexb – 2.94 (1.37) 2.84 (1.25) 0.225
≤2 511 (52.1) 524 (54.4) 0.316
>2 470 (47.9) 440 (45.6)

Past history of CRC –
No 901 (91.8) 886 (91.9) 0.614
Yes 80 (8.2) 78 (8.1)

CEA 10
No 218 (22.3) 242 (25.2) 0.134
Yes 758 (77.7) 717 (74.8)

CA 19-9 29
No 568 (58.9) 578 (60.8) 0.392
Yes 397 (41.1) 373 (39.2)

Hemoglobinb 16 14.7 (15.9) 15.3 (18.2) 0.413
Hematocritb 58 37.2 (14.1) 37.3 (19.1) 0.973
ASA 51

I, II and III 916 (96.0) 901 (95.9) 0.855
IV 38 (4.0)

Hospitalization
Aggravating pathologyc –

No 916 (93.4) 879 (91.2) 0.070
Yes 65 (6.6) 85 (8.8)

Surgical approach 2
Open surgery 417 (42.6) 384 (39.9) 0.245
Laparoscopy 231 (23.6) 222 (23.1)
Both 297 (30.3) 330 (34.3)
Others 35 (3.6) 27 (2.8)

Surgical severity 3 0.904
Minor 0 0
Moderate 7 (0.7) 6 (0.6)
Major 743 (75.8) 723 (75.2)
Complex major 230 (23.5) 233 (24.2)

Laterality of the tumor –
Right-transverse side 415 (42.3) 399 (41.4) 0.683
Left 566 (57.7) 565 (58.6)

Adjacent organ invasion –
0 880 (89.7) 861 (89.3) 0.955
1 83 (8.5) 84 (8.7)
>1 18 (1.8) 19 (2.0)

Lymph node ratiob 79 0.09 (0.17) 0.10 (0.19) 0.071
<0.17 772 (82.4) 755 (81.3) 0.447
[0.17–1.41) 104 (11.1) 107 (11.5)
[1.41–0.69] 44 (4.7) 40 (4.3)
>0.69 17 (1.8) 27 (2.9)

Intraoperative complications –
No 900 (91.7) 880 (91.3) 0.718
Yes 81 (8.3) 84 (8.7)

(Continued)
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Variables Missing Randomly split samples P-valuea

Derivation
981 (50.4%)

Validation
964 (49.6%)

pTNM stage 12
0, I and II 574 (58.7) 508 (53.2) 0.051
III 315 (32.2) 346 (36.2)
IV 89 (9.1) 101 (10.6)

Residual tumor 75
R0 882 (93.7) 859 (92.5) 0.558
R1 33 (3.5) 39 (4.2)
R2 26 (2.8) 31 (3.3)

K-ras 12
Not done 773 (79.3) 749 (78.2) 0.732
No mutation 172 (17.6) 174 (18.6)
Mutation 30 (3.1) 35 (3.7)

Complications after surgery –
No 570 (58.1) 582 (60.4) 0.309
Yes 411 (41.9) 382 (39.6)

Reintervention –
No 905 (92.2) 882 (91.5) 0.540
Yes 76 (7.8) 82 (8.5)

Admission at reanimation/ICU –
No 764 (77.9) 753 (78.1) 0.902
Yes 217 (22.1) 211 (21.9)

Complications at reanimation/ICU –
No 884 (90.1) 862 (89.4) 0.614
Yes 97 (9.9) 102 (10.6)

Up to 30 days after surgery
Cancer complications –

No 979 (99.8) 961 (99.7) 0.685
Yes 2 (0.2) 3 (0.3)

Medical complications –
No 950 (96.8) 941 (97.6) 0.299
Yes 31 (3.2) 23 (2.4)

Surgical complications –
No 947 (96.5) 913 (94.7) 0.049
Yes 34 (3.5) 51 (5.3)

Infectious complications –
No 910 (92.8) 910 (94.4) 0.141
Yes 71 (7.2) 54 (5.6)

Readmission –
No 906 (92.4) 888 (92.1) 0.844
Yes 75 (7.7) 76 (7.9)

One year of follow-up
Adjuvant chemotherapy 14

No 545 (56.0) 494 (51.6) 0.056
Yes 429 (44.0) 463 (48.4)

Readmission 3
No 771 (78.6) 740 (77.0) 0.399
Yes 210 (21.4) 221 (23.0)

Recurrence of the tumor 3
No 869 (88.6) 848 (88.2) 0.814
Yes 112 (11.4) 113 (11.8)

Notes: Frequency and percentage are shown for all categorical variables. aResult provided by the two-sample Student’s t-test for continuous variables and the chi-square test 
for categorical variables, nonparametric methods were used when necessary. bMean and SD are shown for continuous variables. cAggravating diagnosis is defined as having 
one of the following diagnoses: occlusion, perforation, fistula, abscess, bleeding and diffuse location peritonitis.
Abbreviations: ASA, American Society of Anesthesiologists; CA, carbohydrate antigen; CEA, carcinoembryonic antigen; CRC, colon or rectum cancer; ICU, intensive care 
unit; pTNM, histopathologic tumor–node–metastasis.

Table S1 (Continued)
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Table S2 Internal validation of the CART analysis by bootstrap resampling (N=2000)

Node CART Bootstrap resampling Risk group

N Observed  
mortality risk

Estimated median  
mortality risk

95% CI

1 243 0 − − Low
2 229 0.0131 0.0131 (0.0040, 0.0300) Low
3 20 0.0500 0.0625 (0.0357, 0.1875) Medium
4 166 0.0060 0.0065 (0.0054, 0.0222) Low
5 27 0.0370 0.0455 (0.0270, 0.1364) Medium
6 40 0.0500 0.0513 (0.0208, 0.1395) Medium
7 10 0.3000 0.3000 (0.1000, 0.6364) Very high
8 60 0.1333 0.1321 (0.0545, 0.2261) High
9 34 0.0588 0.0606 (0.0244, 0.1539) Medium
10 23 0.1739 0.1667 (0.0455, 0.3333) High
11 6 0.5000 0.5000 (0.1667, 1.000) Very high
12 33 0.2121 0.2143 (0.0800, 0.3548) Very high
13 17 0.3529 0.3529 (0.1333, 0.6111) Very high
14 8 0.5000 0.5000 (0.1667, 0.8571) Very high

Note: Estimated median mortality risk, 95% CIs and stratification of risk are shown by node.
Abbreviations: CART, classification and regression trees; CI, confidence interval.

Figure S1 Results of internal validation of the CART analysis by bootstrap resampling (N=2000).
Abbreviation: CART, classification and regression trees.
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