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Abstract: Multiple myeloma (MM) is a clonal malignancy of plasma cells that is newly diag-

nosed in ~30,000 patients in the US each year. While recently developed therapies have improved 

the prognosis for MM patients, relapse rates remain unacceptably high. To overcome this chal-

lenge, researchers have begun to investigate the therapeutic potential of oncolytic viruses as a 

novel treatment option for MM. Preclinical work with these viruses has demonstrated that their 

infection can be highly specific for MM cells and results in impressive therapeutic efficacy in a 

variety of preclinical models. This has led to the recent initiation of several human trials. This 

review summarizes the current state of oncolytic therapy as a therapeutic option for MM and 

highlights a variety of areas that need to be addressed as the field moves forward.
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Introduction
Multiple myeloma (MM) is a clonal malignancy of immunoglobulin-secreting plasma 

cells. The disease is newly diagnosed in >30,000 people in the US annually, result-

ing in ~12,000 deaths, making it the second-most common form of hematopoietic 

malignancy.1,2 The disease often evolves slowly through several progressive stages.3 If 

identified early, patients will often display a nonmalignant precancerous state known 

as monoclonal gammopathy of undetermined significance.4 Over time, this progresses 

to a malignant but still largely asymptomatic disease called smoldering myeloma, in 

which clonal plasma cells slowly increase in the bone marrow.5,6 Eventually, disease 

progresses to symptomatic MM, in which malignant cells proliferate rapidly in the 

bone marrow, causing localized sites of malignancy known as plasmacytomas. While 

a few patients present with single plasmacytomas,7 most develop a systemic disease 

characterized by multiple distinct tumors, hence the name “multiple myeloma”. 

Malignant cells in these lesions secrete a variety of factors that cause remodeling of 

local bone structure, resulting in osteolytic lesions.8 This bone remodeling, combined 

with malignant cells outcompeting normal bone marrow cells for proliferative space, 

cause the typical symptoms of MM, including elevated levels of calcium in the blood, 

renal failure, anemia, and bone pain or fractures (frequently referred to as CRAB).2

Historically, treatment for MM patients involved combinations of chemotherapeutic 

drugs, such as melphalan, cyclophosphamide, and doxorubicin, either with or without 

radiation. These treatments were frequently able to induce at least partial remissions; 

however, patients suffered extremely high rates of relapse, typically within 2–3 years. 

The reason for these relapses was complex and likely involved a variety of factors, 
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including the high degree of genomic variability inherent 

in MM,9–11 a tendency for MM cells to display phenotypic 

plasticity,12,13 the relatively undefined nature of tumorigenic 

MM stem cells,14,15 the resistance of these cells to many che-

motherapeutic agents,16,17 and the interplay between MM cells 

and their complex tumor microenvironment, which provides 

a variety of progrowth and pro-survival signals.18 Due to this 

poor prognosis, eligible MM patients were often treated with 

a more aggressive regime involving myeloablative chemo-

therapy combined with single or tandem autologous stem-cell 

transplant (ASCT).19,20 This improved prognosis; however, 

the myeloablative conditioning regimes used were associ-

ated with severe treatment-related morbidities, including 

neutropenia and increased chances of infection. This largely 

limited the usage of ASCT to younger, healthier patients. 

Additionally, even with ASCT, disease often recurred within 

3–5 years. The primary cause of recurrence following ASCT 

was thought to be residual disease persisting within treated 

patients.21,22 However, studies also found that virtually all 

ASCT samples were contaminated with low levels of malig-

nant MM cells that were reintroduced to the patient during 

transplant.23,24 The exact impact of these contaminating MM 

cells on disease relapse remains controversial; however, their 

reintroduction seems unlikely to be beneficial.

From 2000 to 2005, novel chemotherapeutic agents, 

including bortezomib,25 thalidomide,26 and lenalidomide,27,28 

began to improve outcomes for newly diagnosed MM 

patients. Use of these drugs rapidly increased the median 

overall survival from 2.5 years in 2000 to over 6.5 years in 

2010.29,30 Since 2010, a variety of new drugs have also been 

approved, including carfilzomib,31 pomalidomide,32 panobi-

nostat,33 daratumumab,34 and ixazomib,35 which promise to 

improve diagnoses even further. Due to these advances, the 

long-held belief of MM being “incurable” is slowly being 

challenged.36 Unfortunately, even with the approval of these 

new drugs, the proportion of patients who achieve durable 

long-term remissions is still predicted to be <50%.36

Since two of the major factors contributing to therapeutic 

failure in MM are tumor-cell heterogeneity and plasticity,9–13 

alternative therapies for MM that do not rely on the use of tar-

geted small-molecule inhibitors are highly attractive. One such 

therapy is the use of live replicating viruses specifically to infect 

and kill malignant MM cells, a strategy known as oncolytic 

virotherapy (OV).37,38 OV functions through two distinct mecha-

nisms.39,40 In the first mechanism, known as direct oncolytics, 

malignant cells are specifically infected with an oncolytic virus. 

This infection results in the specific elimination of the infected 

cells through a variety of potential mechanisms, including lytic 

viral replication, induction of apoptosis, or cellular necrosis. 

This specific tumor-cell killing then initiates a second OV 

mechanism, often referred to as oncolytic immunotherapy, in 

which the danger signals provided by viral infection combined 

with the specific killing of tumor cells result in the generation 

of antitumor immunoresponses. These responses are often 

typified by large CD8+ T-cell responses reactive against both 

infected and uninfected tumor cells; however, a variety of other 

immune cells, including CD4+ T cells and natural killer cells, 

have also been shown to play critical roles.41–48 

Each oncolytic mechanism provides a significant benefit 

while also being associated with therapeutic hurdles. Each of 

these mechanisms provides a significant benefit, while also 

being associated with therapeutic hurdles. For example, direct 

oncolytics is extremely rapid and highly efficient in some set-

tings; however, it only results in the elimination of cells that 

are directly infected with a virus. This places extremely large 

importance on the delivery of a virus to a high percentage of 

malignant cells, a significant challenge that remains largely 

unsolved by the field. In contrast, oncolytic immunotherapy 

can be completely sterilizing; however, it is much slower to 

initiate than direct oncolytics and frequently demonstrates 

clinical benefit in only a fraction of recipients. Successful OV 

thus requires striking a delicate balance between the rapid 

but incomplete direct oncolytics and the slow but sterilizing 

viral immunotherapy.

A number of different oncolytic viruses have been studied 

for their therapeutic potential against MM. Interestingly, 

the findings for each virus are often unique in terms of the 

mechanisms through which specific infection is achieved, 

how this infection causes elimination of MM cells, and 

the therapeutic potential of the virus (Table 1). This review 

summarizes the existing literature for each oncolytic virus 

that has been studied as a therapeutic against MM, as well 

as attempting to provide some context for these studies and 

potential strengths and weaknesses of the work.

Measles
The measles virus (MV) is a medium-sized (150 nm), negative-

sense, single-stranded RNA virus from the Paramyxoviridae 

family. While wild-type MV is extremely pathogenic in 

humans, attenuated strains, including the attenuated Edmon-

ston B strain on which oncolytic MV is based, have been used 

safely as vaccines for years.49 The initial oncolytic potential of 

MV was recognized more than 50 years ago;50 however, inten-

sive studies into its therapeutic potential began around 2002.51

Interestingly, unlikely many oncolytic viruses, which are 

primarily studied as treatments for solid tumors, much of the 
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work with oncolytic MV has been focused on hematopoietic 

malignancies. Therefore, while MV is far from the most 

commonly used oncolytic virus overall, it does represent 

the best-studied viral agent for the treatment of MM. Like 

many oncolytic viruses, MV has been shown specifically to 

infect both MM cell lines and CD138+ cells in MM-patient 

bone marrow.52,53 The specificity of this infection within 

the hematopoietic compartment appears to be based on an 

approximately sevenfold increase in expression of the endog-

enous MV receptor CD46 on malignant MM cells compared 

to nonmalignant hematopoietic cells.53 In addition, further 

improvements to the specificity of viral binding have been 

obtained by fusing the viral glycoprotein H to single-chain 

variable-fragment antibodies specific to either CD3854 or the 

Wue1 epitope.55 Both studies demonstrated improvements in 

the specificity of MV infection for malignant MM cells in 

vitro; however, neither strategy appears to have been adopted 

in other MV studies. Interestingly, while MV has been well 

studied as a therapeutic agent against MM, the mechanisms 

responsible for MM elimination following MV infection 

appear largely unknown. Presumably, lytic viral replication 

plays a major role; however, MV is also highly fusogenic, 

and infection results in the formation of large syncytia.52,53,56 

The relative impact of each of these processes on elimination 

of infected MM cells thus remains unclear.

In terms of therapy, studies on MV have focused on 

the treatment of established disease, and efficacy has been 

shown in both systemically disseminated and localized 

plasmacytoma models.52,57–63 In these models, MV has 

shown exceptionally high efficacy, including the ability to 

induce potentially curative responses in some settings.52,57,58 

Unfortunately, MV does not naturally infect mice, due to an 

inability to bind to murine MV receptors.64 This has limited 

the study of oncolytic MV to models in which human MM 

cells are xenografted into immunodeficient mice. This inher-

ent limitation has resulted in two major translational hurdles 

that remain to be adequately addressed. First is that MV 

therapy, particularly following intravenous injection, is highly 

restricted by existing αMV humoral immunity. Although MM 

patients do present with slightly decreased αMV-antibody 

titers compared to healthy controls,65 virtually 100% of 

patients remain αMV-antibody-positive, and these antibodies 

can potently neutralize MV infection.57 In an oncolytic set-

ting, studies have demonstrated that passive transfer of these 

αMV antibodies into tumor-bearing mice negatively impacts 

the resulting efficacy of MV therapy;57,59 however, whether 

this passive transfer fully recapitulates a functional humoral 

response seems questionable. Several methods to overcome 

this challenge have been attempted, primarily focusing on 

the use of different carrier cells, including T cells,57 macro-

phages,61 and irradiated tumor cells,59 to deliver the virus to 

sites of residual MM. Of these, irradiated tumor cells seem 

to be the most promising; however, this strategy has not yet 

been adopted clinically, and MV therapy remains largely 

restricted to patients who present with low αMV titers.66 

The second major challenge involves the potential impact of 

Table 1 Treatment of MM using oncolytic viruses

Virus Mechanism of MM 
specificity

Mechanism of MM-cell  
killing

Potential  
toxicity

Potential therapeutic uses

Measles virus Overexpression of viral 
receptor (CD46)

Lytic viral replication
Syncytia formation (?)

Low Treatment of established 
disease

Vesicular stomatitis 
virus

Defects in interferon 
responses

Lytic viral replication
Inhibition of DNA synthesis (?)

Moderate Treatment of established 
disease

Reovirus Overexpression of viral 
receptor (JAM-A)

Lytic viral replication
Apoptosis
Autophagy
Unfolded protein response (?)

Low Treatment of established 
disease
Purging of ASCT samples

Adenovirus Unknown Lytic viral replication (?) Low Treatment of established 
disease

Vaccinia virus Engineered Lytic viral replication (?) Moderate Treatment of established 
disease
Generation of MM vaccines

Myxoma virus MM-specific binding 
(receptor unknown)

Induction of apoptosis Low Treatment of established 
disease
Purging of ASCT samples

Notes: Overview of oncolytic viruses most commonly studied as treatments for MM, as well as mechanisms through which they achieve specific infection of MM cells, 
mechanisms through which they eliminate infected MM cells, potential for in vivo toxicities, and proposed therapeutic uses; (?) indicates mechanisms that are suspected, but 
have not yet been demonstrated.
Abbreviations: MM, multiple myeloma; ASCT, autologous stem-cell transplant.
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T cells on MV therapy. These cells could either restrict viral 

therapy by eliminating infected cells prior to viral replication 

or be induced to generate potent αMM immunoresponses.39 

Unfortunately, the use of xenografted, immunodeficient 

animal models largely eliminates the possible study of how 

T-cell responses might impact MV therapy.

Despite these unresolved issues, MV represents one of 

only two oncolytic viruses that have progressed into clinical 

trials for the treatment of MM.66–68 The virus used in these 

trials is a derivative of the Edmonston B vaccine strain that 

was modified to include the sodium–iodine symporter (NIS). 

Inclusion of the nis gene causes infected cells to import 

high levels of radioactive iodine, which allows for both live 

imaging of infected cells during therapy and improvement of 

clinical efficacy by increasing accumulation of toxic auger-

emitting radioisotopes. Comprehensive preclinical toxicology 

studies carried out in either MV-susceptible squirrel monkeys 

or human CD46 transgenic mice68 have demonstrated that 

MV-NIS is safe for use at high doses. Similarly, while a 

recently completed Phase I trial did identify some potential 

grade III and grade IV hematological toxicities, including 

neutropenia, lymphopenia, anemia, and thrombocytopenia, 

no dose-limiting toxicities following therapy were identified. 

While this study was not powered for analysis of efficacy, 

some impressive results, including one complete disease 

regression, were observed.66,67 Overall, the response rate at 

the highest dose was 36% (4 or 11 patients). MV was detected 

in the blood following treatment; however, patients in this 

study rapidly seroconverted, suggesting that αMV humoral 

immunity could be a major limitation even in patients who 

initially present as MV-naïve. Unpublished reports have 

suggested that responding patients in this trial can develop 

long-term αMM immunological memory, implicating the 

potential impact of T-cell immunotherapy; however, this 

possibility has not yet been thoroughly studied. Despite a 

number of remaining hurdles, however, its established clinical 

successes currently make MV the most advanced oncolytic 

candidate for the treatment of MM.

Vesicular stomatitis virus
The vesicular stomatitis virus (VSV) is a small (75–120 

nm), enveloped, negative-sense, single-stranded RNA virus 

from the Rhabdoviridae family. VSV is a severe animal 

pathogen, particularly in cattle, where it causes pathology 

virtually indistinguishable from foot-and-mouth disease. 

Adsorption of VSV to target cells is accomplished through 

the viral glycoprotein G, which binds to the ubiquitously 

expressed low-density-lipoprotein receptor. After entry, 

VSV displays an extremely rapid replication cycle in which 

new viral progeny can be generated in as little as 1–2 hours. 

This replication, however, is rapidly blocked by the pres-

ence of functional innate immunoresponses, particularly 

interferon. This naturally limits VSV replication to cells 

in which these responses are not present, including a wide 

array of transformed malignant cells. Due to its extremely 

rapid replication cycle and natural restriction to cancerous 

cells, VSV represents one of the more potent direct oncolytic 

viruses being studied.

With regard to MM, VSV has been shown directly to 

infect and kill both MM cell lines and CD138+ cells in MM-

patient bone-marrow samples.69,70 This is likely due to lytic 

viral replication; however, the virus has also been shown to 

inhibit DNA and RNA synthesis rapidly in infected MM 

cells, which could represent a second potential mechanism 

of killing.71 Viral replication is predominantly MM-cell-

specific, since signs of infection are typically not observed 

in most peripheral blood cells, including T cells, B cells, 

and natural killer cells. However, low-level infection can be 

seen in some neutrophils, and the virus appears fully infec-

tious to normal monocyte.69 Additionally, toxicity studies 

done in mice using an oncolytic VSV armed with IFNβ and 

NIS demonstrated that in addition to malignant cells, viral 

RNA could be recovered from the liver and spleen72 and 

fully infectious virus found in the spleen. These studies also 

demonstrated the potential for intravenous injection to cause 

systemic inflammatory responses and liver toxicity (measured 

by ALT and AST). In addition to these “off-target” toxicities, 

“on-target” infection of meningeal MM deposits has been 

hypothesized to cause potentially lethal inflammation in the 

central nervous system.73 Therefore, while unmodified VSV 

appears naturally oncotropic for MM cells, additional work 

remains needed to identify ways to reduce toxicity that might 

be associated with systemic therapy.

Therapeutically, VSV has demonstrated efficacy in MM 

models following both localized and systemic  injections.70,74–76 

Critically, much of this work has been done in syngeneic 

models of both localized plasmacytomas and systemically 

disseminated MM. This work thus allows for analysis of both 

direct and immunotherapeutic OV mechanisms. Interestingly, 

while oncolytically-induced immunotherapy is often essential 

in solid tumor models, the work in MM suggests that this 

process is largely inhibitory to VSV therapy. Two studies 

comparing the efficacy of VSV in immunodeficient and 

immunocompetent models found better therapeutic efficacy 

in the absence of an immune system.70,76 Additionally, in two 

other models with clear immunotherapeutic  involvement, 
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depletion of CD4+ and CD8+ T cells resulted in only minor 

loss of efficacy.73,75 These data suggest that VSV-based 

treatment of MM might be predominantly through a direct 

oncolytic mechanism. Alternatively, it has been shown that 

systemic VSV therapy is limited by the presence of αVSV 

antibodies in the blood,77 which cause rapid clearance of free 

virus by the liver. This concern might be addressable, since 

chemical modifications of the viral virions using polyethylene 

glycol (PEG) have been shown to slow viral clearance. The 

effects of this PEGylation during actual OV of MM, however, 

have not been demonstrated. Therefore, while the potential 

efficacy of VSV against MM appears well established, more 

studies into the exact mechanisms involved remain needed.

Reovirus
Reovirus (ReoV) is an extremely large (600–1,000 nm), 

nonenveloped, double-stranded RNA virus from the Reo-

viridae family. While this virus can infect humans, in either 

the gastrointestinal or respiratory tract, it typically causes 

only subclinical pathology and is considered safe for clinical 

use. The oncolytic potential of ReoV in models of both solid 

tumors and hematological malignancies has been studied 

for many years,78,79 and a clinical grade ReoV (derived from 

the Dearing strain) is currently available under the brand 

Reolysin.80–83

In vitro, ReoV has been shown specifically to infect and 

kill both established MM cell lines84–88 and CD138+ cells in 

primary MM bone-marrow samples.85,86 The specificity of 

this infection is likely due to high expression of the ReoV 

receptor JAM-A on malignant MM cells, since the sensitivity 

of MM cells to ReoV treatment correlates with their JAM-A 

expression,87,88 elimination of JAM-A from MM cell lines 

prevents their infection with ReoV, and overexpression of 

JAM-A significantly increases in the sensitivity of MM cells 

to ReoV.87 In contrast, the mechanism through which MM 

cells are killed following ReoV infection remains somewhat 

unclear. Killing is clearly dependent on lytic viral replica-

tion;85,86 however, viral treatment has also been shown to 

induce cell death through both apoptotic and autophagic path-

ways.85 Additionally, viral infection significantly impacts the 

unfolded protein response, which is known to play a critical 

role in MM-cell survival.89 It thus remains to be determined 

which of these potential mechanisms truly mediates ReoV 

elimination of infected MM cells.

Therapeutically, ReoV has been shown to be efficacious 

in a variety of preclinical MM models. Thirukkumaran 

et al demonstrated that ReoV is unable to infect normal 

CD34+ bone-marrow progenitor cells and that the virus 

can  specifically identify low levels of CD138+ MM cells 

contained in mixtures of normal bone-marrow aspirates.84,86 

This allows the virus to be used as an ex vivo purging agent 

to prevent MM reintroduction during ASCT while not nega-

tively impacting hematopoietic reconstitution.84–86 Addition-

ally, direct viral injection has been shown to be somewhat 

therapeutically effective against MM in both systemic85,88–90 

and localized plasmacytoma89 models. Unfortunately, the 

results of viral monotherapy in these studies have frequently 

been modest, and complete regression has not often been 

observed. Similarly, while a Phase I clinical trial of Reolysin 

monotherapy in relapsed MM patients identified no dose-

limiting toxicities, only modest efficacy was seen, with the 

best clinical outcomes being stable disease (observed in 

25% of patients).83 These data suggest that the use of ReoV 

in combination treatments might be needed to increase 

therapeutic efficacy.

In this context, it is interesting to note that several groups 

have shown that existing MM therapies, including histone 

deacetylase inhibitors or the proteasome inhibitor bortezo-

mib, can sensitize MM cells to ReoV infection by increasing 

the expression of the viral receptor JAM-A.87,88 This suggests 

that ReoV might be more effective in MM patients who have 

already failed one or more existing therapies. Alternatively, 

ReoV and histone deacetylase inhibitors have been shown 

to act synergistically when used together in vivo, suggesting 

the possible development of rational combination therapies.88 

Finally, a recently published work has suggested the pos-

sibility of using ReoV to improve response rates of MM 

patients to additional immunotherapeutic treatments, such 

as PDL1 blockade.90 More work, however, is clearly needed 

to identify and optimize potential combinatorial therapies 

involving ReoV.

Adenovirus
Adenovirus (AdV) is a medium-sized (90–100 nm), non-

enveloped, double-stranded DNA virus from the Adenoviri-

dae family. The term “adenovirus” actually refers to a large 

number of distinct viral serotypes, many of which display 

highly distinct pathologies and infectious characteristics. 

Taken together, AdV infections in humans are extremely 

common and can account for almost 10% of all respiratory 

infections. These infections typically present as a “common 

cold”, although some serotypes are associated with more 

severe symptoms, including pneumonia. As therapeutic 

agents, AdVs are one of the best-studied viral families. They 

have been used in a variety of therapeutic modalities, includ-

ing lytically replicating oncolytic studies, vaccine studies, and 
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gene-therapy studies. Due to the substantial breadth of this 

work, this review focuses on lytically replicating oncolytic 

studies using AdV.

In the context of MM, AdV has been shown to be highly 

infectious to both established MM cell lines and CD138+ cells 

from MM-patient bone-marrow samples.91,92 Interestingly, 

while much of the oncolytic work in solid tumors has focused 

on a single AdV serotype (type 5), work in MM has directly 

compared the efficacy of a wide range of AdV serotypes, 

with interesting results. Senac et al found that serotypes 6, 

26, and 48 killed MM cells while having only minimal effects 

of normal peripheral blood mononuclear cells. In contrast, 

serotypes 11, 35, 40, and 41 displayed the opposite specific-

ity, killing normal peripheral blood mononuclear cells while 

largely sparing malignant MM cells.91 This observation was 

supported by additional research demonstrating that species 

D AdV, including the previously identified serotypes 26 and 

48, was a highly efficient MM killer, while species B AdV, 

including serotypes 11 and 35, was a highly inefficient killer. 

This work identified the most commonly used oncolytic 

serotype (AdV type 5) as only a modest killer of MM cells. 

This serotype hierarchy appeared to be maintained during in 

vivo therapy, since serotypes 26 and 45 displayed improved 

efficacy against established MM tumors in vivo.92 Interest-

ingly, unlike many oncolytic viruses, whose preferential 

infection of MM cells appears to be mediated by receptor 

specificity, the preferential killing of MM by different AdV 

serotypes correlated better with replication kinetics than with 

viral adsorption.

Therapeutically, unmodified AdVs have been shown to 

be effective against established MM in several studies.91–93 

Unfortunately, these studies have focused on the treatment of 

localized human plasmacytomas in immunodeficient animals. 

Efficacy in more clinically relevant systemic, immunocompe-

tent models has yet to be tested. This is particularly important 

for AdV-based therapy, given that virtually all patients are 

exposed to AdV throughout life and many carry potent neu-

tralizing humoral responses against the more common AdV 

serotypes. In addition to this caveat, it must be noted that the 

overall efficacy of AdV therapy, even in localized models, 

has typically been modest, and very few long-term cures 

have been demonstrated. In order to improve this efficacy, 

several groups have studied the possibility of “arming” AdV 

to promote therapy. AdV armed with TRAIL has been shown 

to display enhanced killing of MM cells in vitro while also 

demonstrating therapeutic synergy with PI3K or protea-

some inhibitors.94 Experiments arming AdV with CD40L 

have also displayed improved killing of MM cells both in 

vitro and in vivo.93 Interestingly, while CD40L is a known 

immunomodulator, the improved efficacy in the latter studies 

appeared to be mediated by direct induction of apoptosis, and 

not through enhanced T-cell responses (a possibility that was 

never examined). Additionally, it is important to note that 

both experiments arming oncolytic AdV used serotype 5 as 

their viral backbone. Utilizing similar arming strategies on 

more potent αMM serotypes has yet to be explored.

Vaccinia virus
The vaccinia virus (VacV) is a large (200–300 nm), envel-

oped, double-stranded DNA virus from the Poxviridae family. 

While the evolutionary host for VacV remains somewhat con-

troversial, it is clear that the wild-type virus is fully infectious 

in a variety of mammals, including humans, and that systemic 

infection can result in severe disease symptoms, including 

death. Due to their use as vaccine platforms to eradicate 

smallpox, however, attenuated VacV strains have been 

extensively studied in humans and display relatively good 

safety profiles. As an oncolytic agent, VacV has been well 

studied in the context of solid tumors in both  preclinical95,96 

and clinical97–102 settings. In particular, recombinant VacV 

encoding either GM-CSF (known as JX594) or PSA (known 

as Prostvac) has advanced to large Phase III clinical trials.

While oncolytic VacV is well established as a potential 

treatment for solid tumors, its use in a hematopoietic setting is 

much less well studied. This is likely due to the fact that while 

VacV is extremely lytic, the virus is not naturally oncotropic 

and requires additional genetic modification to restrict viral 

replication to malignant cells. In solid tumors, this can be 

accomplished through a single deletion of the viral tk gene. 

This restricts viral replication to cells with an abundance of 

thymidine, a state predominately found in rapidly dividing 

cancer cells. Unfortunately, this restriction is not absolute, 

and tk–/– VacV clones can infect normal tissue, causing severe 

pathology following system injection.103 Therefore, the use of 

VacV as an oncolytic agent against systemic malignancies, 

such as MM, requires additional genetic engineering further 

to restrict viral replication and limit toxicity. A variety of 

methods to enhance viral specificity have been attempted. 

One of the most commons methods is to delete the vgf gene 

in tk–/– clones. VGF stimulates cellular proliferation through 

activation of EGFR. Its removal in so-called double-deleted 

VacV further restricts viral replication to rapidly dividing 

cells, resulting in improved safety profiles.104 A second 

approach that has been attempted is actively to restrict viral 

replication by placing essential viral genes under miRNA 

restriction. In this approach, several Let7a miRNA-binding 
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sites are placed within the promoter of the essential viral gene 

B5R. This causes an inhibition of B5R expression in normal 

cells (which express high levels of Let7a). In contrast, in MM 

cells (which fail to express Let7a), B5R expression occurs 

at normal levels, thus promoting viral replication only in 

malignant MM cells.103 Attempts have also been made to alter 

viral binding specifically to increase adsorption of virions 

in malignant cells.105 While this is an attractive theoretical 

approach, the binding determinants of VacV are complex and 

remain poorly understood,106 making successful retargeting 

difficult. In constructs that display successful targeting, elimi-

nation of infected MM cells appears to be dependent on lytic 

replication.104 Interestingly, the efficacy of this elimination 

seems somewhat controversial. Several groups have sug-

gested that VacV is extremely lytic toward infected MM cells, 

with massive reductions in cellular viability shown within 24 

hours after infection.103,104,106 In contrast, Lei et al saw only 

minimal reductions in MM-cell viability following infec-

tion with VacV.107 In this work, elimination of infected cells 

occurred through the induction of apoptosis, and efficient 

killing required “arming” the oncolytic VacV with additional 

apoptotic modulators, including miR34a and Smac.

Therapeutically, VacV has been used as a treatment 

for MM in two distinct ways. The first way is the direct 

treatment of established disease in vivo.103,104,107 This work 

has demonstrated that VacV has the potential to treat estab-

lished MM. Unfortunately, it has primarily utilized models 

of human plasmacytomas established in immunodeficient 

mice. Anecdotal evidence from a single case report sug-

gests that VacV can (at least transiently) reduce systemic 

MM-tumor burden in a human patient;108 however, the effi-

cacy of viral treatment against disseminated MM remains 

largely unclear. The second therapeutic modality in which 

VacV has been studied is the use of the virus to generate 

αMM-tumor vaccines. In this regard, it has been demon-

strated that VacV can be used as an adjuvant to increase 

the magnitude of αMM immunoresponses following vac-

cination. Animals vaccinated with tumor cells infected ex 

vivo with VacV and then lethally irradiated can completely 

reject secondary challenge with uninfected MM cells,109–113 

and vaccination of tumor-bearing animals can result in 

remission of established MM.114 This effect appears to be 

mediated by cytotoxic T cells, although the exact subset has 

not been identified.111,113 Unfortunately, this methodology 

requires prevaccination of tumor-naïve individuals with 

VacV to achieve maximal efficacy, which could severely 

limit its translational potential. Nevertheless, further inves-

tigation into this approach might be warranted.

Myxoma virus
The myxoma virus (MyxV) is a large (200–300 nm), envel-

oped, double-stranded DNA virus from the Poxviridae family 

that is somewhat related to VacV.115 Unlike VacV, however, 

MyxV displays a tightly restricted host range specific to 

lagomorphs (rabbits). No instance of natural MyxV infec-

tion has ever been documented in any nonrabbit species, and 

even direct injection of large amounts of the virus does not 

elicit noticeable pathology in either humans or mice.116–118 

MyxV is a relatively novel oncolytic virus whose therapeu-

tic potential was recognized <10 years ago.119 Since then, it 

has been investigated in preclinical models of a number of 

different malignancies, including melanoma,42,119,120 rhab-

doid tumors,121,122 pancreatic cancer,123,124 glioma,125,126 and 

gallbladder cancer.127

Like many oncolytic viruses, MyxV has been shown 

preferentially to infect and kill both established MM cell 

lines and CD138+ cells found in MM-patient bone-marrow 

samples.117 This killing appears selective for MM cells, 

based on a strong preferential binding of the virus to CD138+ 

cells compared to nonmalignant CD138– cells found in 

MM-patient bone marrow.117,118 Like ReoV, this preferential 

binding also excludes absorption of MyxV to CD34+ bone-

marrow progenitors, allowing the virus to be used as an ex 

vivo purging agent during ASCT.117,118,128,129 Interestingly, 

unlike the vast majority of OVs, killing of MM cells by 

MyxV appears to be independent of lytic viral replication, 

since no new viral progeny are produced during treatment 

and replication-incompetent virus is still fully capable to kill 

infected cells.117 Instead, elimination of MyxV-infected MM 

cells appears to be mediated by the induction of extrinsic 

apoptosis caused by depletion of cellular apoptotic inhibitors, 

Bcl2, Mcl1, XlAP, and survivin. This depletion results from 

the rapid decapping of cellular mRNA early in infection.130,131 

Interestingly, while a truly comprehensive study has never 

been published, 100% of the primary MM-patient samples 

studied to date have responded to MyxV therapy, suggesting 

that the unique mechanism through which MyxV kills MM 

cells might overcome some of the challenges associated with 

MM-cell heterogeneity and resistance.106,117

Therapeutically, many of the studies into MyxV’s potential 

to treat MM have focused on the virus’s ability to improve the 

treatment for MM patients receiving ASCT.117,128,129 Bartee et al 

showed that MyxV treatment of MM-patient bone-marrow 

biopsies resulted in the rapid and specific infection of CD138+ 

cells while sparing the CD34+ bone-marrow progenitors.117,118 

Additionally, treatment of mixtures of human MM cells and 

bone-marrow progenitors with MyxV prior to transplant could 
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specifically prevent establishment of MM tumors, while still 

allowing for stem-cell engraftment and hematopoietic recon-

stitution.117 Due to these results, it has been suggested that 

MyxV could be used as an ex vivo purging agent to eliminate 

contaminating MM cells from ASCT samples. It has also been 

shown that direct intravenous injection of MyxV into immuno-

competent mice bearing established, systemic MM can result in 

both a rapid reduction in tumor burden and potentially curative 

induction of αMM immunoresponses.43 Unfortunately, while 

the results of these experiments were striking in some animals, 

the overall response rates achieved were very low. In order to 

improve therapy, several groups have studied the possibility 

of combining ex vivo purging with treatment of established 

disease.128,129 These groups have demonstrated that treatment 

of ASCT samples with MyxV ex vivo results in the loading of 

viral particles onto either T cells128 or neutrophils,129 which has 

beneficial effects through improving the delivery of the virus 

in vivo or activating immune cells to improve αMM immunity.

Picornavirus
In addition to the more commonly used viruses listed already, 

a small number of studies have also demonstrated the onco-

lytic potential of the Picornaviridae family against MM. 

For example, it has been shown that MM cells overexpress 

Coxsackie virus receptors ICAM1 and DAF, rendering them 

susceptible to infection with the oncolytic Coxsackie virus 

A21.132 Additional work has shown that the efficacy of A21 

infection in killing MM cells was high and the virus could be 

used to treat solid plasmacytomas.132,133 However, viral treat-

ment also had a negative impact on bone-marrow progenitor 

differentiation, suggesting a possible hurdle to translation. 

Mengovirus (another member of Picornaviridae) has also 

been shown to infect and kill MM cells; however, in vivo 

studies with this virus demonstrated only modest efficacy 

along with relatively high toxicity.134 Coxsackie viruses are 

positive-sense, single-stranded RNA viruses, which means 

their nucleic acid is directly infectious. In an interesting 

study, Hadac et al were able to demonstrate that injection of 

infectious A21 nucleic acid into solid MM plasmacytomas 

initiated an oncolytic infection with efficacy similar to that 

seen using intact virus.133 While this is a strategy with some-

what restricted usage, it represents an interesting approach to 

overcoming some of the challenges that appear to be associ-

ated with using intact picornaviruses in the clinic.

Final words
Review of the existing literature clearly demonstrates the 

potential for OV to be used as a viable therapy for MM 

patients. A large number of viruses have been shown specifi-

cally to infect MM cells, with infection resulting in the rapid 

elimination of these cells through a variety of mechanisms. 

Preclinical studies conducted with most of these viruses 

have typically resulted in at least stable disease or partial 

disease remission, and early results from clinical studies 

in human patients appear to be promising. However, the 

field also suffers from several obvious issues, which must 

be addressed. First and foremost is the use of appropriate 

preclinical models to study the mechanisms and efficacies 

of OV. With the notable exception of VSV, the majority of 

work studying OV treatment of MM has been conducted in 

immunodeficient models of single subcutaneous plasmacy-

toma. While these models represent a technically easy starting 

point, they largely fail to recapitulate the clinical realities of 

MM in two major ways. First, due to the nature of oncolytic 

virus particles, the challenges associated with treatment of 

systemic versus localized disease are very different. In par-

ticular, delivery of a virus through the bloodstream to sites of 

systemic disease is known to be a major translational hurdle. 

Since MM typically presents as a systemic disease, this hurdle 

should be addressed in any preclinical study. Unfortunately, 

the use of subcutaneous plasmacytoma models largely 

bypasses this issue, possibly skewing results in a more favor-

able manner. Second, the immune system is known to impact 

OV efficacy significantly in a variety of both positive and 

negative ways. For example, serum complement and existing 

antiviral humoral responses can inhibit viral infectivity.135–137 

In contrast, much of the efficacy of OV is now thought to be 

mediated through the induction of antitumor T-cell-mediated 

immunotherapy.39 The use of immunodeficient animal models 

largely precludes studies into how these issues might affect 

MM therapy. In particular, as immunotherapy becomes more 

clinically prevalent, the propensity of OV to induce α-tumor 

T-cell responses raises the possibility that OV can be used 

to improve the response of MM to other immunotherapeutic 

agents, such as PD1- or CTLA4-blocking antibodies. To date, 

these antibodies have proven only modestly successful as 

single agents against MM;138–140 however, given their success 

in other malignancies, this line of study still appears concep-

tually attractive. Importantly, a variety of immunocompetent 

MM models have been developed in recent years that can 

be used to address these issues.141,142 While none of these 

models perfectly recapitulates the clinical realties of MM, 

they are all clearly better suited to preclinical studies on OV 

than subcutaneous immunodeficient models.

The second issue that arises during a review of the 

literature is the need to examine the impact of disease 
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heterogeneity on OV. A number of studies have shown that 

oncolytic viruses can infect and typically kill a high percent-

age of CD138+ cells in MM-patient bone marrow. However, 

the number of samples used in these studies is often small 

(typically data from only one to three patients is shown), and 

the methodologies used (often flow cytometry or immuno-

fluorescence) are typically unable to detect small numbers 

of resistant cells. One of the major challenges in treating 

MM is the heterogeneity of disease, both between patients 

and within single patients, which increases the likelihood 

of resistant clones developing following therapy. While OV 

theoretically has the potential to overcome these challenges, a 

demonstration of this ability is notably lacking in the current 

literature. The field would thus benefit from a comprehensive 

study of the efficacy of OV therapy on a large number of 

patient samples using sensitive techniques to study efficacy 

versus the development of resistance.

Finally, as is often the case in the field of OV, the literature 

reveals a set of studies that are often disjointed and uncon-

nected. Multiple lines of research that appear promising 

within a single virus are never combined, nor are these lines 

of research adopted in other viral platforms. Additionally, the 

results of combining OV with more typical MM standards of 

care, such as chemotherapy, radiation, or monoclonal antibod-

ies, are generally lacking. This latter point is especially critical, 

in order to place OV in the context of other MM therapies. For 

example, should OV treatment be used as frontline therapy, or 

is it more suited for relapsed or refractory patients? Does OV 

synergize with existing MM treatments? If so, which one? At 

some point, if the field is to advance from preclinical work to 

meaningful human trials, the “optimal” genetic modifications 

must be identified, synergistic combinatorial modifications 

must be introduced, and therapy must be integrated into cur-

rent standards of care. In conclusion, a number of significant 

issues must still be resolved before OV for MM is to become 

truly clinically viable. However, for a field that should prob-

ably be considered in its infancy, the results appear extremely 

promising, and more work is clearly warranted.
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