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Abstract: In the ontogeny of a normal immune response, a series of checkpoints must be 

overcome to ensure that unwanted and/or harmful self-directed activation responses are avoided. 

Many of the molecules now known to be active in this overseeing of the evolving immune acti-

vation cascade, contributing inhibitory signals to dampen an overexuberant response, belong 

to the immunoglobulin supergene family. These include members of the CD28/CTLA-4:B7.1/

B7.2 receptor/ligand family, PD-1 and PDL-1, CD200 and CD200R, and the more recently 

described V-domain immunoglobulin suppressor of T-cell activation and its ligand (VSIG-3/

IGSF11). Unfortunately, from the point of view of improving immunotargeting of cancer 

cells, triggering these checkpoint inhibitory signaling pathways, so necessary to maintain self-

tolerance, simultaneously acts to prevent effective tumor immunity. The recent development of 

reagents, predominantly antibodies, to act as checkpoint blockade agents, has had a dramatic 

effect on human cancer treatment, with a marked reported success for anti-CTLA-4 and PD-1 

in particular in clinical trials. This review provides a general overview of the data now available 

showing the promise of such treatments to our cancer armamentarium and elaborates in depth 

on the potential promise of what can be regarded as an underappreciated target molecule for 

checkpoint blockade in chronic lymphocytic leukemia and solid tumors, CD200. 

Keywords: checkpoint blockade, immunotherapy, oncology, inhibitory pathways, stimulatory 

pathways, activated T cells

Introduction
The immune response to nominal antigen, including those expressed by tumor cells, 

involves the encounter of T lymphocytes with antigen expressed on suitable antigen-

presenting cells (APCs), delivery of a suitable costimulatory signal (generally via the 

CD28:CD80/CD86 axis), and additional delivery of an activation signal to APCs.1 

In the early days of studies into improving immunotherapy in cancer, a great deal of 

effort was spent on augmenting each of these signals, and the field is replete with stud-

ies exploring suitable mechanisms for enhanced antigen presentation and the use of 

costimulation for cancer therapy.2–4 However, taking as a starting point a better under-

standing of how and why self-recognition is controlled, in other words, how organisms 

ensure that there is minimal to no response to self-antigens, it soon became clear that 

cancer immunologists had ignored an important mechanism of immune regulation. 

This mechanism was associated with expression and engagement of inhibitory mol-

ecules and their receptors in the immune system.5–8 The failure to develop autoimmune 

reactivity is now thought to be not simply a failure to recognize antigen in a suitable 
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manner or the failure to express costimulatory molecules, 

but to the expression and functional activation of inhibitory 

signaling pathways controlled by inhibitory ligands/recep-

tors, the so-called checkpoint blockade.9–12 Thus, reversal 

of such checkpoint blockade, generally though not always 

through the use of antibodies, may release the activation of 

anti-tumor responses and in turn represents a major break-

through in cancer immunotherapy.13–17 

The discussion that follows highlights advances in the 

inhibition of checkpoint blockade in cancer care with par-

ticular attention to key molecules currently explored in both 

model systems and in clinical situations (see also summary 

of checkpoint blockade studies in Table 1 and schematic 

for action of reagents that target key checkpoints in tumor 

therapy in Figure 1).

An alternate CD80/CD86 receptor, 
CTLA-4, as an inhibitory receptor in 
cancer therapy
The early recognition that CTLA-4 represented an alternate 

ligand for CD80/86 but, unlike the previously identified 

activating ligand CD28, could produce marked effects on 

regulation of T-cell responses rather than T-cell activation 

led to studies exploring the effect of neutralizing CTLA-4 

on immune responses in general and antitumor responses in 

particular.18–20 Neutralizing antibodies to CTLA-4 were the 

first-approved inhibitors of checkpoint blockade to be used 

clinically, initially in melanoma21,22 and subsequently in other 

tumors (prostate/lung23,24). The randomized phase III study 

by Hodi et al22 in patients with advanced melanoma who 

had failed previous treatments showed for the first time that 

treated subjects receiving antibody (ipilimumab) alone or 

in combination with a gp100 peptide vaccine had superior 

overall survival, compared with those receiving the vaccine 

alone. This study represented the first positive random-

ized clinical trial ever reported in patients with metastatic 

melanoma in terms of overall survival. Subsequent studies 

on this promising therapy, as noted above, were extended to 

prostate cancer,24 initially using ipilimumab alone, but more 

recently using this and/or anti-PD-1 therapy (see below) 

in association with the first-approved cell-based immune 

therapy, sipuleucel-T.25 The use of inhibitors of checkpoint 

blockade in association with vaccine therapy is a natural 

extension of other studies,24 which documented that patients 

with advanced prostate cancer responding to the treatment 

with anti-CTLA-4 therapy developed enhanced responses to a 

number of other tumor-related antigens, both patient-specific 

and disease-specific, compared with nonresponders. One 

of these shared antigens, PAK6, was expressed in prostate 

cancer, was shown to induce CD4+ T-cell responses, and was 

subsequently reported to be both immunogenic and protective 

in mouse tumor models. 

Interestingly, it has been noted in patients receiving anti-

CTLA-4 therapy that clinical benefit may ultimately derive 

from treatment despite unconventional patterns of tumor 

response that were often, initially at least, misinterpreted 

as disease progression.26 For melanoma, these so-called 

immune-related adverse events have ranged from minor 

(rashes, which may rarely progress to life-threatening toxic 

epidermal necrolysis, and colitis, characterized by a mild-

to-moderate diarrhea) to more severe (lymphadenopathy, 

neuropathies, and nephritis). Given the previously mentioned 

role of CTLA-4 (and other checkpoint blockade reagents) in 

preventing autoimmunity, such adverse events may not be 

altogether surprising. At least four patterns of response have 

Table 1 Checkpoint blockade reagents used in animal models and/or clinical situations

Target interactiona Checkpoint blockade reagentb System explored-E/C (reference)c

CTLA-4:CD28 Anti-CTLA-4 E: (18, 19, 29–31)
C: melanoma (22, 26)
C: solid tumor (24, 28)

PD-1:PDL-1 Anti-PD-1 E: (34)
C: melanoma (32)
C: solid tumor (37, 38)

Anti-PDL-1 E: (35, 36)
C: solid tumor (39)

VISTA: VSIG-3/IGSF11 VISTA:KO mice E: (49)
Anti-VISTA E: (49)

CD200:CD200R Anti-CD200 E: hematopoietic tumor (44, 56)
E: solid tumor (61–70)

Notes: aCostimulatory/inhibitor pathway targeted for manipulation; breagents used to target interaction under investigation; csituation in which reagents are used.
Abbreviations: C, clinical scenario; E, experimental model system; KO, knockout; VISTA, V-domain immunoglobulin suppressor of T-cell activation.
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been observed in melanoma patients, namely: 1) response 

in baseline lesions by week 12, with no new lesions seen; 

2) stable disease, followed by a slow, steady decline in total 

tumor burden; 3) regression of tumor after initial increase in 

total tumor burden; and 4) reduction in total tumor burden 

during or after the appearance of new lesion(s) after week 

12.26 These unexpected kinetics of response to CTLA-4 

treatment have in turn spurred investigation into specific 

approaches to evaluate responses to immunotherapy and 

to develop biomarkers that can predict responsiveness.27 

In a recent phase I/II dose escalation/expansion study with 

28 prostate cancer patients, T-cell monitoring was used in 

subjects receiving combined vaccination (Prostate GVAX®) 

and ipilimumab immunotherapy. Differences were observed 

between patients who benefited from therapy and those who 

did not, with treatment-induced increased lymphocyte counts 

and CD4+/CD8+ T-cell activation all associated with clinical 

benefit. Prolonged overall survival was seen in patients with 

the highest pretreatment frequencies of CD4+ CTLA-4+ T 

cells and low pretreatment frequencies of regulatory T cells, 

suggesting that cancer-related expression of CTLA-4+ in 

CD4+ T cells may be a useful survival predictor and biomarker 

for patient selection prior to therapeutic CTLA-4 blockade 

in such individuals.28

A current trend has been to use anti-CTLA-4 therapy 

in association with other therapies, either immunotherapy 

(vaccination) or other checkpoint blockade reagents. In this 

context, the following recent studies are worthy of note. 

Using the nucleoside analog gemcitabine, commonly used 

in patients with lung, ovarian, and breast cancer, albeit 

with limited efficacy, Lesterhuis et al asked whether the 

immunopotentiating effects of this drug might normally be 

simultaneously, at least in part, restrained effects mediated 

through CTLA-4. In two independent nonimmunogenic 

Figure 1 Schematic showing potential sites of action of monoclonal agents used for checkpoint blockade. Green arrows indicate activation pathways, while red indicates 
suppressive pathways. Blue arrows show antibodies blocking inhibitor pathways, including those determining effector pathways of tumor killing from both activated T cells 
and activated myeloid cells. Activation of resting T cells occurs following the engagement of the TCR with antigen/MHC presented by antigen-presenting cells themselves 
preactivated by exogenous molecules (DAMPs interacting with TLRs).
Abbreviations: Ag, antigen; DAMPs, damage-associated molecular patterns; MHC, major histocompatibility complex; TCR, T-cell receptor; TLRs, toll like receptors; VISTA, 
V-domain immunoglobulin suppressor of T-cell activation.
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murine tumor models, treatment with gemcitabine chemo-

therapy in combination with CTLA-4 blockade led to the 

induction of potent antitumor responses, mediated by both 

CD4+ and CD8+ T cells.29 In a study combining CTLA-4 

blockade (ipilimumab) with VEGF blockade (bevacizumab 

to attenuate angiogenesis), Wu et al30 also showed evidence 

of increased immune cell infiltration in melanoma lesions 

in association with improved outcomes. More detailed stud-

ies in these treated subjects revealed an increased humoral 

response to Gal-1, which is known to have proangiogenesis, 

and immunosuppressive activity and that this increased anti-

Gal-1 response was correlated with improved overall survival. 

In contrast, a subgroup of treated patients showing increased 

circulating Gal-1 protein had reduced overall survival. These 

authors concluded not only that the combination therapy 

might lead to improved benefit, but also that the addition of 

targeted therapy directed at Gal-1 might also provide adjunc-

tive therapy, linking antiangiogenesis and immune checkpoint 

blockade. The results from studies by Huang et al are equally 

striking, in a murine model of ovarian cancer.31 These authors 

observed that multiple immune checkpoint molecules were 

expressed in tumor-associated or tumor-infiltrating cells in 

ovarian tumor-bearing mice and that blockade of any one of 

PD-1, LAG-3, or CTLA-4 alone using blocking antibodies or 

knockout mice led merely to a compensatory upregulation of 

the other checkpoint pathways. As anticipated, single-agent 

blockade led to tumor outgrowth in all animals, while dual-

antibody blockade against PD-1/CTLA-4 or triple blockade 

against PD-1/LAG-3/CTLA-4 led to tumor-free survival in 

~20% of treated mice. Dual blockade of LAG-3 and CTLA-4 

pathways in PD-1 knockout mice led to tumor-free survival 

in ~40% of treated mice, implying that a hierarchy might 

exist in terms of the importance of immune checkpoints. In 

all cases, antitumor immunity was associated with increased 

numbers of CD8+ T cells and cytokine-producing effector T 

cells, along with reduced numbers of Tregs.31 

Role for PD-1:PDL-1 blockade in cancer 
therapy
The next most prominent ligand/receptor pair investigated has 

been the PD-1:PDL-1 dyad,32 since earlier studies had already 

demonstrated that upregulation of PDL-1 was often seen on 

cancer cells,33 with the ligand PD-1 known to be expressed 

on T cells. An experimental model system used an interferon 

gamma (IFNγ)-inducing cancer vaccine that included a com-

bination of granulocyte-macrophage colony-stimulating fac-

tor and multiple toll like receptor (TLR) agonists to increase 

the number of activated dendritic cells (TEGVAX). It was 

found that while some benefit in the treatment of established 

tumors with TEGVAX was seen along with enhanced sys-

temic antitumor immunity, the effect was incomplete.34 An 

upregulation of PDL-1 expression in the tumor microenvi-

ronment was seen in the vaccinated mice and was thought 

to be in part at least responsible for this incomplete tumor 

eradication.34 In support of this hypothesis, coadministration 

of a PD-1-blocking antibody with TEGVAX led to the com-

plete regression of established tumors. In a similar manner, 

blockade of PDL-1, a direct target of hypoxia-inducible factor 

1-alpha, led to enhanced T-cell vaccination in another animal 

model.35 Data from Ge et al have now also confirmed that the 

blockade of PDL-1 signaling augmented dendritic cell (DC) 

maturation, proliferation, and IL-12 secretion and led to more 

pronounced vaccine efficacy using DC vaccination in a breast 

tumor-bearing human severe combined immunodeficiency 

(SCID) model, with more prolonged host survival.36

Clinical trials using antibodies targeting the PD-1:PDL-1 

pathway have proven to be successful in a number of malig-

nancies.37 A phase I study reported on 39 patients with 

metastatic melanoma, prostate cancer, non-small-cell lung 

cancer (NSCLC), renal cell carcinoma (RCC), or colorectal 

cancer receiving a single intravenous infusion of anti-PD-1 

in dose-escalating manner with those showing evidence of 

clinical benefit at 3 months eligible for repeated therapy. 

Significant effects were reported for melanoma, RCC, and 

NSCLC patients. A similar positive effect was reported in 

melanoma patients by others32 with observed responses often 

being long-lasting and, like the CTLA-4 story referred to 

earlier, often associated with cases in which progression pre-

ceded tumor shrinkage. Discrete patterns of autoimmune side 

effects, including vitiligo, were also often seen. As a general 

observation, however, most epithelial cancers have not shown 

responses of long duration with PD-1 or CTLA-4 blockade 

alone.32 A number of trials have reported positively on the 

use of targeting PD-1:PDL-1 with anti-PD-1 or anti-PDL-1 

antibodies in association with chemotherapy on NSCLC.38,39 

Other immunotherapy that might be included along with 

individual checkpoint blockade includes the use of other 

checkpoint blockade molecules (CTLA-4: above; V-domain 

immunoglobulin suppressor of T-cell activation (VISTA)/

Tim3/CD200: below). In addition, it is now appreciated 

that the analysis of biomarkers that might predict response 

to treatment is an important issue prior to formulation of a 

therapy regimen for individual patients.40 

Coadministration of engineered T cells with chimeric 

antigen receptor along with immune checkpoint inhibition 

using PD-1 or CTLA-4 blockade has proven to be  effective 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2017:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

605

CD200 as an immunotherapeutic target

in patients with melanoma, Hodgkin’s lymphoma, and 

NSCLC.41 In a preclinical study evaluating IL-15 (a stimu-

lant of natural killer cells as well as B/T cells) combined 

with anti-CTLA-4 or anti-PD-1 in a mouse metastatic CT26 

colon carcinoma model, IL-15, though partially effective 

alone, increased the expression of PD-1 on CD8+ T cells 

and increased the secretion of the immunosuppressive 

cytokine, IL-10. In animals receiving IL-15 with both anti-

PDL-1 and anti-CTLA-4, greater cytotoxic T lymphocyte 

killing and IFNγ secretion were seen, along with reduced 

expression of PD-1 on CD8+ T cells and decreased IL-10 

secretion, all occurring in concert with a greater survival of 

tumor-bearing animals, compared with mice treated with any 

other reagent combination.42 Again in mouse tumor models, 

studies have explored whether immunosuppressive cytokines 

might be suitable candidates for immunotherapy. Blockade 

of TGF-β1 and TGF-β2, in association with a therapeutic 

vaccine-inducing CD8+ T-cell-mediated tumor immunity, 

led to augmented protection and increased vaccine-induced 

Th1-type responses as measured by IFNγ production.43 Most 

importantly, when combined with PD-1 blockade, additional 

blockade of TGF-β1 and TGF-β2 led to even further increased 

vaccine efficacy.43

As regards biomarkers that might help delineate subjects 

most likely to respond to particular therapies, our own group, 

investigating the CD200:CD200R interaction as a check-

point target (see below), has suggested that the presence of 

elevated levels of soluble CD200 in serum may reflect a poor 

prognosis in chronic lymphocytic leukemia (CLL).44,45 More 

recently, groups working on the PD-1 pathway46 have reported 

that elevated levels of soluble PDL-1 are associated with 

a poorer prognosis in RCC/multiple myeloma. In the case 

of melanoma patients, high pretreatment levels of sPDL-1 

were associated with an increased likelihood of progressive 

disease despite treatment with CTLA-4 or PD-1 blockade, 

although subsequent changes in circulating sPDL-1 early 

after treatment were unable to distinguish responders from 

those with progressive disease. 

VISTA and other checkpoint blockade 
agents in immunotherapy
VISTA has been reported to suppress T-cell responses.16,47 

The molecule is predominantly expressed on hematopoietic 

cells and in several animal cancer models is reportedly 

highly expressed on myeloid cells that infiltrate tumors, 

although definitive identification of its ligand has yet to be 

performed.47,48 Recent studies investigated whether VISTA 

might synergize with PD-1 to produce enhanced immune 

regulation, using VISTA-deficient, PD-1-deficient (knockout 

[KO]) mice and VISTA/PD-1 double KO mice.49 Both single 

KO mice displayed chronic inflammation and spontaneous 

activation of T cells, indicating the nonredundancy of these 

pathways, but the double KO mice had significantly more 

prominent phenotypes than either of the single KO mice. 

T-cell responses to foreign antigens were observed to be 

higher in the VISTA/PD-1 double KO mice. Using mono-

clonal antibodies specific for VISTA and PDL-1, combined 

checkpoint blockade led to optimal tumor clearance in a 

cancer model, suggesting the possibility of improved clinical 

utility using combination therapy.49 

In preliminary studies in humans, VISTA expression was 

measured by immunohistochemistry in a gastric cancer (GC) 

cohort using 464 therapy-naive GC samples and 14 samples 

with liver metastases.50 Tumor cell VISTA expression was 

seen in ~9% of GC patients, and ~14% of patients were found 

with liver metastases. VISTA expression was also observed in 

immune cells in GC (~84%) and in those with liver metastases 

(~43%) although there was no correlation observed between 

tumor/immune cell expression and patient outcome. 

Even targeting combinations of CTLA-4 and PD-1 has 

not to date proven to lead to durable responses in many 

tumors, and this in turn has fostered a search for other tar-

get molecules that might produce an adjunctive suppressive 

effect. Tim-3 is an inhibitory receptor expressed on many 

T cells including Foxp3+ Treg cells and innate immune 

cells (macrophages and dendritic cells). Engagement of its 

ligands leads to the suppression of cellular responses.51 In 

animal model systems in vivo blockade of Tim-3 with other 

checkpoint inhibitors led to enhanced antitumor immunity 

and suppression of tumor growth.51 

Less studied, but potentially interesting target molecules 

are TIGIT and CD96 together with the costimulatory receptor 

CD226, which represent a pathway analogous to the CD28/

CTLA-4 pathway.52 Preliminary data already suggest that 

targeting these receptors can augment antitumor immune 

responses, although to date the immune cells affected by 

such treatment remain unclear.52 CD47, like CD200 that is 

discussed in greater depth below, is a ubiquitously expressed 

glycoprotein of the immunoglobulin superfamily and is 

thought to play an important role in self-recognition.53 A 

number of solid and hematologic cancers seem to exploit 

CD47 expression to evade immune attack, with the overex-

pression of CD47 correlated with poor clinical prognosis. 

The mechanism of action seems to depend upon interaction 

with SIRPα expressed on myeloid cells, activation of cyto-

plasmic immunoreceptor tyrosine-based inhibition motifs, 
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recruitment of Src homology 2 domain-containing tyrosine 

phosphatases, and ultimately delivery of an antiphagocytic 

“don’t eat me” signal. CD47-SIRPα thus seems to act as a 

negative checkpoint bridging innate immunity and a subse-

quent adaptive immune response. CD47 blocking antibodies 

are reported to decrease tumor growth and/or metastasis in 

multiple animal models.53 To date, no clinical studies target-

ing this pathway are available.

Relevance of CD200:CD200R 
interactions in controlling tumor growth
As indicated above, CD200 is relatively ubiquitously 

expressed, while the expression of the receptors (CD200R1-5 

in mouse; CD200R1, R2 in man) is more restricted predomi-

nantly to cells of the myeloid and macrophage lineage. Early 

studies indicated that blockade of CD200:CD200R interac-

tions attenuated both inflammatory (innate) immune reactions 

while enhancing development of acquired immunity.54,55 This 

in turn led to extensive investigation of the potential role of 

such manipulations in tumor immunotherapy.

Tumor cells in B lymphoid malignancies are known to 

express CD200, and thus, it was no surprise when reports of 

a positive effect on tumor therapy were reported for therapies 

aimed at neutralizing CD200 expression.56 However, the 

effects seen in different patients, at least in CLL, were not 

reflective of relative expression levels of CD200 by tumor 

cells, suggesting that the mechanism of action was not sim-

ply one of neutralization of expressed CD200.44,57 Wong et 

al reported (see also Zhou et al46) that soluble CD200 from 

serum of CLL patients was essential for the promotion of CLL 

growth in a NOD.SCID humanized mouse model.44 There are 

now reports that CD200 expression can control Treg expan-

sion and disease progression in both acute myeloid leukemia58 

and CLL. In a study with 14 CLL patients, CD200 blockade 

using a 1B9 antibody we described earlier54 disrupted T-cell 

suppression as measured in autologous mixed lymphocyte 

cultures (MLCs) using CD40 ligand (CD40L)-stimulated 

CLL cells as APCs.59 A similar mechanism was inferred by 

Wong et al in studies in NOD.SCID mice with CLL cells.44 

Poh and Linn have suggested at least one alternative that 

checkpoint blockade augments cytotoxicity of cytokine-

induced killer cells against human myeloid leukemia blasts.60 

Even more recently, Zhu et al (personal communication) have 

combined a vaccination approach to CLL (using phorbol 

myristial acetate and ionomycin-stimulated CLLs as vaccine) 

in concert with blockade using 1B9 antibody, to attenuate 

both local disease and secondary organ spread of CLL cells 

in a NOD.SCID mouse model (manuscript in preparation).

The role of CD200:CD200R as a crucial checkpoint for 

immunity in solid tumors has also been studied. Preclinical 

investigations by Siva et al61 found the expression of CD200 on 

cell lines derived from ovarian cancer, melanoma, neuroblas-

toma, and RCC patients. Furthermore, adding CD200+ but not 

CD200− tumor cells to MLCs led to a decline in Th1 cytokine 

production, which was attenuated by anti-CD200 antibody.61 

More recently, CD200 and CD200R protein expression was 

found to be increased by immunostaining on liver tissue speci-

mens in subjects with hepatocellular carcinoma,62 compared 

with healthy controls. The intensity of staining with CD200R 

was correlated with tumor size, alpha-fetoprotein levels, and 

higher pathological tumor grade. Both overall and recurrence-

free survival rates were lower in patients with high CD200R 

expression compared with those with low CD200R expression.

Attractive systems in which to study CD200 blockade are 

many brain tumors, which have to date been poorly respon-

sive to tumor-derived vaccines and are known to express 

CD200.63,64 In one such study of glioblastoma, it was shown 

that glioma-derived CD200 suppressed the antitumor immune 

response to a vaccine.65 Using a CD200:CD200R peptide 

inhibitor that activates APCs, increased leukocyte infiltration 

into the vaccination site was seen and augmented cytokine 

production and antitumor cytolytic activity. Rygiel et al also 

reported on a role for CD200:CD200R in the regulation of 

skin malignancies induced in an animal model of chemical 

carcinogenesis.57 CD200 KO mice were resistant to tumor 

induction, an effect correlated with an alteration in the Th17/

Treg ratio, and which occurred independent of any CD200 

expression by tumor cells themselves.

Our own focus, besides the CLL studies discussed above, 

has concerned the role of CD200:CD200R as an important 

immune checkpoint in breast cancer. Interestingly, but con-

sistent with differences observed in human disease, two quite 

different BALB/c mouse models have been characterized. 

4T1 is a highly aggressive, metastasizing, poorly immuno-

genic tumor,66 while EMT6 in contrast is an example of a 

moderately immunogenic, poorly metastasizing, and slower 

growing tumor.45 In the case of the former, an inflammatory 

cascade is growth-promoting, while for EMT6 tumors, the 

suppression of inflammation results in development of T-cell 

immunity and delayed tumor growth (see also Böger et al50 

and Rygiel and Meyaard66). Consistent with this dichotomy, 

overexpression of CD200 led to improved control of growth 

of 4T1 tumors, while augmenting the growth of EMT6 cells.67 

In contrast, mice lacking CD200 or more particularly CD200R 

showed markedly reduced local and metastatic EMT6 growth 

and could be immunized for sterile immunity with resistance 
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to further tumor challenge, again with the opposite effects 

found for 4T1 tumor.68 Confirming the hypothesis that an 

active immune process was developing in EMT6 mice in 

association with CD200 (or CD200R) blockade, we showed 

that conventional chemotherapy acted synergistically with 

CD200 blockade to cure wild-type mice and produce immune 

mice resistant to rechallenge and/or metastasis even at 1 year 

posttreatment, an effect not seen with chemotherapy alone.69 

Interestingly, although CD200 expression was detected in 

human breast cancer samples, no clinical data yet exist to 

confirm a role for anti-CD200 (or anti-CD200R) as a check-

point in humans, although we predict that careful selection of 

the population (see above) will be needed to see any effects.70

Summary
Immune checkpoint blockade has unquestionably trans-

formed the field of cancer immunotherapy producing some 

quite remarkable and long-lasting effects, particularly in 

melanoma and some hematopoietic tumors. However, it is 

now apparent that the overall response rate for the currently 

approved reagents used alone ranges only from 10% to 40%. 

As detailed throughout this review, this has led to investigation 

of two additional avenues of approach: first the use of multiple 

checkpoint blockade reagents in combination (see Figure 1, 

suggesting the potential for the use of checkpoint blockade 

of T-cell-expressed and myeloid expressed markers) and/or 

with additional immunotherapy and second the analysis of 

biomarkers, which might predict the success of these therapies 

and might help monitor their efficacy.71 Development and 

detailed assessment of the so-far untried reagents (CD47/

CD200/VISTA) will likely also improve our armamentarium 

for the clinic. The other key observation of importance relates 

to the demographics of the at-risk population and those 

reflected in clinical trials. Studies of cancers diagnosed and 

deaths by age-group show that elderly patients (≥65 years) 

are overrepresented with a further increase expected over 

the next decade, eg, data with NSCLC.72 Yet this population 

is quite underrepresented in clinical trials, and it has been 

known for many years that aging per se is reflected in many 

changes in immunity, both qualitative and quantitative.73,74 As 

more attention is paid to this discrepancy, we can anticipate 

an improved understanding of checkpoint blockade in aging, 

more specific clinical trials for elderly cancer patients, and 

an improved “juggling” of combination immunotherapies to 

improve cancer survival across multiple disease types.
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