Background: Physical activity (PA) is considered as one of the most important prognostic predictors in chronic obstructive pulmonary disease (COPD) patients. Longevity gene, SIRT1, is reported to be involved in the pathogenesis of COPD by regulating the signaling pathways of oxidative stress, inflammation, and aging. We hypothesize that SIRT1 and related genes are also associated with the benefits of PA in COPD patients.

Methods: Eighteen COPD outpatients were enrolled in this study, and their PA level was assessed with an accelerometer. We assessed the SIRT1 and related genes mRNA expression levels in the peripheral blood mononuclear cells (PBMCs) of the subjects. We carried out respiratory function testing, blood gas analysis, the 6-minute walk test, and measurement of the cross-sectional area of the erector spinae muscles (ESMCSA) by chest computed tomography. We analyzed the association of PA with the results of each of the examinations.

Results: The mean age was 72±9 years, and the mean forced expiratory volume in 1 second was 1.4±0.56 L (52%±19% predicted). Our findings revealed a correlation between the daily PA and ESMCSA. The SIRT1 and Forkhead box O (FOXO)1 mRNA expression levels in PBMCs were positively correlated with moderate-PA time (r=0.60, p=0.008 for SIRT1 and r=0.59, p=0.01 for FOXO1).

Keywords: COPD, accelerometer, mRNA, walking, sedentary, moderate

Introduction

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of chronic respiratory failure. Its prevalence is about 10% in the adult population >40 years of age in many countries.1 Long-term exposure to cigarette smoke, which is a major cause of COPD, induces chronic inflammation in the airways and lungs, resulting in airway remodeling and obstructive pulmonary dysfunction. COPD is also considered to be a systemic disease. The gaseous and noxious particles such as cigarette smoke can cause oxidative stress and induce systemic inflammation in individual patients.2 While certain pharmacological therapies can ameliorate the symptoms of COPD, this disease is generally progressive and ultimately leads to death caused by respiratory failure or systemic comorbidities.3 New therapeutic strategy is therefore urgently needed.

Recently, physical activity (PA) has been suggested as a useful predictor of the all-cause mortality in patients with COPD4 and guidelines on the management of COPD recommend increase in the PA levels of these patients.5 However, the physiological mechanisms by which PA affects the outcomes of COPD are unknown. If those mechanisms were precisely recognized, the control of COPD patients would be improved.

SIRT1 is a nicotinamide adenine dinucleotide dependent histone/protein deacetylase, mainly localized in the cell nucleus,6,7 and has drawn a lot of attention as a mediator of longevity. In COPD, it has been reported that SIRT1 plays a central role in the...
cellular responses to oxidative stress, cellular senescence, and regulation of inflammation by deacetylating certain substrates such as Forkhead box O proteins (FOXOs), p53, and nuclear factor-kB. Therefore, SIRT1 is expected to prevent the progression of the disease.6 In addition, exercise has been reported to increase the mRNA levels and protein expression of SIRT1, as well as the activity of this enzyme in the skeletal muscle9,10 and caloric restriction increased SIRT1 in peripheral blood mononuclear cells (PBMCs).12 FOXOs function as homeostasis regulators and coordinate responses to environmental changes including oxidative stress.13 The FOXO conserved family consists of four members, FOXO1, FOXO3, FOXO4, and FOXO6. SIRT1 and FOXO1 are regulated with positive feedback mechanisms in gene expression.14 It was reported that FOXO1 expression was increased in the atrophic muscle of COPD patients.15 Because FOXO1 target genes include antioxidant enzymes such as super oxide dismutase 2 and catalase, it is probable that SIRT1 and FOXO1 have a protective effect in oxidative environments such as COPD.

It is complex and difficult to reveal the mechanisms of PA’s beneficial effects on COPD prognosis. Kao et al reported that the mRNA expression levels of SIRT1, FOXO1, and FOXO3 in blood samples obtained from patients with chronic dizziness were repressed as compared with those in the samples obtained from healthy people.16 They also showed that exercise could upregulate the SIRT1 expression level in PBMCs. Therefore, we hypothesized that there might be a correlation between the PA level and the expression of SIRT1 or FOXOs in COPD patients. To explore this hypothesis, we designed this cross-sectional study and found the correlation between them.

Materials and methods
Study design and participants
A total of 18 male COPD outpatients examined between June 2015 and March 2016 were included in this cross-sectional observational study conducted at Toyama University Hospital. In all the subjects, COPD had been diagnosed based on Global initiative for chronic Obstructive Lung Disease (GOLD).17 They were receiving treatment with inhaled drugs such as a long-acting muscarinic antagonist (LAMA) or long-acting β2 agonist (LABA). All the subjects were stable for 3 months prior to the study start. From each of the subjects, we collected data on clinical variables and the average of daily PA level. The study was conducted with the approval of the Ethics Committee of Toyama University Hospital (Clinical 27-8), and written informed consent was obtained from each of the subjects.

Clinical variables
Body mass index was calculated from weight and height of the patients measured at the time of the respiratory function testing. Smoking history was obtained from the medical records. The forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) were measured by spirometry (CHESTAC-8900; CHEST, Tokyo, Japan) in conformity with the American Thoracic Society (ATS) recommendations.18 Blood gas analysis was performed in each subject under room air. Exercise tolerance was assessed by measuring the 6-minute walking distance (6MWD) in accordance with the ATS guidelines.19 The erector spinae muscles’ cross-sectional area (ESMCSA) was measured using axial chest computed tomographic (CT) images according to a previously described method with some modifications.20,21 We identified the erector spinae muscles at the level of the lower margin of the 12th thoracic vertebra and manually drew a line surrounding it; the ESMCSA was presented as the sum of the bilateral sectional areas calculated by the chest CT software (SYNAPSE; Fujifilm, Tokyo, Japan).

PA assessment
The PA level was assessed by a triaxial accelerometer (Active style Pro HJA-750C; OMRON HEALTHCARE Co, Ltd, Tokyo, Japan), which calculated metabolic equivalents (METs) by its own algorithm distinguishing exercise from daily activity.22 For 2 weeks, patients were instructed to wear the accelerometer on their waist belts upon awaking except for the bath time.23 The collected data were analyzed by a dedicated accessory software. To analyze PA, in addition to the total energy expenditure (TEE) and PA-related energy expenditure (PAEE) (kcal/day), we evaluated the time length spent in every intensity level of activity (min/day).24 In this study, PA was classified into several intensity levels according to the sensitivity of the accelerometer: sedentary, 1–1.9 METs; light-intensity PA, 2–2.9 METs; moderate-intensity PA, 3–5.9 METs; vigorous PA, ≥6 METs.25 All the measurements were expressed as the daily mean.

Measurement of the mRNA expression levels of SIRT1, FOXO1, FOXO3, and p53
Peripheral blood samples from each subject were collected into vacutainer tubes containing ethylenediaminetetraacetic acid dipotassium salt as the anticoagulant. PBMCs were isolated from the whole blood samples within 2 hours of sample collection by Ficoll-Hypaque (Ficoll-Paque PLUS; GE Healthcare Bio-Sciences AB, Uppsala, Sweden) gradient centrifugation and immediately preserved in a −80°C
Total RNA was extracted from the PBMCs using an RNA extracting reagent (ISOGEN; Nippon Gene Co, Ltd, Tokyo, Japan) in accordance with the manufacturer’s instructions. The concentration of the total RNA was measured by spectrophotometry (Nano Drop; Thermo Fisher Scientific, Waltham, MA, USA). After each sample was diluted homogeneously by addition of sterile distilled water, first-strand complementary DNA was synthesized using a reverse-transcription polymerase chain reaction (RT-PCR) kit (RR036A; Takara Bio Inc, Shiga, Japan) in accordance with the manufacturer’s instructions. Quantitative RT-PCR was performed using the MX3000p Real-Time PCR System (Agilent Technologies, Santa Clara, CA, USA) to determine the mRNA expression levels of SIRT1, FOXO1, FOXO3, p53, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Quantitative RT-PCR for each gene was performed using the TaqMan method (95°C for 10 minutes, and 50 cycles of 95°C for 15 seconds and 60°C for 1 minute) with Premade Primer sets (SIRT1: Hs01009005_m1, FOXO1: Hs01054576_m1, FOXO3: Hs00818121_m1, p53: Hs01034249_m1, GAPDH: Hs03929097_g1; Thermo Fisher Scientific). All reactions were performed in duplicate and expression levels of the target mRNAs were normalized by the GAPDH expression level.

Statistical analysis
The obtained data are expressed as mean ± standard deviation. Comparison of continuous data was performed by Student’s t-test. To analyze the correlations between parameters, Pearson’s correlation coefficient was used in case of normal distribution data and Spearman’s rank correlation coefficient was used for non-normal distribution data. All statistical analyses were performed using the JMP pro 11 software (SAS Institute Inc, Cary, NC, USA), and the statistical significance level was set at p<0.05.

Results
Patient characteristics
Eighteen COPD patients participated in this study and are described according to GOLD stage 1–2 or 3–4 (Table 1). The mean age of stage 3–4 patients was significantly less than that of stage 1–2 patients. All subjects had a smoking history. The mean arterial oxygen tension under room air of stage 1–2 patients was significantly higher than that of stage 3–4 patients. All subjects had a smoking history (%)

| Variables/ | GOLD stage | p-value |
| treatment | 1–2 (n=9) | 3–4 (n=9) |
| Age, years | 75±2.9 | 68.1±2.9 | 0.036 |
| BMI, kg/m² | 20.0±2.53 | 22.6±2.75 | 0.059 |
| Smoking history (%) | 9 (100) | 9 (100) | |
| Pack-years | 56.5±23.0 | 59.9±20.8 | 0.75 |
| FVC, L | 3.18±0.86 | 2.83±0.44 | 0.15 |
| FVC, % predicted | 95.1±17.4 | 81.0±12.8 | 0.034 |
| FEV₁, L | 1.78±0.51 | 1.06±0.33 | 0.0013 |
| FEV₁, % predicted | 67.2±11.4 | 37.4±10.7 | <0.0001 |
| PaO₂,Torr | 91.5±0.9 | 76.0±7.17 | 0.012 |
| 6MWD, m² | 334±110 | 344±106 | 0.57 |
| ESMCSA, mm² | 2.394±0.494 | 2.984±0.546 | 0.28 |

Notes: Data are expressed as mean ± SD or number (%). p-values were calculated by Student’s t-test. PaO₂ is the arterial oxygen tension at rest under room air condition. ²n=13, ²n=17.

Abbreviations: 6MWD, 6-minute walk distance; ESMCSA, cross-sectional area of erector spinae muscles; LABA, long-acting β² agonist; LAMA, long-acting muscarinic antagonist; lTOT, long-term oxygen therapy; sD, standard deviation; GOLD, Global Initiative for Chronic Obstructive Lung Disease; FVC, forced vital capacity; FEV₁, forced expiratory volume in 1 second; BMI, body mass index.

Measurement of PA
Because of the small sample size, we analyzed all the data together. The mean duration of wearing the accelerometer by the patients was 728±72 min/day. The mean PAEE was 452±127 kcal/day and the mean TEE was 1,931±240 (Table 2). The mean duration of sedentary posture was 578±70 min/day. The mean time engaged in light-intensity PA, moderate-intensity PA, and vigorous PA was 113±43, 37±24, and 0.5±0.5 min/day, respectively (Figure 1). The sedentary time accounted for a large part of the daily lives of the patient and little time was spent in vigorous activity.

Relationship between clinical variables and PA level
The relationships between the clinical variables and PA levels were evaluated (Table 3). Age was negatively correlated

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzed days, days</td>
<td>9.6±4.8</td>
</tr>
<tr>
<td>Wearing time, min/day</td>
<td>728±72</td>
</tr>
<tr>
<td>TEE, kcal/day</td>
<td>1,931±240</td>
</tr>
<tr>
<td>PAEE, kcal/day</td>
<td>452±127</td>
</tr>
</tbody>
</table>

Note: Data are expressed as mean ± SD.

Abbreviations: TEE, total energy expenditure; PAEE, physical activity-related energy expenditure; sD, standard deviation.
mRNA gene expression and PA level
Because \( p53 \) gene is reported to be regulated by SIRT1,\(^{28} \) we measured the mRNA expression level of SIRT1, FOXOs, and \( p53 \) in PBMCs. There was some relationship between the SIRT1 expression and related genes (Figure 2). We evaluated the relationship between PA level and the SIRT1 and other genes mRNA expression. The SIRT1 mRNA and FOXO1 mRNA expressions in PBMCs were positively correlated with moderate-PA time (\( r=0.60, p=0.008 \) and \( r=0.59, p=0.01 \), respectively) and the ratio of moderate-PA time to sedentary time (\( r=0.65, p=0.003 \) and \( r=0.59, p=0.03 \), respectively) (Figure 3A and B). FOXO3 and \( p53 \) mRNA expressions were not correlated to PA level (Figure 3C and D).

### Table 3
Relationship between clinical variables and the physical activity level (\( n=18 \))

<table>
<thead>
<tr>
<th>Variables</th>
<th>PAEE</th>
<th>Sedentary</th>
<th>Moderate</th>
<th>Moderate/sedentary*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apgs, years</td>
<td>( r=-0.51 )</td>
<td>( p=0.031 )</td>
<td>( r=-0.09 )</td>
<td>( p=0.73 )</td>
</tr>
<tr>
<td>BMI, kg/m(^2)</td>
<td>( r=0.23 )</td>
<td>( p=0.37 )</td>
<td>( r=0.38 )</td>
<td>( p=0.12 )</td>
</tr>
<tr>
<td>FVC, % predicted</td>
<td>( r=-0.08 )</td>
<td>( p=0.75 )</td>
<td>( r=-0.53 )</td>
<td>( p=0.02 )</td>
</tr>
<tr>
<td>FEV(_1), % predicted</td>
<td>( r=-0.17 )</td>
<td>( p=0.49 )</td>
<td>( r=-0.55 )</td>
<td>( p=0.02 )</td>
</tr>
<tr>
<td>( PaO_2 ), Torr</td>
<td>( r=-0.37 )</td>
<td>( p=0.21 )</td>
<td>( r=-0.29 )</td>
<td>( p=0.34 )</td>
</tr>
<tr>
<td>6MWD, m</td>
<td>( r=-0.03 )</td>
<td>( p=0.91 )</td>
<td>( r=-0.30 )</td>
<td>( p=0.25 )</td>
</tr>
<tr>
<td>ESMCSA, mm(^2)</td>
<td>( r=0.72 )</td>
<td>( p&lt;0.001 )</td>
<td>( r=0.02 )</td>
<td>( p=0.92 )</td>
</tr>
</tbody>
</table>

**Notes:** \( r \) is the correlation coefficient; \( PaO_2 \) is the arterial oxygen tension at rest under room air condition. Data are expressed by Pearson’s correlation coefficient except FVC % predicted. Spearman’s rank correlation coefficient was used in case of FVC % predicted. *Moderate/sedentary* was calculated as the ratio of the moderate physical activity time to sedentary time.

**Abbreviations:** PAEE, physical activity-related energy expenditure; 6MWD, 6-minute walk distance; ESMCSA, cross-sectional area of erector spinae muscles; FVC, forced vital capacity; FEV\(_1\), forced expiratory volume in 1 second; BMI, body mass index.
As for the relationship of PA and SIRT1/FOXO1, exercise or fasting is reported to promote SIRT1 and FOXO activity for energy expenditure. Tobacco smoke or noxious gas inhalation causes COPD and oxidative burden is reported to be increased in peripheral blood and may cause detrimental effects in COPD patients. Because SIRT1 and FOXO1 together has an antioxidant effect, decreased SIRT1 expression in COPD patients might lead to excessive

**Figure 2** The relationship between SIRT1 mRNA expression and related genes in PBMC.

Notes: The expression level of the target mRNAs in PBMC was normalized to GAPDH expression level. All reactions were performed in duplicate. The correlation between SIRT1 and FOXO1, FOXO3, or p53 was calculated and the data are expressed by Spearman's rank correlation coefficient. \( r \) is the correlation coefficient.

**Abbreviations:** PBMC, peripheral blood mononuclear cell; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; FOXO, Forkhead box O.

**Figure 3** (Continued)
oxidative stress. In addition, SIRT1 is considered to have a protective effect against COPD and to play an important role in the pathogenesis of COPD.\textsuperscript{34,35} All these reports prompted us to consider that PA might benefit COPD patients through induction of SIRT1 and FOXO1 against oxidative stress. Our results support the hypothesis that PA promotes induction of SIRT1 and FOXO1 mRNA expression and contributes to an antioxidant effect in COPD patients. Although \textit{p53} mRNA expression was correlated to \textit{SIRT1}, it was not correlated to the PA level. \textit{p53} and SIRT1 were reported to have opposite effects on each other.\textsuperscript{36} \textit{p53} may play a different role from SIRT1 in COPD patients.

We did not find the relationship between any gene expression and TEE or PAEE (data not shown). On the other hand,
we found that the ratio of moderate-PA time to sedentary time was strongly correlated with SIRT1 and FOXO1 expression level. These results suggest that decreased sedentary time is also important for regulation of SIRT1 and FOXO1 mRNA expression. PA was classified as light, moderate, or vigorous in accordance with the level of energy expenditure. Recent studies have suggested that increasing the time spent in moderate or vigorous PA leads to improvement of the all-cause mortality and prevention of lifestyle-related diseases and cancer. In contrast, a sedentary lifestyle increases the risk of mortality. In line with these reports, our study results suggested the importance of decreased sedentary time for SIRT1 and FOXO1 expression. On the other hand, no correlation was found between any gene expression and GOLD stage class. Especially, SIRT1 and FOXO1 gene expression results were different from the case of PA. SIRT1 and FOXO1 gene expressions in PBMC are not related to COPD stage class (severity) but are correlated to PA. This may be an important result for the management of COPD patients because COPD patients of any GOLD stage class may benefit from PA.

Because this was a cross-sectional study, the longitudinal relationship between PA and the expression of SIRT1 and FOXO1 remains unclear. Although it is reasonable to consider that moderate PA induces SIRT1 and FOXO1 gene expression against oxidative stress in COPD patients, the precise mechanisms should be elucidated.

We did not identify the cell types inducing SIRT1 and FOXO1 gene expression in PBMC. Major cell types of PBMCs are monocyte and lymphocyte. These cell types may affect the immune regulation in COPD patients. Our future plans are to investigate which type of cells contributes to SIRT1 and FOXO1 induction and to investigate the role of those genes in the specific cell type.

Although the sample size of this study was small, a significant correlation between the PA level and PBMCs SIRT1 and FOXO1 mRNA expression was found in COPD patients. Future research on the mechanisms underlying the correlation between SIRT1/FOXO1 expression level and PA level may lead to novel management strategies for COPD patients.

Acknowledgments

We gratefully acknowledge the participation of the patients in this study. We would like to thank all involved parties in the implementation of this study. We thank Ms Yamamoto for her excellent technical help. We thank Dr Hiroaki Tanaka and Dr Toshiro Miwa for their contributions to acquisition of data.

The current affiliation of Ryuji Hayashi is Clinical Oncology, Toyama University Hospital, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.

Disclosure

The authors report no conflicts of interest in this work.

References