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Abstract: Despite the efficacy of antibiotics to protect humankind against many deadly patho-

gens, such as Mycobacterium tuberculosis, nothing can prevent the emergence of drug-resistant 

strains. Several mechanisms facilitate drug resistance in M. tuberculosis including compensatory 

evolution, epistasis, clonal interference, cell wall integrity, efflux pumps, and target mimicry. 

In this study, we present recent findings relevant to these mechanisms, which can enable the 

discovery of new drug targets and subsequent development of novel drugs for treatment of 

drug-resistant M. tuberculosis.
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Introduction
Tuberculosis (TB) is a significant public health concern with a high disease burden 

and mortality rate.1 The disease is caused by members of the Mycobacterium tuber-

culosis complex (MTBC), a group of closely related human-adapted (M. tuberculosis 

[MTB] and Mycobacterium africanum) and animal-adapted (Mycobacterium bovis, 

Mycobacterium mungi, Mycobacterium pinnipedii, Mycobacterium microti, and 

Mycobacterium caprae) strains, as well as smooth tuberculosis bacilli (Mycobacterium 

canettii).2 Although MTBC species have a remarkable range of mammalian hosts and 

morphologies, their genomes exhibit ≥99% homology, providing evidence that they 

evolved from a single ancestor in Africa 70,000  years ago.2–4 However, following 

advances in agriculture and animal domestication, MTB emerged as a human pathogen 

that has caused millions of deaths and continues to threaten human health globally.5,6 

Successful control and prevention of MTB infection requires tools for a rapid and 

accurate diagnosis, as well as strategies for effective treatment. Current antibiotics used 

to treat MTB infection are isoniazid (INH), rifampicin (RIF), pyrazinamide (PZA), 

and ethambutol (EMB).7,8 Misuse or misadministration of drugs can facilitate the 

emergence of drug-resistant strains via compensatory evolution, epistasis, and clonal 

interference phenomena that modulate MTB fitness. These various mechanisms of 

adaptation have led to the evolution of different drug-resistant levels of MTB strains, 

including multidrug resistant (MDR; resistance to INH and RIF), extensively drug 

resistant (XDR; resistance to fluoroquinolones [FQs] and one of the injectable amino-

glycosides [AGs]), and totally drug resistant (TDR; resistance to all known drugs).9,10

Therefore, the aim of this review was to highlight recent findings related to mecha-

nisms implicated in the emergence of MTB drug resistance and outline some possible 
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drug targets to contribute to efforts aimed at discovering 

novel TB treatment.

Development of drug-resistant MTB
MTB diversity and drug resistance
Genomic comparisons have increased our understanding of 

MTBC diversity. For example, analyses of single nucleotide 

polymorphisms (SNPs) and the presence or absence of dele-

tion regions (MTB-deleted region 1 or regions of difference) 

within MTBC genomes have identified several lineages and 

sub-lineages with distinct characteristics and distributions.2 

For instance, lineage 2 (East Asian) and 4 (Euro-American) 

strains are widely distributed, while lineage 3 (Central Asian 

and East African Indian) strains are restricted to particular 

regions in Asia and Africa. These three lineages are character-

ized by deleted regions and are denoted as “modern lineages.” 

In contrast, lineage 1 (Indo-Oceanic) strains are common in 

the Indian Ocean region and the Philippines. This lineage, 

together with lineages 5 and 6 (West African), and animal 

lineages comprise the “ancient lineages” and have no dele-

tions characteristic of the modern lineages.2,11 Finally, lineage 

7 is considered as an intermediate lineage and has recently 

reported in Ethiopia.12

Genomic differences among MTBC lineages impact their 

capability to cause disease and develop drug resistance. For 

instance, members of the modern lineages are associated with 

greater disease burden and drug resistance than the ancient 

lineages, likely due to a high rate of accumulating spontane-

ous mutations during replication.13,14 Epidemiological studies 

have illustrated that lineage 2 strains have a higher rate of 

developing resistance ranging from 1.6 × 10−5 to 5.4 × 10−3 

than lineage 1.15

Despite the accumulation of spontaneous mutations 

among MTBC lineages, their specific (and perhaps unique) 

drug resistance mechanisms remain unknown. However, 

increased mutations in DNA repair system and SOS response 

genes within lineage 2 genomes enhance the possibility of 

these strains developing resistance and generating mutator 

phenotype.14,16 Nonetheless, these findings cannot sufficiently 

explain several enigmas in these strains, such as how the 

same mutation among MTBC can generate a different level 

of resistance. Moreover, how do some strains tolerate cer-

tain mutations better than others, and why are some strains 

more strongly associated with infectious transmission and 

outbreaks? These questions could be resolved by studies of 

compensatory evolution, epistasis, and clonal interference, 

as these mechanisms could have large impact on mutation 

rate acceleration and MTB fitness modulation.17–21

Compensatory evolution and MTB drug 
resistance
Drug concentration is a primary determinant of resistance-

associated mutations during drug therapy.22 Mutations 

develop when the drug concentration is not optimal, although 

mutations impose a fitness cost on bacteria that targets genes 

encoding essential biological functions, often leading to 

reduced bacterial growth, survival, and virulence.23,24 Con-

trary to fitness cost concept, several studies have documented 

that some frequently transmitted MTB strains undergo low- 

or no-cost mutations but exhibit high level of resistance to 

drugs.17,19,20 Thus, these strains may harbor resistance mecha-

nisms developed through compensatory evolution, which can 

modulate MTB fitness (Figure 1).25,26

Compensatory evolution is mediated by the acquiring 

of a second mutation that minimizes the deleterious effect 

(resistance cost) of the original mutation. This mechanism 

allows MTB to increase its fitness without losing the resis-

tance phenotype.27 Compensatory evolution can develop 

from either additional or alternative mutations that occur in 

intra- or extragenic loci.28

In MTB, compensatory evolution associated with INH 

resistance occurs when a mutation in the regulatory region 

of ahpC leads to overexpression of alkyl hydroperoxide 

reductase (AhpC), which may compensate for the fitness 

cost of Ser315Thr mutation in katG, normally encodes a 

catalase-peroxidase, converting INH into a bioactive form.29

Compensatory evolution of RIF resistance has also been 

reported.30,31 In one study, mutations in rpoB, which encodes 

the β subunit of RNA polymerase, were detected in 95% 

of clinical isolates and conferred a high level of RIF resis-

tance, but have also been associated with noticeable fitness 

cost.17,30,32 However, S531L mutation was seen in most MDR 

isolates that exhibited a no- or low-cost fitness effect. This 

phenomenon is explained by the acquisition of compensatory 

mutations in neighboring rpoA and rpoC genes, which can 

mitigate the fitness cost of S531L.33–36 Comas et al found 

that up to 30% of MDR cases in high MTB burden countries 

carried mutations in rpoA and rpoC, suggesting they may 

play a role in spreading MDR strains in these countries.33 

Interestingly, a recent study revealed the compensatory role 

of an intragenic V615M mutation, located in rpoB gene, 

with respect to RIF resistance-associated rpoB mutations. 

The study showed that V615M mutation can modulate 

RNA polymerase bridge helix structure and contribute to an 

increased rate of transcription elongation, thus compensat-

ing for defective RNA polymerase activity associated with 

S531L mutation.37
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In addition to compensatory mutations, alternative 

mechanisms of fitness compensation may exist. For example, 

Freihofer et al38 found that altered gene regulation can also 

reduce the deleterious effects of certain genetic mutations. 

The study found that emergence of the A1408G mutation 

in the 16S rRNA gene is accompanied by overexpression 

of tlyA, which encodes a methyltransferase, resulting in 

methylation of neighboring 16S rRNA position C1409 and 

increased MTB fitness. The identification of non-mutational 

mechanisms could provide a new strategy for optimizing 

current treatment regimens through inhibition of the com-

pensatory event, leading to disruption of the stabilization of 

drug resistance transmission.

Role of epistasis and genetic background 
in MTB drug resistance
Epistasis occurs when several mutations interact with each 

other to express new advantageous traits for an organism and 

are often necessary for bacteria to modify their fitness cost.39 

During epistatic interactions, the effect of multiple mutations 

is greater or less than the effect of the individual mutation 

and can lead to either beneficial or deleterious phenotypes.7 

Thus, epistasis is classified as 1) positive (antagonistic), 2) 

negative (synergistic), or 3) sign.40

In positive epistasis, the net fitness of the interactions is 

higher than expected (Figure 2).83 A study has reported the 

role of positive epistasis in drug resistance development in 

MTB. Borrell et al41 identified a particular combination of 

mutations in rpoB and gyrA that conferred resistance to RIF 

and ofloxacin (OFX). The study showed that a gyrA D94G 

mutation is associated with improving deleterious fitness 

effects. Thus, gyrA D94G is correlated with positive epistasis 

in MTB, and it is frequently occurred within XDR strains.

Contrary to positive epistasis, negative epistasis is 

characterized by fitness lower than expected after mutation 

interactions. In bacteria, interactions between beneficial 

mutations provide a simple additive effect on fitness, while 

interactions between deleterious mutations are lethal (Fig-

Figure 1 Development of drug resistance.
Notes: 1, when MTB acquires mutations during therapy, they reduce MTB fitness (clones A and B). 2, an acquired secondary mutation restores MTB fitness. 3, the epistatic 
interaction between mutations improves MTB fitness and maintains drug resistance within the specific MTB genetic background. 4, clonal interference determines clone fate 
via competition, which leads to emergence of the most dominate clone with drug resistance in the population and elimination of the clone with a lower mutational effect.
Abbreviation: MTB, Mycobacterium tuberculosis.
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ure 2).83 However, in sign epistasis, the fitness of mutations 

depends on the genetic background of the bacteria. These 

mutations can be deleterious, beneficial, or neutral. Recipro-

cal sign epistasis is an extreme form of the interactions in 

which beneficial mutations together exert a negative effect or 

when deleterious mutations become positive (Figure 2).40,42 

The interaction between compensatory and drug resistance 

mutations is an example of sign epistasis.43 When compen-

satory mutations occur in a susceptible genetic background, 

they become deleterious. Thus, the acquisition of resistance 

mutations promotes the epistatic interaction between com-

pensatory and acquired resistance mutations, which results in 

the emergence and maintenance of the resistance phenotype 

in that particular bacterial genetic background.44

In addition, increasing evidence supports the role of sign 

epistasis in MTBC diversity.43 This is mainly due to the epi-

static interactions between the mutations within the MTBC 

genetic background, the acquired resistance mutations, and 

the compensatory mutations.45 Fenner et al46 found that a 

mutation in either katG or inhA confers different levels of 

resistance. Lineage 2 strains carry mutations in both katG 

(high INH resistance) and inhA (low INH resistance) genes 

and show different levels of drug resistance compared to 

lineage 1 bacteria, in which only the inhA mutation has been 

identified. Similarly, when bacteria from different lineages 

were exposed to the same dose of RIF, they exhibited different 

fitness costs and resistance levels.17 These data support the 

role of epistasis interactions between MTBC genetic back-

ground and acquired mutations that confer various levels of 

resistance across MTBC lineages.

Dynamics of clonal interference in MTB
Depending on the bacterial population size, mutation rate 

(U), and distribution of fitness effects, various mutations can 

simultaneously develop in a single population.47 In this situa-

tion, clonal interference may occur and significantly impact 

resistance development in the population. When two distinct 

resistance mutations develop independently within distinctive 

Figure 2 Forms of epistatic interaction between mutations.
Note: (↑) indicated high MTB fitness and (↓) indicated low MTB fitness.
Abbreviation: MTB, Mycobacterium tuberculosis.
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bacterial individuals, they compete with each other. Thus, a 

clone with a greater mutation effect outcompetes a clone with 

smaller mutation effects, which is then eliminated from the 

population (Figure 1).48

The intra-host evolution of MTB provides a straightfor-

ward model for understanding clonal interference in vivo. 

Some studies have reported competition between MTB clones 

in a single patient sample. Sun et al47 examined seven isolates 

from three patients; the first patient was free from MTB drug 

resistance, but after 19 months of treatment, four independent 

mutations were detected: three mutations in katG and one 

mutation in the regulatory region of inhA. After 5 months, 

most of the mutations reverted, and only one mutation in 

katG was detected. The second patient harbored MTB with 

a mutation in rpoB (L533P) but was still sensitive to RIF. 

After 18 months, the L533P mutation was replaced with a 

second mutation in rpoB (H526Y), leading to RIF-resistant 

MTB. The third patient was a relapsed case of MTB with two 

unfixed mutations of ethA (L35R and A341E) after 11 months 

of treatment that showed no change in EMB resistance sta-

tus. These observations illustrate how the competition and 

interchange between resistance-related mutations can lead 

to MDR. Similarly, Eldholm et al49 followed an XDR-TB 

patient for 3.5 years and performed genome sequencing of 

nine isolates from the same patient. They observed a high 

level of heterogeneity in the isolate population: 35 muta-

tions were identified, including 20 transient and 15 fixed 

mutations. Eventually, 12 mutations were determined to be 

drug resistance related, although only seven of these muta-

tions reached fixation stage. This observation indicates that 

the competition between high and low effective resistance 

mutations lead to high resistance.

Alternative mechanisms implicated in 
drug resistance
MTB shows intrinsic resistance to different drugs through 

various mechanisms, including cell wall or membrane 

impermeability and efflux pump action. Mutations can 

enhance intrinsic resistance, generate new proteins that 

inactivate the drug or block interactions with its target, 

or alter the target to prevent its recognition by the drugs 

(Figure 3).50

Impermeability of the MTB cell wall and 
drug resistance
The MTB cell wall structure is unique due to mycolyl-

arabinogalactan–peptidoglycan complexes and free glyco-

lipids (e.g., trehalose dimycolate, PPE family proteins, and 

phthiocerol dimycocerosates), forming a hydrophobic barrier 

that limits the entrance of various drugs.51 Several studies 

have identified the essential genes, enzymatic activities, 

and cellular components that increase resistance levels by 

decreasing cell wall permeability. For example, the expres-

sion of monooxygenase (mymA) operon is regulated by virS, 

which maintains mycolic acid composition and enhances cell 

wall integrity.52 Mutations in virS-mymA lead to increased 

cell wall permeability and diffusion of INH, RIF, PZA, and 

ciprofloxacin inside the cells.53–56

The PE11 protein of MTB plays a role in cell wall main-

tenance and is a putative lipase/esterase involved in cell wall 

remodeling.57 Expression of PE11 in M. smegmatis mc2155 

modulates cell wall morphology, composition, aggregation, 

and pellicle formation and mediates resistance to INH, RIF, 

EMB, vancomycin, and ampicillin. These findings suggest 

that upregulation of PE11 in MTB reduces penetration of 

antibiotics during active TB.58

Moreover, MTB can preserve cell wall integrity through 

acquired mutations that lead to overexpression of genes 

encoding enzymes involved in cell wall synthesis. For exam-

ple, pro-drugs, INH and ethionamide, which share a similar 

mechanism of action, are converted into their bioactive forms 

(isonicotinic-acyl radicals and 2-ethyl-4-amidopyridine, 

respectively) by katG and ethA gene products. These bioac-

tive forms react with nicotinamide adenine dinucleotide to 

form nicotinamide adenine dinucleotide adducts that bind 

to enoyl-acyl carrier protein reductase (encoded by inhA), a 

key enzyme involved in fatty acid synthase II system, and 

inhibit mycolic acid synthesis.50,59 Therefore, mutations in 

inhA prevent binding of INH and ethionamide to their targets 

and confer resistance to these drugs.60 Furthermore, arabi-

nosyl transferases (which link peptidoglycan with an outer 

mycolic acid layer to form the mycolyl-arabinogalactan–pep-

tidoglycan complex) may be a target for EMB, a drug that 

inhibits arabinosyl transferase activity and causes increased 

cell wall permeability.61 When emb genes acquire mutations, 

overexpression of emb genes and increased EMB proteins can 

overcome certain levels of the drug. A specific mutation in 

embB at codon 306 may correlate with EMB resistance, and 

mutations in cell wall synthesis-associated genes aftA and 

ubiA lead to overexpression of embC and EmbCAB substrates 

and subsequent resistance to EMB.62–64 In addition, novel 

mutations at embA G43C and G554N and at embB S412P 

have found to confer a high level of resistance to EMB among 

MTB isolates.65,66

Overall, these findings highlight the role of MTB cell wall 

maintenance in intrinsic and acquired drug resistance. Thus, 
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identification of novel proteins (e.g., PE11) that increase the 

cell wall integrity could facilitate their use as promising drug 

targets for MTB treatment.

Action of efflux pumps and drug 
resistance
Efflux pumps are natural drug barriers widely distributed 

in both prokaryotic and eukaryotic cell walls. These pumps 

maintain cellular hemostasis and regulate exchange of nutri-

ents across the cell membrane.67 They are classified into six 

major families based on their energy source, size, and sub-

strates. These include the ATP-binding cassette (ABC), small 

multidrug resistance (SMR), resistance nodulation division 

(RND), major facilitator superfamily (MFS), multidrug toxic 

compound extrusion (MATE), and drug metabolite trans-

porter (DMT) superfamily.68 All but except MATE and DMT 

efflux pumps are specific to MTB strains.69 Drug resistance 

mediated by efflux pumps depends on their basal expression 

and by drug-induced gene expression or overexpression that 

result from acquired mutations.70

Figure 3 MTB can exhibit resistance to drugs via: 1, intrinsically decreased permeability of the cell wall; 2, acquisition of mutations that block drug entry; 3, extrusion drugs 
via efflux pumps; 4, modification of the drug or its target, or 5, target mimicry.
Note: Possible drug targets are indicated by red circles.
Abbreviations: INH, isoniazid; MTB, Mycobacterium tuberculosis; TB, tuberculosis.
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Recently, several studies have used whole-genome 

sequencing to identify relevant mutations in efflux pump-

associated genes that confer resistance. Li et al70 examined 

the expression level of efflux pump genes within MDR 

isolates and found that at least one efflux pump was over-

expressed in eight out of nine isolates, suggesting that this 

system contributed to the development of resistance to 

multiple drugs. Interestingly, one MDR isolate carried a 

mutation in rpoB that conferred RIF resistance but intact 

katG, inhA, and oxyR-ahpC, indicating that efflux pumps, 

rather than mutations alone, were responsible for the INH 

resistance. An additional study showed that mutations 

within the Rv0678-encoded transcription repressor of 

MmpL5 (RND family) led to overexpression of the MmpL5 

pump and resistance to clofazimine.71 Similarly, Kanji et 

al72,73 examined SNPs associated with Rv2688c, Rv0194, 

Rv2936 (drrA), Rv2937 (drrB), and Rv1634, which encode 

pumps from the ABC and MFS transporter families, within 

XDR strains. The study showed significant levels of gene 

expression compared to susceptible and H37Rv strains, 

thereby demonstrating the importance of efflux pumps in 

drug resistance development in XDR isolates. Another study 

explored the expression of Rv2686c, Rv2687c, Rv2688c, 

Rv0933c, and Rv1258c within MDR and XDR isolates and 

found high expression of the Rv0933c-encoded PstB pump 

(ABC transporter family) in response to FQ treatment, 

suggesting that the expression of pstB is associated with 

resistance to FQ. In addition, MFS Tap efflux pumps showed 

a high level of expression, suggesting a correlation with 

kanamycin resistance.74 Expression of Rv1258c-encoded 

Tap pumps is regulated by transcription activator WhiB7, 

which is more highly expressed following a point mutation 

in the 5′ untranslated region of whiB7.75–78

These findings confirm that efflux pumps strongly con-

tribute to developing drug resistance in MTB, thus highlight-

ing efflux pumps as potential candidate targets for novel 

MTB drugs. Diverse synthetic and plant-derived molecules 

that act as efflux pump inhibitors (EPIs) have recently been 

identified, all of which exert different levels of efflux pump 

inhibition in MTB.79 When these inhibitors bind to efflux 

pumps, they increase drug retention inside the cytoplasm, 

restore the drug’s activity, and prevent the selection of resis-

tant mutants.79 These results occur when EPIs act as a single 

drug such as an SQ109 inhibitor, or enhances the efficacy 

of certain drug combinations such as timcodar.80,81 More 

recently, Kumar et al82 found that synthesis and design of 

hybrid EPIs by fusion of Verapamil™ with phenothiazines 

enhances inhibition of efflux pumps and may enable identi-

fication of novel molecules with a high efficacy for killing 

MTB.

Modification of drugs and their respective 
targets
An additional mechanism implicated in MTB drug resistance 

is the modification of either the drug or its target through 

specific enzymes. These enzymes are often enable acetylation 

or methylation of the drug or its target to prevent recognition 

and interaction between the two. One study found that MTB 

and M. bovis carry erm37, which encodes an rRNA methyl-

transferase that blocks interactions between macrolides and 

the ribosome.83 MTB also expresses enhanced intracellular 

survival (EIS) proteins, which are homologs of AG acetyl-

transferases.84 These proteins can acetylate multiple sites 

of AGs, resulting in their inactivation.85 Houghton et al87 

found that EIS proteins can also protect MTB against cap-

reomycin.86 A more recent study conducted by Warrier et al 

determined that MTB can methylate drugs via N-methylation, 

such as inactivation of the “14” drug at the N-5 position via 

a methyltransferase encoded by Rv0560c.93

Target mimicry and drug resistance
Target mimicry is a novel mechanism developed by MDR 

strains to detoxify FQ drugs, which target DNA gyrase. 

When FQs bind to DNA gyrase, they inhibit DNA replica-

tion, repair, and transcription.88 A previous study showed 

that FQ resistance develops through the Mycobacteria FQ 

resistance protein A (MfpA).89 MfpA can resemble the shape, 

size, and surface of the DNA double helix, suggesting that 

MfpA mimics the structure of MTB DNA.90,91 Once MfpA 

binds to DNA gyrase, the protein prevents FQ binding and 

protects MTB from the drug’s action.92

Conclusion
The ongoing evolution of resistance mechanisms among 

MTB population is a serious concern. In this review, we high-

lighted the major mechanisms that lead to drug resistance. 

These mechanisms include compensatory evolution, epis-

tasis, clonal interference, decreased cell wall permeability, 

overexpression of efflux pumps, drug/target modification, and 

target mimicry. These mechanisms allow MTB to modulate 

their fitness, enhance their transmissibility, and stabilize the 

resistance phenotype within their population. Understanding 

of these mechanisms enable researchers to identify novel drug 

targets in order to develop effective drugs. 
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