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Abstract: Traumatic brain injury (TBI) is widespread and leads to death and disability in 

millions of individuals around the world each year. Overall incidence and prevalence of TBI 

are likely to increase in absolute terms in the future. Tackling the problem of treating TBI 

successfully will require improvements in the understanding of normal cerebral anatomy, 

physiology, and function throughout the lifespan, as well as the pathological and recupera-

tive responses that result from trauma. New treatment approaches and combinations will 

need to be targeted to the heterogeneous needs of TBI populations. This article explores and 

evaluates the research evidence in areas that will likely lead to a reduction in TBI-related 

morbidity and improved outcomes. These include emerging assessment instruments and 

techniques in areas of structural/chemical and functional neuroimaging and neuropsychol-

ogy, advances in the realms of cell-based therapies and genetics, promising cognitive reha-

bilitation techniques including cognitive remediation and the use of electronic technologies 

including assistive devices and virtual reality, and the emerging fi eld of complementary and 

alternative medicine.
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Traumatic brain injury future prospects
Traumatic brain injury (TBI) is an extremely common condition, accounting for 50,000 

deaths and 235,000 hospitalizations yearly (Langlois et al 2004). The prevalence of 

individuals with chronic TBI-related problems in the US is 5.3 million (Cohen et al 

2007; Thurman et al 1999) with many manifesting a combination of physical, cognitive 

and behavioral problems. Although this fi gure is extremely large, it may underestimate 

the true burden of TBI, as many individuals with milder injuries are often unknown to 

the medical system (Krause and Arthur 1999). This is partly because physical impair-

ments, which are easily detectable, are frequently mild or absent after TBI, while the 

more common disabling problems of cognitive and behavioral impairments are often 

overlooked or misdiagnosed by medical professionals. However, it is the latter group 

of problems that prevent participation in expected and desired societal roles and result 

in the greatest burden associated with TBI. In the coming decades, the aging population 

will make this problem even worse, as older individuals are at increased risk of TBI 

and generally have poorer outcomes. This will greatly increase the overall prevalence 

of TBI and add to the societal burden presented by more individuals requiring both 

medical and custodial care.

Although considerable strides have been made in decreasing overall TBI-related 

mortality by the application of evidence-based medicine, many individuals develop 

chronic problems, often resulting in life-long disability. While some pilot projects 

have reported promising fi ndings, such as decreasing 30-day mortality with pro-

gesterone (Wright et al 2007), most studies examining effectiveness of post-acute 

interventions have failed to defi nitively demonstrate a therapeutic effect, which is in 
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part because of an inadequate understating of both normal 

and pathological cerebral processes.

Future treatment of TBI will require a far more detailed 

understanding of normal cerebral anatomy and physiology 

as well as the pathological and recuperative responses that 

result from trauma than is currently known. Greater clarity 

is required regarding normal brain function as it applies to 

development throughout the lifespan, adaptive responses 

to disease and trauma, as well as to the physiological 

interactions between various cerebral regions that permit 

both simple and complex cognitive processes. Given the 

staggering prevalence of TBI and its impact on activity and 

participation, medical science has expanded its search to 

better assess brain function and the factors that impact injury 

severity and outcome. Not only will new therapies be based 

on this enhanced understanding, but also more specifi c treat-

ments will likely be better directed to individuals possessing 

unique characteristics. This article will explore emerging 

assessment instruments, advances in the realms of cell-based 

therapies, genetics, promising new rehabilitation techniques, 

and integrative treatments that combine both complementary 

and alternative approaches with typical Western treatments 

that will likely lead to a reduction in TBI-related morbidity 

and improved outcomes.

Neuroimaging
Traditional imaging techniques, such as computerized 

tomography (CT) and conventional magnetic resonance 

imaging (MRI) have proven to be highly effective in identi-

fying macroscopic lesions, which is a necessary component 

in managing acute trauma. However, they have marked 

limitations in assessing microscopic lesions and cerebral 

physiology, such as those associated with diffuse axonal 

injury (DAI) and metabolic alteration. Furthermore, they 

offer little insight into the normal physiology associated 

with behavior and cognition. These issues are being more 

effectively addressed with newer neuroimaging technolo-

gies that are leading science to a more comprehensive under-

standing of the brain, both through imaging its physiology 

during various functional tasks and fi ner in-vivo micro-

scopic analysis of pathological processes and molecular 

composition in both normal and pathological conditions. 

Although these techniques will provide considerable insight 

into injuries of varying severity, it may be particularly useful 

in identifying individuals with TBI. Typically, individuals 

with mild TBI have normal appearing neuroimaging stud-

ies despite manifesting cognitive and behavioral problems. 

It is possible that enhanced analysis of brain function and 

anatomy following mild TBI may assist in delineating 

the neurophysiologic basis of post-concussion symptoms. 

Given the limitations of conventional imaging technolo-

gies, it is not surprising that they are poorly prognostic 

of outcomes (Diaz-Marchan et al 1996) and offer little 

information regarding the assessment of effi cacy of TBI-

related treatments. As the mechanisms of cerebral injury 

and repair are better delineated through enhanced imaging, 

new assessment and treatment modalities will be developed 

that can be applied with greater specifi city than currently 

available to individuals with TBI.

Structural/chemical imaging
Diffusion tensor imaging
Diffuse axonal injury (DAI) is felt to be a major contributor 

to morbidity following TBI, yet because it occurs at a 

micro- rather that macroscopic level, it is poorly imaged 

on standard CT and MRI scans. Diffusion tensor imaging 

(DTI), however, generates images by taking advantage 

of the variability of both the speed and direction of water 

diffusion in-vivo. Water diffuses faster along an axon, a 

phenomenon known as anisotropy, as opposed to across 

it, a phenomenon known as isotropy. White matter tracts 

manifest large fractional anisotropy (FA) values, which can 

be assessed by diffusion tensor technology. This permits 

an in-vivo investigation of fi ber tract integrity that has 

been correlated with histopathological evidence of DAI 

(MacDonald et al 2007).

DTI has been shown to provide evidence of axonal injury 

in the presence of normal standard MR imaging (Nakayama 

et al 2006), the extent and quantity of white matter injury 

(Xu et al 2007) and the location of maximum white matter 

tract abnormality associated with motor impairment post-

TBI (Yasokawa et al 2007). FA values have been correlated 

with both injury severity and outcomes (Benson et al 2007; 

Huisman et al 2004; Wozniak et al 2007). Along with various 

other imaging modalities, it has the potential to better delin-

eate the normal development of fi ber tracts that occur in the 

brains of children and adolescents as they acquire increas-

ingly complex cognitive capabilities, such as executive skills, 

that often fail to develop following pediatric TBI. DTI in 

association with other diffusion weighted images, permits a 

greater understanding of the pathophysiological process of 

axonal injury. It does so by examining the individual compo-

nents and time course responsible for decreased anisotrophy, 

such as edema and axonal truncation, potentially identifying 

a therapeutic window for future treatments designed to ame-

liorate DAI (Newcombe et al 2007).
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Magnetic resonance spectroscopy
Magnetic resonance spectroscopy (MRS) analyzes the 

concentrations of various metabolites in specifi c cerebral 

regions, which in pathological states differ from healthy 

tissue. The hardware for MRS is similar to standard MRI, 

requiring only additional software to provide analysis and 

imaging. Data are presented from either a single volume of 

brain, known as single voxel spectroscopy, or as a 2D or 

3D analysis obtained simultaneously over a wider region, 

known as magnetic resonance spectroscopy imaging (MRSI). 

N-acetylaspartic acid (NAA) is present only in neuronal tis-

sue and is one of several key cerebral metabolites measured 

by MRS. Lower than normal levels of NAA are indicative 

of either neuronal loss or abnormal changes in cellular 

function (Demougeot et al 2001), which is associated with 

poorer outcomes post-TBI even in the presence of normal 

appearing standard neuroimages (Garnett et al 2000). Other 

metabolites of interest measured by MRS include creatine 

(energy utilization marker), choline (marker of cell mem-

brane disruption, infl ammation and changes in myelination), 

myo-inositol (astrocyte marker), glutamate and lactate, which 

along with NAA have been correlated to various outcomes 

when obtained at various times post-TBI (Marino et al 2007; 

Shutter et al 2004; Signoretti et al 2002).

MRS appears to be an effective means to assess for 

injury after mild TBI, revealing whole brain reductions in 

NAA associated with cerebral atrophy despite the absence of 

focal lesions detected on conventional MRI. This provides 

strong evidence that mild TBI can result in widespread 

damage (Cohen et al 2007). Additional MRS data suggest 

that older individuals are susceptible to a greater degree of 

damage occurring from comparable injury severities than 

their younger counterparts, which may partially account for 

poorer outcomes in the elderly (Cohen et al 2007). MRS 

data can provide information on TBI-induced physiological 

changes, cerebral regions susceptible to injury, individual 

susceptibility to injury, and the predictive role of metabolic 

alterations on outcomes post-TBI not feasible with conventional 

imaging. Longitudinal MRS studies can examine the extent 

and location of concentration changes over time in association 

with specifi c cognitive abilities. This provides information 

regarding the physiological and chemical modifi cations that 

impact either favorably or unfavorably on recovery occurring 

over time post injury (Yeo et al 2006), although further stud-

ies are warranted to determine the best times to acquire data. 

With greater understanding provided by MRS regarding the 

molecular changes associated with the acute and reparative 

processes of  TBI and at what time post-injury these changes 

occur, comes the possibility of developing treatments to 

ameliorate pathological alterations and improve outcomes.

Functional neuroimaging
Functional magnetic resonance
Functional MRI (fMRI) assesses the combination of regional 

blood fl ow and local metabolic activity that occurs during 

cerebral activity. It takes advantage of the differing magnetic 

properties of oxygenated and de-oxygenated hemoglobin, 

known as the blood oxygen level difference (BOLD) 

response. The BOLD response is altered during functional 

activity and is represented as a bright signal on fMRI, identi-

fying a region that is relatively more metabolically active than 

surrounding tissue. It offers good temporal and spatial resolu-

tion, both of which are better than those obtained by either 

SPECT or traditional PET scans, and the lack of radiation 

permits multiple imaging. However, several factors impact 

the interpretation of fMRI data, including a subject’s ability 

to fully cooperate, medication effects, adequacy of cerebral 

blood fl ow, cerebral dominance, and inadvertent subject 

movement during image acquisition. When interpreting data, 

it is important to consider the multitude of possible reasons 

accounting for altered activation patterns, such as establish-

ment of alternative pathways, practice effects, or differences 

in performance diffi culty that exist between injured subjects 

and normal controls. One must also consider lesion location 

and size, time from injury, age, and study design (cross-

sectional versus longitudinal). Also, only simple functional 

tasks can be performed in the scanner, limiting its utility. It 

is currently used as a research tool, although in the future it 

may be used to guide treatment by better delineating regions 

responsible for cognitive processes, examining changes in 

activation over time and in response to specifi c treatments, 

and assist in determining both optimal dosing and timing of 

treatments.

Functional near infrared spectroscopy
Functional near infrared spectroscopy (fNIRS) is an emerging 

technology that assesses optical properties of tissues in-vivo, 

permitting investigation of cerebral metabolism. Because 

oxygenated and deoxygenated hemoglobin have unique 

optical characteristics, fNIRS can measure functional activity 

in-vivo, just as fMRI does by measuring the magnetic proper-

ties of the same compounds. Researchers have demonstrated 

fNIRS ability to assess cerebral activity in humans associated 

with motor or cognitive tasks (Villringer Chance 1997).

Although research examining its utility to assess function 

after TBI is limited to date, it offers some potential advantages 
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over fMRI in that it is a portable system that it is less susceptible 

to motion artifacts, is less expensive and permits examination 

of changes during tasks in a more ecologically valid environ-

ment. Additionally, obtaining fNIRS is not prevented by the 

host of contraindications associated with MRI. Accordingly, 

it offers the possibility of imaging cerebral activity associated 

with activities not feasible within a MR scanner and in environ-

ments more appropriate for the behavior or function. Its por-

tability may also make it a means to assess metabolic changes 

during specifi c rehabilitation activities, offering good temporal 

resolution that may provide opportunities to better develop 

treatments and assess their physiological underpinnings.

Although it is an emerging technology, some studies have 

shown correlations with fMRI (Obrig et al 2000; Okamoto 

et al 2004), suggesting it is a promising venue to examine 

cerebral activity in more comfortable and varied settings, 

realizing that additional studies are needed to better correlate 

the two technologies. However, current fNIRS technology 

permits imaging only through the top 2–3 mm of cerebral 

cortex and 1 cm lateral to the topical sensors, with other 

diffi culties persisting regarding the use of cranial reference 

points, reduction of the optical signal by non-cerebral tissue, 

the impact of pigmentation on signal detection and limited 

spatial resolution (Irani et al 2007).

Transcranial magnetic stimulation
Non-invasive stimulation produced by magnetic pulses or 

direct current offers the opportunity to study the functional 

neuroanatomy of the brain and is a means to test hypotheses 

pertaining to cognitive neurosciences. Transcranial magnetic 

stimulation (TMS) uses short magnetic pulses that are pro-

vided in three different patterns (single pulse, paired pulse or 

repetitive pulses), resulting in either an increase or decrease 

in cortical excitability. Altering cortical excitability permits 

a non-invasive means to examine the impact of “virtual 

lesions” in otherwise healthy tissue as well as the impact of 

enhanced excitability on various cognitive or motor tasks. 

This will lead to a more detailed understanding of cerebral 

physiology and the neuroanatomical correlates of impaired 

function resulting from disease or trauma. Current applica-

tions of TMS after TBI include measuring the excitability 

of central motor pathways, mapping cortical representations, 

and predicting motor recovery (Caramia et al 1996; Netz 

et al 1997; Turton et al 1996) while possible future uses 

may include it as a therapy for various brain injury related 

cognitive and motor impairments.

Repetitive TMS (rTMS) applies a repeated train of 

magnetic pulses at either low or high frequencies, typically 

producing a suppression or enhancement of cortical 

excitability respectively (Berardelli et al 1998; Chen et al 

1997; Muellbacher et al 2000). The change in excitability 

incurred by rTMS has been shown to last beyond the appli-

cation of the magnetic pulses (Peinemann et al 2004), pos-

sibly as a result of inducing long-term potentiation (Siebner 

Rothwell 2003). This lasting change creates an environ-

ment that may be supportive of neural plasticity that can be 

exploited as a means to enhance treatment following TBI. 

Although studies to date to improve motor and cognitive 

skills have been small and its effi cacy remains uncertain 

(McElligott et al 2007), several studies suggest it may be a 

valuable adjunct to traditional rehabilitation techniques to 

improve function (Butefi sch et al 2004; Hummel et al 2005; 

Khedr et al 2005). Its therapeutic potential has been most 

studied as a means to treat major depression, predominantly 

in subjects refractory to pharmacological intervention, by 

targeting the dorsolateral prefrontal cortex (Fregni et al 2006; 

McNamara et al 2001), with results generally indicating its 

effectiveness is equivalent to electro-convulsive therapy 

(Grunhaus et al 2003). Its primary risk is inducing seizures, 

although strict adherence to recommendations detailing limits 

on stimulation parameters, monitoring guidelines and contra-

indications decreases its incidence (Wassermann 2002).

Potential uses of TMS after TBI in the future include 

enhancing our understanding of neuronal circuits by better 

delineating their mechanisms, location, timing, lateralization 

and adaptability to injury and experience (Floel and Cohen 

2007) and exploiting its impact on cerebral plasticity to 

ameliorate brain injury-related morbidity. As opposed to 

fMRI and PET, it is independent of subject performance, 

although subcortical structures cannot be directly stimulated 

by this method.

Magnetoencephalography
Magnetoencephalography (MEG) involves the detection of 

magnetic fi elds generated by electrical currents in the brain in 

response to neuronal activity, which unlike electrical activity 

measured by EEG, are not distorted by other tissues. This per-

mits precise spatial localization of its generating source with 

temporal resolution measured in fractions of a millisecond. 

MEG therefore permits the tracking of brain activity in real 

time with precise localization. Data derived from MEG may 

be integrated with standard MR images to generate magnetic 

source images (MSI), which provide a visual representation 

of the activated cerebral region. The precise temporal and 

spatial resolution of MEG makes it possible to not only 

examine which regions are activated during specifi c cognitive 
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tasks but also the relative time course of activations, which 

is critical in understanding cognitive processes that involve 

geographically discrete brain regions. Abnormalities in MEG 

signals have been shown to correlate with cognitive diffi cul-

ties in subjects with mild TBI (Lewine et al 2007). By gaining 

a more detailed understanding of where and when neuronal 

circuitry become active and how they change in response to 

injury and rehabilitation, scientists will gain better insights 

into cognitive physiology permitting development of more 

specifi c treatments and the response to those treatments.

Stem cells
Stem cells (SC) are naturally occurring immature cells that 

are both self-generating and pluripotent, possessing the 

ability under specifi c conditions to differentiate into various 

cell types. They are derived from 2 broad sources; the inner 

cell mass of 4- to 5-day-old fertilized embryos, known as 

embryonic SC, or adult SC that are obtained from mature 

tissues such as bone marrow, umbilical cord blood, or the 

central nervous system. Because of the considerable ethical 

and political controversy that exists regarding the use of 

embryonic SC, adult SC research has become another venue 

to advance the fi eld in general. Similar to embryonic SC, adult 

SC have been shown to develop into phenotypically diverse 

cell types under specifi c conditions. Within the CNS, adult 

neural SC naturally exist in the hippocampus and the subven-

tricular zone, which maintain the ability to generate neurons, 

astrocytes and oligodendrocytes throughout life (Reynolds 

and Weiss 1992) and are presumably responsible for some 

degree of central nervous system homeostasis and repair 

(Garbuzova-Davis et al 2006). However, the persistent abil-

ity to naturally produce neural tissue throughout life cannot 

suffi ciently repair damage and restore lost function resulting 

from injury and disease, possibly because not enough cells 

are produced, inability of newly produced cells to migrate 

to the region of injury or a microenvironment that is poorly 

conducive for repair (Kim 2007). Enhancing creation of 

neural tissue from SC, either by increasing endogenous 

production or exogenously by transplantation of SC made 

in vitro, represents a novel and promising means to repair 

CNS damage, reverse neurological impairments and restore 

function lost to disease or trauma.

Research to date, predominantly in animals, provides some 

indication of the potential utility of cell-based therapy. Neural 

cells arising from implanted adult SC have been identifi ed 

in or close to the region of injuries induced in animals, often 

associated with functional improvement (Chen et al 2001; 

Jeong et al 2003; Lee et al 2007; Li et al 2002). This indicates 

that SC not only maintain the ability to differentiate into more 

mature neural cells, but that these progeny migrate to the 

area of injury and may contribute to improved neurological 

function. Functional improvements in humans have also 

been reported, but research here is very limited (Bang et al 

2005; Kondziolka et al 2000; Savitz et al 2004). Although 

intuition suggests the neurological improvements observed 

in these studies arose from replacement of neurons damaged 

by disease or trauma, defi nitive conclusions remain elusive. 

Other possible explanations for improvement include that SC 

alter the microenvironment by production of growth factors 

(Sanberg et al 2004), provide some degree of neuroprotec-

tion or modulate infl ammation (Garbuzova-Davis et al 2006). 

More research is needed in order to answer this and other 

questions, which will ultimately help to direct clinical use 

of SC in the future.

Several barriers currently exist preventing more vigorous 

clinical applications of cell based therapies, including the 

ethical concerns associated with embryonic SC, purifi cation 

of SC cultures, the optimal timing and site of transplanta-

tion, in-vitro production of suffi cient neural stem cells for 

transplantation that retain the ability to differentiate into 

mature cells, and long-term tracking of transplanted cells 

in humans. Additional obstacles to their therapeutic use 

include optimizing an effective delivery system, overcoming 

rejection of foreign cells and the effects of SC survival after 

delivery. Some advances have recently been made to address 

some these concerns, including genetically engineered human 

neural stem cells that permit cell proliferation and differentia-

tion in-vivo and in-vitro and incorporation of superparamag-

netic iron oxide nanocomposites into SC that permit MRI 

tracking in-vivo without impacting their survival or ability 

to differentiate (Guzman et al 2007; Zhu et al 2006).

Genetics
A great deal of research has been devoted to the prognostica-

tion of TBI, with most studies focusing on easily identifi able 

factors, such as the Glasgow Coma Scale score, length of 

post-traumatic amnesia, and a host of other injury-related 

characteristics that only partially explain the variance in 

outcomes. This strongly suggests that other factors play a 

signifi cant role in the severity of and recovery from TBI. 

It is becoming increasingly evident that individual genetic 

factors play an infl uential role in determining outcomes, with 

several possible genes emerging as candidates.

With the completion of the Human Genome Project, it 

is certain that research examining the genetic role in out-

come prediction will grow tremendously in the near future, 
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permitting not only a greater ability to predict recovery, but 

more importantly provide a means for medical science to both 

better understand the pathophysiological processes associ-

ated with TBI and a rationale to develop specifi c treatments 

that are individualized based on unique genotypes. Several 

variant forms of genes, known as polymorphisms, have been 

identifi ed as potentially impacting the course of TBI, with 

many more likely to be identifi ed in the near future. To date, 

genes identifi ed as either likely or possibly contributing to 

TBI outcomes include apoE4 and apoE promoter genes, 

calcium channel subunit gene, the p53 gene, catechol-o-

methyltranserase gene, D2 receptor gene, and genes coding 

for the production and metabolism of the interleukins, heme-

oxygenase-1 (HO-1), and angiotensin converting enzyme.

It is important to note that many studies examining 

genetic contributions to the course of  TBI are limited by 

the very nature of genetic science. The frequency of specifi c 

phenotypes is dependent on many factors beyond any one 

individual gene or overall genotype, including but not limited 

to how race and environmental factors impact genetic expres-

sion. Also, although some well-known genetic disorders are 

inherited as a single gene, such as Huntington’s chorea, most 

others are polygenetic, and the infl uence of any one isolated 

gene is relatively small, which will almost certainly pertain to 

TBI. Furthermore, some distinct genes are physically linked 

such that they are inherited together, despite each having a 

unique function. This is known as linkage disequilibrium 

(LD). This may result in inadvertently identifying the wrong 

gene as impacting TBI if it is in LD with the actual offending 

gene. Also, the modulating role a specifi c genotype will have 

following TBI will likely depend on the distinct pathology 

present (eg, hemorrhagic versus non-hemorrhagic). For these 

and other reasons, genetic studies need to be suffi ciently 

powered and be validated once initial fi ndings are reported 

(Diaz-Arrastia and Baxter 2006), with results interpreted 

cautiously.

APOE
APOE are genes that exist in 3 alleles, ε2, ε3, and ε4. They 

code for variants of apolipoprotein E (apoE) that serve as lipid 

carrier proteins responsible for transporting and distributing 

lipids among cells in the central nervous system (Mahley 

1988). The presence of the ε4 allele has been associated 

with increased risk of several neurological diseases, includ-

ing late onset familial and sporadic Alzheimer’s disease 

(Corder et al 1993; Saunders et al 1993), stroke (McCarron 

et al 1999), amyloid angiopathy, and HIV-related dementia 

(Corder et al 1998). More recently, several investigators have 

associated it with either poorer outcomes after severe TBI 

as measured by the Glasgow Outcome Scale and impaired 

cognitive function (Friedman et al 1999; Jordan et al 1997; 

Sorbi et al 1995; Teasdale et al 1997) or a slower recovery 

after controlling for other covariates (Alexander et al 2007). 

The mechanism by which the ε4 allele impacts outcomes 

is not certain, although it is speculated to adversely effect 

processes involved in cellular membrane maintenance 

and repair (Mahley 1988; Weisgraber et al 1994), calcium 

metabolism (Veinbergs et al 2002), neural plasticity (Mauch 

et al 2001; Nathan et al 1994), and increased amyloid plaque 

deposition (Nicoll et al 1995). Additional evidence suggests 

the presence of the ε4 allele may increase the risk of post-

traumatic seizures (Diaz-Arrastia et al 2003) and late onset 

Alzheimer’s disease after TBI (Mayeux et al 1993; Mortimer 

et al 1985; Mortimer et al 1991), although there have been 

confl icting results regarding the latter (Fleminger et al 2003; 

Nathoo et al 2003; Teasdale et al 2005). These differences in 

the studies examining the incidence in Alzheimer’s disease 

may be related to methodological issues or the interaction of 

APOE on other factors such as age, gender and race. More 

notably however, the impact of APOE ε4 on outcomes after 

mild TBI is less defi nitive than in severe TBI, with several 

studies fi nding no long-term effect associated with its pres-

ence (Chamelian et al 2004; Liberman et al 2002; Ponsford 

et al 2007).

Expression of the APOE gene is infl uenced by the APOE 

promoter gene, which also exists as one of several polymor-

phisms that can either up or down regulate apoE production. 

Several polymorphisms in the promotor gene are thought 

to increase susceptibility to AD by increasing expression 

of APOE ε4 and the deposition of beta amyloid protein 

(Jordan et al 1997). At least one of these variant promoter 

genes has been associated with poorer outcomes 6 months 

after TBI (Jordan et al 1997), although further confi rmatory 

studies are needed.

Genes affecting catecholamine function
Catecholaminergic dysfunction is well documented fol-

lowing TBI, manifested by decreased circulating levels 

of dopamine, norepinephrine and epinephrine as well as 

alterations in cortical catecholaminergic receptors (McIntosh 

1994; McIntosh et al 1998; Prasad et al 1992). The benefi cial 

role of catecholamine administration in animals post-TBI 

has been well known for decades and to a lesser degree in 

humans (McAllister et al 2005). Several genes have been 

identifi ed that regulate catecholamine metabolism, which 

exist in several polymorphisms that can potentially impact 
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cognitive outcomes post TBI. Catechol-o-methyltransferase 

(COMT) codes for an enzyme that inactivates both dopamine 

and norepinephrine. It exists in 3 isoforms, (val/val, val/met 

and met/met), each causing either an increase or decrease 

in enzymatic activity resulting in various levels of either 

neurotransmitter.

The val/val polymorphism coding for COMT results 

in increased enzymatic activity causing decreased levels 

of dopamine and has been associated with impaired cogni-

tive skills post-TBI compared to those without this variant 

(Flashman et al 2004; Jordan et al 1997; McAllister et al 

2005). Research utilizing fMRI revealed differences in acti-

vation patterns during a working memory task depending on 

the presence or absence of the val allele in both control and 

TBI subjects, with additional differences in activation pat-

terns resulting from administration of a dopaminergic agonist 

(McAllister et al 2004). Although this study was small and 

has yet to be replicated, it suggests that variations in COMT 

genotypes modulate not only the location of activation in the 

brain during a specifi c cognitive task, but also the action of 

administered pharmacological agents. If results of this study 

are replicated, it strongly suggests that the combination of 

genetics, advanced neuroimaging, and pharmacology may 

lead to more targeted treatments for specifi c individuals.

Catecholiminergic activity is also affected by the dopa-

mine D2 receptor allele, which codes for a dopamine recep-

tor. Various polymorphisms here result in either increased or 

decreased expression of dopamine receptors that may impact 

cognition. A reduction in expression resulting from a specifi c 

genotype has been associated with impaired cognitive perfor-

mance after TBI, consistent with dopaminergic modulation 

of cognitive function (McAllister et al 2005).

Genes affecting infl ammation
Interleukin IL-1αand IL-1β are pro-infl ammatory cytokines 

that are involved in the molecular response to injury, 

contributing to neuronal death (Rothwell 1999). They are 

encoded by genes that are usually in linkage dysequilibrium 

and include IL1A and IL1B. ILRA is a gene that codes for 

a receptor antagonist to IL-1α and IL-1β that modulate 

infl ammation. All of these genes have various isoforms, 

IL1A*1 and IL1A*2; IL1B*1 and IL1B*2; and ILRA*1 

and ILRA*2. The presence of the IL1A*2 and IL1B*2 

alleles has been associated with increased risk of develop-

ing myasthenia gravis, juvenile rheumatoid arthritis and 

Alzheimer’s disease (Huang et al 1998; Jordan et al 1997; 

McDowell et al 1995; Nicoll et al 2000) in association with 

increased production of IL-1α and IL-1β. All of these genes 

are activated in response to TBI and depending on the specifi c 

polymorphisms present, appear to modulate neuronal death 

in distinct ways. For example, the ILRA*2 allele has been 

associated with increased incidence of both hemorrhagic 

contusions and subarachnoid hemorrhages post-TBI 

(Hadjigeorgiou et al 2005). Other infl ammation-regulating 

genes have been identifi ed, including those coding for inter-

leukin-6 (Winter et al 2004), heme-oxygenase-1, angiotensin 

converting enzyme, which may also impact pathophysiology 

post TBI. The precise mechanism underlying this is unclear as 

infl ammation plays a dual role following injury, contributing 

to both pathological injury and repair. However, by better 

delineating the processes involved in pathology and repair, 

including examining the role played by genetic polymor-

phisms and its impact on infl ammation, interventions can 

be better developed in terms of individual specifi city, timing 

and dosing of treatments.

Growth factors
Interest in central nervous system (CNS) growth factors is 

growing, particularly regarding brain-derived neurotrophic 

factor (BDNF) and peripheral vascular endothelial growth 

factor (VEGF), as they have been associated with neurogen-

esis in the hippocampus, recovery from injury and prevention 

of the effects of Alzheimer’s disease. BDNF is a protein 

that plays a critical role in CNS development (Lewin 1996; 

Lindsay 1996) but is also involved in cerebral plasticity, 

growth, recovery from injury (Binder and Scharfman 2004) 

learning and memory. It also plays a role in the regulation 

of stress and depression by enhancing the effectiveness of 

antidepressant medications (Russo-Neustadt et al 2001) as 

well as processing its own antidepressant properties (Siuciak 

et al 1997). Levels of BDNF have been shown to increase 

in response to exercise (Hicks et al 1998), which has been 

correlated with improved learning. BDNF has been shown 

to impact favorably on axonal growth and neurogenesis 

(Boyd and Gordon 2002; de Groot et al 2006; Goldman 

1998; Pencea et al 2001; Scharfman et al 2005), raising the 

possibility of utilizing it as a means to enhance recovery. 

However, exogenous BDNF results in down regulation of 

specifi c receptors that appears to block its effectiveness 

(Blaha et al 2000; Xu et al 2004). Therefore, it is likely that 

BDNF needs to be produced endogenously through exercise, 

in order for it to have a favorable impact on recovery.

VEGF has also been shown to be related to neurogenesis 

in the hippocampus, which has been associated with 

improved memory and learning in an animal model (Cao et al 

2004). Similar to BDNF, VEGF levels increase in response to 
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exercise and have been shown to improve cognition in rats in 

association with neurogenesis in the hippocampus. (During 

and Cao 2006; Yasuhara et al 2004). These preliminary 

studies suggest a potential role exercise induced production 

of neurotrophic factors may play in recovery of cognitive 

skills following TBI.

Alternative and complementary 
treatments
Alternative and complementary treatments are “therapies 

or diagnostic techniques that are not part of the current 

Western health care system” (McElligott et al 2006, p. 1061). 

They encompass a variety of approaches including herbal 

supplements, homeopathy, hyperbaric oxygen, EEG-based 

therapy, chiropractice, craniosacral therapy, arts and recre-

ational therapies (such as dance, music, art, horticulture), 

and interventions of Asian origin such as mindfulness and 

meditation practice, Tai Chi Chuan, Ayurvedic medicine, 

and acupuncture. Integrative medicine is a medical approach 

that combines alternative and complementary treatments with 

traditional Western techniques and is becoming increasingly 

available throughout the US. Although empirical literature on 

alternative and complementary treatments for humans with 

TBI is sparse with many studies either insuffi ciently powered 

or poorly controlled, their widespread use and popularity 

in the general population and interest among brain injury 

clinicians demands further scientifi c investigation to better 

determine their future role (Laures and Shisler 2004; Murrey 

2006; Tindle et al 2005; Winnick 2007).

The literature on herbal supplements following TBI is 

limited to commentaries and case studies with very few 

published empirical studies on their effectiveness, raising 

some concerns regarding their safety and interactions with 

other medications, particularly when used without physician 

supervision (Elovic and Zafonte 2001; Spinella and Eaton 

2002). One double-blind, placebo-controlled study exam-

ined the use of homeopathic treatment in subjects with mild 

TBI with results indicating signifi cant improvement and a 

medium size effect on self-reported functional disability and 

commonly reported TBI symptoms. It is important to note 

however that no research has been published in this area 

since 1999 (Chapman et al 1999).

Several studies have focused on hyperbaric oxygen 

therapy (HBO) in populations with severe TBI (Adamides 

et al 2006; Al-Waili et al 2005; Golden et al 2006; Hardy 

et al 2007; McDonagh et al 2003; Rockswold et al 1992, 

2007; Shi et al 2006). Severe TBI often results in ischemia 

and anaerobic metabolism leading to a destructive chemical 

chain reaction at the cellular and mitochondrial level resulting 

in secondary brain injury or death (Rockswold et al 2007). 

HBO involves exposing the individual to pure oxygen in 

an environment with greater than normal atmospheric pres-

sures. It appears to improve cerebral aerobic metabolism at a 

mitochondrial level (Daugherty et al 2004; Zhou et al 2007), 

although there is some debate as to whether this constitutes 

a promising area for intervention as concerns have been 

raised about oxygen toxicity and the lack of class I evidence 

supporting its effi cacy (Adamides et al 2006; McDonagh 

et al 2003). Some literature suggests that HBO can decrease 

mortality and improve neuropsychological and functional 

outcomes after severe TBI but there is still insuffi cient evi-

dence to recommend its use (Golden et al 2006; Hardy et al 

2007; McDonagh et al 2003; McElligott et al 2006; Rocks-

wold et al 2007). Current research is focusing on comparing 

the utility of HBO to that of normobaric hyperoxia, a less 

expensive and easier to administer alternative, and examining 

the mechanisms of action of HBO (Rockswold et al 2007).

The successful use of acupuncture for treating TBI-related 

pain, spasticity and altered level of consciousness has been 

reported in several studies (Donnellan 2006; Tamai et al 

2007). In one randomized trial of 30 individuals in post-

traumatic coma, 15 subjects received routine medical care 

combined with acupuncture and point injection therapy while 

15 controls received only standard treatment (He et al 2005). 

Those in the acupuncture condition showed signifi cantly 

more improvement than controls in language, motor and 

cranial nerve function. The results of another study com-

paring acupuncture to placebo in treating individuals with 

post-TBI facial paralysis using a randomized two group ABA 

design in 50 subjects revealed signifi cant improvements in the 

acupuncture group as compared to the control group (Zhao 

2003). The utility of another therapy of Asian origin, Tai Chi 

Chuan, has been studied in improving mood, cognition, and 

mobility (Gemmell and Leathem 2006; Shapira et al 2001). 

However, small sample sizes and inadequately controlled 

experimental design limit the conclusions that can be drawn 

from these studies.

Schoenberger et al (2002) examined the effectiveness of 

the Flexyx Neurotherapy System, which combines biofeed-

back and photic stimulation (using glasses with light emitting 

diodes) in an attempt to affect EEG patterns that are known 

to be associated with cognitive dysfunction after TBI. In a 

randomized wait-list control design of 12 subjects, signifi cant 

improvements in depression, fatigue, memory and learning 

were found. Controlled studies with suffi cient statistical 

power examining this approach may thus be warranted.
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Mindfulness-based therapy is a Buddhist meditation-based 

technique that utilizes breathing exercises, guided visualiza-

tion and group discussion. Bédard et al (2003) examined the 

impact of a 12-week mindfulness-based approach to reduce 

stress and improve quality of life in individuals with TBI. 

It was modeled on Kabat-Zinn’s mindfulness-based stress 

reduction program and Kolb’s experiential learning cycle 

(Kabat-Zinn 1982; Kolb 1984, p. 724). It endeavored to 

“encourage a new way of thinking about disability and how 

to approach life to bring a sense of acceptance, allowing par-

ticipants to move beyond limiting beliefs”. The researchers 

used a pre-post design with drop-outs as controls and found 

improved quality of life scores on the SF-36. Given the suc-

cess of such interventions in other contexts, further research 

on mindfulness using more rigorous research designs is war-

ranted (Allen et al 2006).

Literature is limited on the impact of music therapy in 

persons with TBI suggesting a possible positive impact 

on mood, socialization, and awareness, with decreases in 

undesired behaviors such as inertia and psychomotor agita-

tion (Baker et al 2005; Formisano et al 2001; Magee and 

Davidson 2002; Magee 2005; Nayak et al 2000; Wheeler et al 

2003). However, the evidence is based on case reports and 

small, largely uncontrolled studies and is thus preliminary in 

nature, indicating the need for further investigation.

In sum, despite some promising early research, there is 

little empirical basis for or against recommending particular 

complementary and alternative treatments. Given the public 

interest in treatments of this kind, the extent to which they 

are already used, and their potential benefi ts and risks, further 

research is urgently needed. In addition to both short and 

long-term effi cacy, additional questions regarding subject 

selection, dosing, timing of treatment and concurrent treat-

ments will also need to be addressed.

Cognitive remediation
Cognitive remediation is a widely used approach to restor-

ing function and implementing compensatory strategies 

after brain injury. These interventions fall into three broad 

categories: 1) process-specifi c remediation, which focuses on 

very targeted areas of cognitive functioning, such as atten-

tion; 2) functional skills training, which focuses on improving 

cognitive functions by improving performance in functional 

activities of daily life; and 3) metacognitive remediation, 

which focuses on self-monitoring and self-regulation through 

the use of “top-down” strategies for addressing a range of 

problems and life situations of varying complexity (Cicerone 

2006). Systematic reviews of cognitive remediation research 

conducted between 1988 and 2002 have identifi ed over 250 

studies, including 46 well-designed, randomized, controlled 

trials examining remediation of defi cits after TBI and stroke 

in multiple cognitive domains (Cicerone et al 2000, 2005). 

Cicerone et al (2005, p. 1689) concluded that existing studies 

provide “substantial evidence to support cognitive reha-

bilitation for people with TBI” and have generated practice 

recommendations based on this evidence. Furthermore, they 

recommended that future research focus on treatment and 

patient factors that optimize cognitive rehabilitation outcomes 

rather than merely addressing whether or not cognitive reha-

bilitation is effective (Cicerone et al 2005). This is especially 

relevant given the heterogeneity of individuals with TBI and 

their cognitive defi cits.

Although some process-specifi c approaches are well-

supported by research data, there are practical and theoretical 

reasons to incorporate multiple treatments into more holistic, 

multimodal programs of research (Ben-Yishay et al 1985; 

Cicerone et al 2006; Gordon et al 2006; Kaschel et al 2002; 

Ownsworth and Mcfarland 1999; Sohlberg and Mateer 

1987; Sohlberg et al 2000; Wilson 1997; Wilson et al 2005). 

These reasons include the multi-faceted nature of post-TBI 

defi cits, the inter-dependence of cognitive functions and 

emotions, and the need to facilitate functional change in 

multiple domains. For example, Gordon et al (2006) have 

outlined a theoretically based model for the rehabilitation 

of executive dysfunction that draws on models of cerebral 

function and organization, cognitive behavioral theory, 

and learning theory. The intervention based on this model 

combines top-down and bottom-up approaches, including 

empirically-validated interventions for attention, problem 

solving, and emotional regulation. These are embedded in a 

day-treatment program that also uses “standard” cognitive 

rehabilitation approaches such as memory planners, psycho-

education groups, and social skills training. Despite the fact 

that theoretically-driven multimodal and holistic treatments 

of this kind represent a promising approach to addressing 

the complexity of post-TBI cognitive diffi culties, very few 

randomized controlled trials have been conducted and their 

external validity is poor (Cicerone 2006; Ruff et al 1989; 

Salazar et al 2000). However, there is a growing body of 

evidence that supports the use of such approaches and their 

long-term benefi ts (Cicerone 2006; Cicerone et al 2004; 

Hashimoto et al 2006; High et al 2006; Malec 2001; Rath 

et al 2003; Sander et al 2001; Sarajuuri et al 2005). Several 

authors have pointed out that future research will need to 

focus on comparing the impact of targeted and multimodal 

holistic interventions and improving the sensitivity and 
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specifi city of outcome measurement in research of this kind 

(Cicerone 2006; Cicerone et al 2006; Gordon et al 2006).

Research on technologically driven cognitive rehabilita-

tion interventions has examined the impact of a variety of 

assistive devices and services to provide cues and memory 

aids for individuals with brain injury and improve cognitive 

functioning through computerized remediation (Bergman 

2003; Gorman et al 2003; Hart et al 2002; Kim et al 2000; 

Tam et al 2003; van den Broek et al 2000; Wilson et al 2005; 

Wright et al 2001a, b). For example, the NeuroPage system is 

an innovative approach that reduces everyday planning and 

memory problems in individuals with brain injury through 

the use of pagers to send pre-arranged cues to remind them 

of tasks that they need to do (eg, take medications or make 

lunch) (Wilson et al 2001, 2003, 2005). In well-designed 

randomized controlled trials, this simple approach was 

shown to signifi cantly improve memory performance and 

reduce healthcare costs (Wilson et al 2001, 2005). However, 

most of the existing research is not of this caliber, and is 

composed of small, uncontrolled studies, and case reports 

(Bergman 2003; Gorman et al 2003; Kim et al 2000; van den 

Broek et al 2000; Wright et al 2001a, 2001b). Although there 

is evidence to suggest that many clinicians and individuals 

with TBI use or are interested in using newer electronic 

technologies for cognitive rehabilitation, the research litera-

ture has yet to explore the possibilities of these methods in 

any depth (Hart et al 2003; Hart et al 2004; O’Neil-Pirozzi 

et al 2004).

Ecologically valid 
neuropsychological assessment
Neuropsychology has begun to shift from a primary focus 

on diagnostic evaluations designed to identify neuropatho-

logical impairments in specifi c cognitive domains to greater 

emphasis on the consideration of the functional implications 

of neuropsychological test results and their relationship to 

an individual’s performance of everyday tasks (Rabin et al 

2007; Standen and Brown 2005). More recently, particularly 

in the rehabilitation of individuals with TBI, there has been 

interest in developing measures that assess functional abilities 

to more accurately assess performance in the “real world” 

(Chaytor and Schmitter-Edgecombe 2003; Long and Kibby 

1995; Sbordone 1996; Troster 2000) Tests designed with 

ecological validity in mind, as opposed to traditional neuro-

psychological tests, may be more effective in determining 

the extent to which an intervention improves an individual’s 

performance on everyday cognitive tasks. However, older 

neuropsychological tests that were designed to diagnose 

neuropathology are now used to make predictions about 

real world functioning, yet there is limited research on the 

ecological validity of these tests (Rabin et al 2007; Standen 

and Brown 2005).

More recently, several neuropsychological measures that 

have been designed with ecological validity as a primary 

consideration have made progress towards wider acceptance. 

Most of these measures have been developed in the United 

Kingdom or Canada. They include the Test of Everyday 

Attention (TEA) (Robertson et al 1994), the Behavioral 

Assessment of the Dysexecutive Syndrome (BADS) (Wilson 

et al 1996), the Rivermead Behavioral Memory Test (RBMT) 

(Wilson et al 1985), the Cambridge Test of Prospective 

Memory (CAMPROMPT) (Wilson et al 2004), and the 

Multiple Errands Test (MET) (Alderman et al 2003; Burgess 

et al 2006; Knight et al 2002; Shallice and Burgess 1991). 

They differ from traditional neuropsychological measures 

by focusing on identifying limitations in functional abilities 

rather than discriminating brain injured from healthy people 

or determining the etiology of brain dysfunction (Chaytor 

and Schmitter-Edgecombe 2003). However, there is tremen-

dous variability in the everyday demands facing individuals 

with TBI and they may require very different skill sets. For 

example, the cognitive skills required of a teacher differ 

from those of a fi reman or a banker. Therefore, most of these 

tests, particularly in the domain of executive functioning, 

lack specifi city, even when they are sensitive to dysfunction 

(Cicerone et al 2006).

This change in focus of the purpose of neuropsychologi-

cal evaluation is extremely relevant in rehabilitation, where 

the primary goal is treatment planning rather than determin-

ing the type and location of cerebral abnormalities. To ensure 

appropriate treatment, interventions are designed and tailored 

to the individual and the primary role of the neuropsycho-

logical evaluation is to assess the likely implications of the 

fi ndings on the person’s ability to carry out daily activities 

(Bennett 2001). This then guides the treatment team on the 

type of rehabilitation required and the degree of recovery 

that can reasonably be expected.

Virtual reality
Rapid advances in computer technology have led to the 

creation of multiple virtual reality (VR) applications which 

allow the user to interact with, and become immersed in, 

a computer-generated environment that simulates a real 

world environment (Chute 2002; Rizzo et al 1997). VR tech-

niques can been used as a means to bridge the gap between 

diagnostic measurement tools and ability to function in 
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natural environments by using computer-based interactive 

instruments to assess level of functioning in real life simula-

tions, thereby creating more ecologically valid and dynamic 

assessment and training. They also have the capacity to pro-

vide a consistent environment with the potential for infi nite 

repetitions of the same assessment or training task while 

maintaining the fl exibility to alter sensory presentations, task 

complexity, response requirements, and the nature and pattern 

of feedback in order to adapt to a user’s unique impairments. 

Thus VR offers the potential to develop both neuropsycho-

logical assessment tools and treatment environments that can 

accurately determine cognitive and functional performance 

by precisely controlling complex stimulus presentation 

(Schultheis et al 2002).

VR is a relatively new approach in rehabilitation 

medicine, yet it offers considerable potential to achieve 

signifi cant successes in assessment, treatment and improved 

outcome (Johnson et al 1998; Rose et al 2005) The technol-

ogy is rapidly becoming more available and affordable for 

rehabilitation research and the clinical application allows 

fl exibility for investigators and clinicians to tailor the system 

to particular interests or needs (Baumann et al 2003).

The simulation of real world activities can facilitate the 

evaluation of an individual’s cognitive capacity and perfor-

mance ability for tasks in their own natural environment. 

Additionally, VR tasks can provide a safe setting to assess 

skills that might be too risky in the real world (eg, driving). 

The individual’s own fear of the reaction of others to faulty 

attempts in a natural environment are minimized, and lim-

ited resources that often make trips to a real environment 

diffi cult are easily addressed. In the virtual environment, 

people can go where they like even if they have mobility or 

balance problems. They can make mistakes without suffer-

ing the real, humiliating, or dangerous consequences of their 

errors (Standen and Brown 2005). VR technology can also 

be used for interventions, particularly when sensory, motor 

and cognitive consequences of brain injury combine to make 

environmental interaction diffi cult or dangerous. Interven-

tions have been evaluated in the areas of exercise, yielding 

improvements in reaction times (Grealy et al 1999; Thornton 

et al 2005) and balance (Morganti et al 2007; Sveistrup et al 

2003). In cases where the actual activity is too complex for 

an individual to perform, the VR world can be manipulated to 

break down the activity into multiple and progressively more 

diffi cult tasks, so that the person can learn in a safe realm. VR 

has been used in the area of rehabilitation to increase skills 

for independent living, enhance cognitive performance, and 

improve social skills.

As an assessment tool, VR environments can enhance the 

ecological validity of fMRI research. Typical fMRI experi-

mental designs are often simple, contrived and devoid of real 

life context. While these basic designs are useful in mapping 

primary functional areas of the brain, they provide minimal 

views of the networked brain activity that must occur during 

real life situations when multiple functional areas are called 

upon to guide one’s behavior. Pilot data from an fMRI study 

of memory for spatial navigation showed robust activation 

in multiple cortical regions expected to be involved in the 

task (Baumann et al 2003).

Additionally, assessment of executive functioning skills 

with the Multiple Errands Task has been developed in a VR 

format and was tested on fi ve patients with executive dys-

function and fi ve matched controls (McGeorge et al 2001). 

Those with impairments performed more poorly relative to 

controls on the real and virtual versions of the MET. In addi-

tion, there was a signifi cant correlation between performance 

in the real and virtual task, providing a more discriminating 

method of assessing planning impairments than currently 

available on standardized neuropsychological tests.

VR environments have been used to examine simulated 

driving performance compared to on-road, cognitive, visual-

perceptual, and driving video test results, and have been 

found to be reliable and valid as a screening tool for assessing 

driving performance (Lengenfelder et al 2002; Schultheis 

et al 2007; Wald et al 2000; Wald and Liu 2001). Research 

continues to focus on establishing the reliability and validity 

of different driving simulators (Schultheis et al 2007; Wald 

et al 2000; Wald and Liu 2001). The next step will be to 

progress from evaluation to treatment that improves driving 

skill, much like VR simulators for pilots. VR environments 

have also been created to simulate tasks associated with 

cooking (Christiansen et al 1998; Zhang et al 2001, 2003) 

and shopping (Lee et al 2003). Stability of performance using 

the simulated virtual environment and appears to be a good 

predictor for real world performance.

Overall, virtual technology is less developed as a rehabili-

tative intervention than as a method of assessment (Standen 

and Brown 2005), but recent intervention studies are promis-

ing. Thus effective VR rehabilitation could be adapted for 

individuals to use in inpatient, outpatient and home care as a 

supplement or alternative to conventional therapy.

Conclusions
TBI is a common problem that causes widespread disability. 

Despite the enormity of the problem, few data exist regard-

ing effective treatments beyond the very acute period. 
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This is partially because there is insuffi cient understanding 

of both normal and impaired cerebral development and 

function and the factors that impact outcomes post-TBI. 

Advances in the realms of understanding cerebral physi-

ology and function, assessment tools, growth factors and 

genetics in addition to the development of innovative 

research designs will provide the necessary framework 

to better develop treatments that are specifi c to individu-

als with unique injury characteristics and genotypes. It is 

almost a certainty that any single future intervention will be 

insuffi cient to address the multitude of physical, behavioral 

and cognitive problems caused by TBI. Therefore, as new 

technologies and treatments evolve, it will likely become 

evident that various treatment “cocktails” will emerge that 

combine approaches to assessments and treatment that will 

result in improved recovery by tailoring specifi c approaches 

to individuals with TBI.
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