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Abstract: Fibromyalgia appears to present in subgroups with regard to biological pain induction, 

with primarily inflammatory, neuropathic/neurodegenerative, sympathetic, oxidative, nitrosa-

tive, or muscular factors and/or central sensitization. Recent research has also discussed glial 

activation or interrupted dopaminergic neurotransmission, as well as increased skin mast cells 

and mitochondrial dysfunction. Therapy is difficult, and the treatment options used so far mostly 

just have the potential to address only one of these aspects. As ambroxol addresses all of them 

in a single substance and furthermore also reduces visceral hypersensitivity, in fibromyalgia 

existing as irritable bowel syndrome or chronic bladder pain, it should be systematically inves-

tigated for this purpose. Encouraged by first clinical observations of two working groups using 

topical or oral ambroxol for fibromyalgia treatments, the present paper outlines the scientific 

argument for this approach by looking at each of the aforementioned aspects of this complex 

disease and summarizes putative modes of action of ambroxol. Nevertheless, at this point the 

evidence basis for ambroxol is not strong enough for clinical recommendation.

Keywords: Nav 1.8, Nav 1.7, bromhexine, hyperalgesia, sympathetically maintained pain,  

central sensitization, interleukins, neuropathic pain, sodium channels

Introduction
Fibromyalgia syndrome (FMS) is a chronic, undegenerate symptom complex that is 

characterized by chronic widespread pain and evoked pain at tender points. Other com-

mon symptoms include insomnia, depression, fatigue, stiffness, and gastrointestinal 

disorders.1–3 Approximately 2%–5.8% of the population of industrial countries suffer 

from FMS,1,4–9 and 80%–90% of patients are female. Although FMS is classified as a 

noninflammatory disorder, there is increasing evidence for changes in inflammatory 

mediators,10–15 and a disturbed balance in pro- and anti-inflammatory cytokines is 

being discussed.12,16–18 In addition, it is also considered a stress-related-disorder with 

dysfunction of the hypothalamic–pituitary–adrenocortical axis.19–21 Furthermore, 

increases in oxidative stress and toxic metabolites of lipid peroxidation have been 

shown for FMS.22–24 It has been proposed that fibromyalgia could be a sympathetically 

maintained neuropathic pain syndrome.25 Moreover, it has been suggested that dorsal 

root ganglia and peripheral sensory neuron sodium channels may play a major role in 

fibromyalgia pain transmission.26

In previous publications, we described the successful topical treatment of neuropathic 

pain27,28 and nociceptive pain29 with ambroxol cream in a case series. Furthermore, not 

only have we observed beneficial topical and oral individual treatment results in FMS 
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(Figures 1–3; Kern KU. Data on file. Personal clinical observa-

tions. 2011–2017) but also other investigators have observed 

similar effects using oral ambroxol,30,31 both of which certainly 

could be regarded as placebo effects at this stage. Ambroxol 

is a secretolytic substance, but may also potentially influence 

several pathophysiological mechanisms involved in fibro-

myalgia. First, ambroxol interferes with oxidative stress and 

influences cytokines and inflammation.32,33 Second, ambroxol 

blocks sodium channels,34 especially the tetrodotoxin-resistant 

(TTX-r) channel subtype Na
v
1.8,34–36 which is expressed 

particularly in spinal ganglion cells37 and in nociceptive, 

sensory neurons.37–40 This should limit central sensitization in 

chronic widespread muscle pain,41 which clearly also occurs in 

FMS.42 Based on these effects, ambroxol may be an interesting 

treatment approach for FMS, even if detailed examinations 

concerning these single mechanisms remain to be performed 

and an influence of ambroxol on inhibitory descending pain 

pathways, important in FMS, has not yet been examined. The 

present paper outlines the scientific argument for the treatment 

of fibromyalgia using ambroxol by looking at many differ-

ent aspects of this complex disease and summarizes putative 

modes of action (Tables 1–3, Figure 4).

Skin, mitochondria, and mast cells
Skin condition
Salemi et al43 detected IL1β, IL6, and TNFα in skin biop-

sies of a subgroup of approximately 30% of FMS patients, 

but not in control subjects. This finding was interpreted as 

the presence of inflammatory foci indicating neurogenic 

inflammation, which might be the reason for the efficacy of 

nonsteroidal anti-inflammatory therapy, which has occasion-

ally been reported. IL1β,44,45 IL6,44,46,47 and TNFα44–46,48–52 

are inhibited by ambroxol. Blanco et al53 demonstrated an 

increased number of mast cells in FMS patients, the secre-

tion of which was also inhibited by ambroxol.54–56 Other skin 

biopsies have shown significant mitochondrial dysfunction 

and an increased level of oxidative metabolites, in conjunction 

with inflammatory signs57,58 correlated with pain.57 Ambroxol 

also improves mitochondrial dysfunction59–61 and oxidative 

stress.44,60,62–65 Uçeyler et al66 investigated the gene expression 

of the proinflammatory cytokines TNFα, IL6, and IL8 and the 

anti-inflammatory IL10 in skin biopsies of 25 FMS patients, 

compared these to patients with depression and healthy con-

trols, and found no detectable differences. The results did not 

support the hypothesis of these cytokines being involved in the 

sensitization of peripheral nerves in the skin. In one of the most 

comprehensive investigations with skin biopsies, FMS patients 

had reduced intraepidermal nerve-fiber density compared to 

controls, which supports the view that the pain syndrome in a 

subgroup of FMS patients is partially of neuropathic origin.67 

In vitro and in vivo investigations have demonstrated that 

ambroxol can relieve neuropathic pain.28,29,68–71 Our clinical 

practice observations have shown pain relief in FMS following 

some oral treatments or topical application of ambroxol 20% 

Figure 1 Individual development of FIQ and NRS in four responders to oral ambroxol for fibromyalgia.
Note: 4 weeks of ambroxol orally, 75 mg retarded. Kern KU, data on file - personal clinical observations, 2011–2017.
Abbreviations: FIQ, Fibromyalgia Impact Questionnaire; NRS, numeric rating scale (0–100).
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cream (Figures 1–3; Kern KU. Data on file. Personal clinical 

observations. 2011–2017), which according to the aforemen-

tioned relationships need not necessarily be attributed solely 

to the local anesthetic properties of the compound, especially 

when improved over time (Figure 2).

Whole-body cryotherapy, beneficial in a subgroup of 

FMS patients,72 works primarily via impact on the skin. This 

therapeutic approach stabilizes lysosomal membranes,73 

among others, and reduces the negative effects of proteins of 

lysosomal enzymes. Ambroxol has a comparable effect. The 

compound significantly enhances reduced enzyme activity of 

the lysosomal glucosylceramidase (in Parkinson’s disease),74–76 

as well as α-galactosidase A (in Fabry’s disease), α-glucosidase 

(in Pompe’s disease),77 and β-glucocerebrosidase (in Gaucher’s 

disease).78,79 At least for the aforementioned diseases, ambroxol 

is thus clearly an enzyme-modifying therapeutic option. 

Figure 2 Passage of time of fibromyalgia pain reduction.
Note: Following initial topical ambroxol 20% treatment (hands and elbows) and results after 3 weeks of treatment in a single patient. Kern KU, data on file - personal clinical 
observations, 2011–2017.
Abbreviation: NRS, numeric rating scale (0–10).
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Table 1 Reported inflammatory and oxidative changes in fibromyalgia, explaining biological pain induction, and potential helpful modes 
of action of ambroxol

Mechanism Fibromyalgia Ambroxol

Inflammation
Inflammation Discussed Anti-inflammatory32,33,46

Edema Common ↓46,152,326

Tissue hypoxia and acidosis Discussed ↓229

Cytokines
Cytokines Important in FMS12,13,264

Influence on HPA axis269–271

Mediator of neuropathic pain266–268

Multiple effects on cytokines32

Proinflammatory
IL1β ↑43,281 ↓44,45

IL2 Decreased by therapeutic cryotherapy73 ↓49

IL6 ↑12,14,91,199,200,272 ↓44,46,47,205

IL8 ↑12,199,200,273,274,277 ↓47,96,201–205

IL8 intrathecally ↑ Compared to rheumatoid arthritis199 Reduced allodynia71

TNFα ↑43,91,283,327 ↓44–46,48–52

Anti-inflammatory
IL1RA ↑12,199 IL1 ↓44,45,48,51

IL4 ↓18,287

↑ Compared to rheumatoid arthritis199

↓54

IL10 ↑13,276,278,281,282

Unchanged12,276

Stabilization203,284

↑285

Others
IL13 ↓287 ↓54,285 (but helpful as anti-inflammatory)
IL5 ↓287 ↓54,285 (but helpful as anti-inflammatory)
Cellular immunity ↓11 ↑86,87,285 (Nav1.8 immunomodulatory)295

NLRP3 inflammasome Activated291,292 ↓ (free-radical scavengers)44,60,62–65

Mast cells ↑53,88 ↓54–56 (secretions)
MCP1 ↑150,274,289

Correlation/pain intensity150

↑ in mutation subpopulation289

↓51,95,152

Oxidative stress
Oxidative stress ↑57,84,115 ↓45,74,96,104,285

Oxidative metabolites ↑ (multiple, see below) ↓44,59,62,64,65,96,123

Lipid peroxidation ↑23,81 ↓59,98,99 (inhibition)
Oxidative parameters
Superoxide ↑83 ↓328

Malondialdehyde ↑22–24 ↓59,98,99

Xanthine oxidase ↑ (and correlation with muscle pain)100 ↓45

Antioxidative parameters
Catalase ↓80,81 ↑62,101

Glutathione peroxidase ↓80,81 ↑45

Superoxide dismutase ↓23,24,80 ↑45,98,101–104

Antioxidative therapies
Melatonin New therapeutic strategy112,113

Potent antioxidant114

Lipid peroxidation ↓110

Future strategy?
Also antioxidant44,59,62,64,65,96,123

Lipid peroxidation ↓59,98,99

Free-radical scavengers Therapeutic option?100 Acts as44,60,62–65

Nitrosative stress
Nitrosative stress ↑84,115 ↓96

Nitric oxide Correlates with FIQ score119

Involved in pathophysiology?97,116

Responsible for pain sensitivity117

Correlation with pain intensity118

Nitric oxide synthase inhibitors needed for therapy120

↓ (activity and production)44,121–123

Abbreviations: FIQ, Fibromyalgia Impact Questionnaire; FMS, fibromyalgia syndrome; HPA, hypothalamic–pituitary–adrenocortical; Nav, voltage-gated sodium.
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Table 2 Reported nociceptive and CNS changes, cellular dysfunction, and accompanying symptoms in fibromyalgia

Nociception and CNS Fibromyalgia Ambroxol

Muscle pain Common (multiple)
Central sensitization133–135 and long-lasting TTX-r 
activation136

Tissue acidosis crucial141,142

ASIC3 essential139,146 → Nav1.8 activity ↑
Induction and sensitization by MCP1150,151

Correlation with xanthine oxidase100

Mitochondrial dysfunction in FMS muscles shown 
and “explanation”84

Nav1.8 in 86% of sensory muscle fibers329

Blockade of involved Nav1.8
Antioxidative in acidosis45,74,96,104,285

Blockade of involved Nav1.8
MCP1 ↓51,95,152

Xanthine oxidase ↓45

↓ (or improved)59–61

Central sensitization Involved in FMS42,175,176 and chronic muscle 
pain133–136,177

Chronic widespread pain in FMS animal model 
Nav1.8-associated41

↓ (via Nav1.8 blockade and reduced inflammation)
Nav1.8 blockade helpful or preventive41,92,178

NP Involved153–156

Cytokines as mediators266–268

↓27–29,34,69–71,165,330

Multiple effects on cytokines32

Allodynia/hyperalgesia Common156,180–182 ↓68,69,71

Heat hyperalgesia Reported156 Suppressed by 100%69

Cold hyperalgesia Reported173,185,186 Reduced by approximately 75%69

Mechanical allodynia Reported156 Reduced by approximately 75%69

Reduced in monoarthritis pain by 50%69

Neurodegeneration ↑Peripherally42,154,162,163

↑ Also in CNS (eye)162,163

↓192,225,229

↓ (improves CNS regeneration)225

Small-fiber pathology Reported67,159,160,162–164 Mainly nociceptive C-fibers with expressed Nav 

1.837–40,166–168 and thus blocked
NP ↓27–29,34,69–71,165,330

SNS Involved193–196 Nav1.8 blockade also on SNS197,198

IL8 ↓96,201–205 and so sympathetically maintained pain
Glia Activation important17,200,212–214

Activation increases IL8207

IL8206 and α-synuclein increase activation219

Activation ↓: IL8 ↓96,201–205 and α-synuclein ↓224

Dopamine ↑221

Dysfunction221,222

Impaired neurotransmission223

α-synuclein ↓224

→ dopaminergic neurodegeneration ↓

Dysfunction
Mitochondrial dysfunction ↑ (skin,57,58 blood,57,58,83–85 muscle)84

Improvement is therapeutic option85

↓ or improved59–61

Lysosomal dysfunction Whole-body cryotherapy helpful72,73 ↓331

Enzymes ↓23,24,80–82

Prolyl endopeptidase reduction predictive82

↑ (multiple)74–79

Cellular immunity ↓11 ↑86,87

IFNγ (immunostimulatory) ↑332 ↓49,50,284

 Cortisone receptor ↓94 Similar efficacy, but independent46,51,95,96

Accompanying symptoms
Overactive bladder Common,296 often painful298 Inhibition of overactivity299

Irritable bowel syndrome Common300,301 Nav1.8 blockade reduces colon hyperalgesia307

Dysfunction234 and visceral pain308,309

Dry eyes ↑ in FMS and FMS ↑ in Sjögren’s syndrome311–313 Increases tear secretion314

Improves sicca symptoms315

(Continued)

Reduction of many enzymes is also present in FMS.23,24,80–82 

Low activity of the enzyme prolyl endopeptidase in serum 

is even supposed to have predictive diagnostic value.82 The 

possibility of enhancement of this specific enzyme activity 

by ambroxol should thus be investigated.

Mitochondria
Mitochondrial dysfunction in FMS has been demonstrated 

in skin biopsies,57,58 blood,83 and muscle cells, and may 

explain muscular pain.84 If such mitochondrial dysfunction 

also occurs in neurons of the central nervous system (CNS), 
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this could contribute to general hypersensitivity and chronic 

widespread pain.84 The inflammatory components of FMS 

have also been regarded as an expression of mitochondrial 

dysfunction, and thus an improvement in mitochondrial func-

tion may be a new therapeutic approach.85 In turn, ambroxol 

has an impact on mitochondria: it inhibits lipid peroxidation 

in hepatic mitochondria by 96%,59 prevents toxic increase 

in mitochondrial membrane permeability,60 and in animal 

models improves mitochondrial oxidative damage.61

Another investigation also pointed to mitochondrial 

dysfunction: stimulation of mononuclear cells of healthy 

subjects resulted, as expected, in significantly increased 

cytokine levels in contrast to unstimulated cultures. In FMS 

patients, however, the concentrations of most cytokines 

were lower. Behm et al11 interpreted this observation as an 

impairment of cell-mediated immunity in FMS patients. On 

the other hand, there are findings that ambroxol could protect 

immunocompetent cells from dysfunction86 and appears to 

strengthen cell-mediated immunity.87

Mast cells
In comparison to healthy subjects, patients with FMS have 

more mast cells in the skin.53,88 The significance of this finding 

for the pathogenesis of FMS has been classified as unclear by 

Ambroxol treatment
Ambroxol dosage used First individual FMS treatments:

•	 3×30 mg orally30

•	 75 mg retarded (Kern KU. Data on file. 
Personal clinical observations. 2011–2017)

•	 20% cream topically (Kern KU. Data on file. 
Personal clinical observations. 2011 -2017)

Prenatal lung maturation: 1 g IV316

ARDS (children <1 year): up to 40 mg/kg/day322

Atelectasis: 1 g IV317

Gaucher’s: 1,300 mg/day79

Parkinson’s: 1,050 mg/day76

Individual reports (safe):
•	 up to 3 g/day over 53 days318–320

•	 oral 1.3 g/day over 33 days321

Treatment durations First individual FMS treatments: 4–6 weeks Clinically used treatment durations:
90 mg for 3 months52

2×75mg for 6 months324 and 1 year325

Ongoing trial: 225–1,050 mg/day for 52 weeks76

Note: Potentially helpful modes of action of ambroxol and reported dosage and treatment durations included.
Abbreviations: ARDS, acute respiratory distress syndrome; ASIC, acid-sensing ion channel; CNS, central nervous system; FMS, fibromyalgia syndrome; IV, 
intravenous; Nav, voltage-gated sodium; NP, neuropathic pain; SNS, sympathetic nervous system; TTX-r, tetrodotoxin-resistant.

Table 2 (Continued)

Table 3 Relevance of sodium channels and corresponding therapeutic approaches

Sodium channels Fibromyalgia Ambroxol
Sodium channels Important26,196,333 Sodium-channel blockade34–36

Nav1.7 Polymorphism found in severe FMS,26 important in DRGs196 Nav1.7 blockade107,259

Nav1.8 Expressed in (damaged) small C-fibers37–40,166–168,171

Important for sensitization171,190,304,334,335

Important for cold pain38,174 (as in FMS)173

Gain-of-function mutations: FMS-like symptoms170,171,230,234,236

Nav1.8 blockade34,35

Lidocaine (unspecific blockade) Helpful129–132,336

Not helpful337,338

40-fold more potent36

12-fold more specific for Nav1.836

Nav1.7 and Nav1.8 blocker
Duloxetine Helpful157,238

Impact: blockade of Nav1.7 and Nav1.8 240,241

Nav1.7 blockade107,259

Nav1.8 blockade34,35

Amitriptyline Recommended 157,238

Impact: blockade of Nav1.7239,243,244 and Nav1.8244

Nav1.7 blockade107,259

Nav1.8 blockade34,35

Ibuprofen Preferred by patients157

Impact: blockade of Nav1.7253–255 and Nav1.8 systemically255 and topically254

Nav1.7 blockade107,259

Nav1.8 blockade34,35

Gabapentin Helpful (Cochrane review)249

Impact: blockade of Nav1.7250,251

Nav1.7 blockade107,259

Pregabalin Helpful157,249

Effect Nav1.7-associated252

Nav1.7 blockade107,259

Tramadol Second-line treatment157

Impact: sodium-channel blockade
Sodium-channel blockade34–36

Abbreviations: DRGs, dorsal root ganglia; FMS, fibromyalgia syndrome; Nav, voltage-gated sodium channels.
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Figure 4 Mechanisms involved in fibromyalgia and influenced by ambroxol (see Tables 1–3).
Abbreviations: Nav, voltage-gated sodium channels; NS, nervous system.
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some authors,88 whereas others have used this as a basis for 

classifying FMS as a mast cell-associated disorder.53 If this 

latter interpretation were to hold true, the fact that ambroxol 

inhibits secretion from mast cells54–56 would be of consider-

able importance. At least in pain models on ischemia/reper-

fusion, there is clearly a close relationship between cardiac 

mast cells and C-fibers.89 Furthermore, mast cells play an 

important role in chronic urticaria, and in one study a surpris-

ing 70% of 126 urticaria patients also suffered from FMS. 

Torresani et al90 discussed whether neuropeptides released 

owing to degranulation of increased numbers of mast cells 

in FMS patients may stimulate nerve endings, and chronic 

urticaria may thus occur as a result of skin neuropathology 

in FMS. Recently, it was demonstrated that cortiocotropin-

releasing hormone and substance P are increased in FMS 

and stimulate release of IL6 and TNFα from mast cells.91 

Both IL644,46,47 and TNFα44–46,48–52 are reduced by ambroxol. 

However, there are open questions remaining: therapeutic use 

of the mast-cell stabilizer ketotifen does not show significant 

differences between groups with regard to pain and Fibro-

myalgia Impact Questionnaire (FIQ) scores, which raises the 

question whether mast cells do play a major role in FMS.88

Chronic psychological, oxidative, 
and nitrosative stress
Chronic stress and cortisol
Since it is still not clear how chronic stress influences visceral 

and somatosensory pain regulation, both types of hyper-

algesia were investigated in an animal model: the authors 

demonstrated that chronic stress also led to upregulation of 

the Na
v
1.8 channel.92 It was shown that both visceral and 

somatosensory hyperalgesia and the increased expression of 

Na
v
1.8 normalized after 3 days without stress: this related to 

sodium channels in the dorsal root ganglion (DRG) neurons 

of those segments, which are responsible for the pelvic vis-

cera.92 This may for example explain the associated visceral 

symptoms in FMS, and in turn suggest a therapeutic approach 

using ambroxol with its selective Na
v
1.8 blockade. This 

applies even more if FMS is considered a stress-mediated 

disorder,5,93 in which the overexpression of Na
v
1.8 is not 

further downregulated and a receptor blockade would gain 

even greater importance.

Since pain and fatigue as core symptoms of FMS are also 

characteristic of disorders with reduced cortisol levels, it has 

been hypothesized that there may also be reduced cortisol 

levels (caused by fatigue?) in FMS. Although glucocorticoid 

tests in 12 female FMS patients showed no reductions in 

daytime cortisol profile in comparison to 15 controls, they did 

however show reduced sensitivity of glucocorticoid-receptor 

function; this was considered a pathophysiologically relevant 

finding for FMS by Geiss et al.94 In this context, the fact that 

the anti-inflammatory potency of ambroxol is comparable to 

dexamethasone46,51,95 and beclomethasone96 without requir-

ing glucocorticoid receptors is not necessarily relevant, but 

nevertheless worthy of note.

Oxidative stress
The findings concerning oxidative stress in fibromyalgia are 

currently still inconsistent. In particular, it is not clear whether 

the disease is caused by oxidative stress.97 Enhanced oxidative 
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stress mediated by free radicals is however evident in FMS 

and leads to increased cytokine expression. There is much 

evidence that suggests that increased oxidative stress leads 

to increased severity of FMS symptoms.81,97 In particular, 

a positive correlation has been observed between FIQ and 

increased lipid peroxidation.81 Malondialdehyde is a toxic 

metabolite of lipid peroxidation, and significantly increased 

levels of this metabolite have repeatedly been found in 

patients with FMS.22–24 Ambroxol inhibits this harmful lipid 

peroxidation.59,98,99 Furthermore, the enzyme xanthine oxidase 

correlates with the severity of muscular pain in FMS100 and 

is also reduced by ambroxol.45 A similar relationship has 

been shown for other antioxidative substances: decreased 

levels of catalase have been shown for FMS,80,81 and these 

levels are enhanced by ambroxol.62,101 The same applies to 

glutathione peroxidase,45 which is also decreased in FMS 

patients and enhanced by ambroxol.80,81 There are appar-

ently lower levels of the intracellular antioxidative enzyme 

superoxide dismutase in FMS patients;23,24,80 ambroxol can 

also lead to increased levels of this enzyme.45,98,101–104 Skin 

biopsies of FMS patients also show increased levels of oxi-

dative metabolites that correlated with the severity of pain 

and inflammation.57 Both are relevant for the development of 

peripheral nerve damage, which has also been observed in 

FMS and may be the cause of allodynia. Since investigations 

on DRG neurons of mice recently suggested that nociceptor 

hyperexcitability induced by oxidative stress is primarily 

mediated via sensitization of the ambroxol-inhibited Na
v
1.8-

channel type,105 Schlüter and Leffler106 investigated the influ-

ence of the strong oxidant chloramine T. They confirmed 

these findings, which were more pronounced for the Na
v
1.8 

than for the Na
v
1.7 subtype, which however is also inhibited 

by ambroxol.107

In summary, the balance of oxidants and antioxidants 

appears to be disturbed in FMS, and increased levels of 

free radicals are possibly responsible for development of 

the disease.24,80 Fibromyalgia can thus also be understood 

as an oxidative disorder.24 Understandably, rheumatolo-

gists are requesting further investigations into the effects of 

radical scavengers,100 and ambroxol is known to be one such 

scavenger.44,60,62–65

Oxidative stress and lipid peroxidation do not only occur 

in FMS and depression. Some of the products resulting 

from these processes are in addition predictors for neurode-

generation; this may be the reason for associations of both 

indications with neuropathic pain.108 Oxidative damage of 

DNA may be important in this context.109 As a strong radical 

scavenger44,60,62–65 and inhibitor of lipid peroxidation,59,98,99 

ambroxol may thus counteract neurodegenerative changes 

during disease progression in FMS.

Both ambroxol and melatonin are able to protect from 

lipid peroxidation.110 Melatonin levels that are too low may 

have a negative impact in FMS.111 Since melatonin is one of 

the targets of the latest strategies in the development of drugs 

for FMS,112,113 and this is based on being a radical scavenger 

that functions like a strong antioxidant,114 the same may also 

apply to ambroxol.

Nitrosative stress
Nitrosative stress is caused by reactive nitrogen species, 

eg, nitrogen monoxide (NO) and its product peroxynitrite. 

These harmful and highly reactive nitrogen compounds are 

involved in cellular dysregulation. It is assumed that nitrosa-

tive stress is involved in neurological and inflammatory dis-

orders. This has also been demonstrated for FMS.84,115 It has 

been suggested that NO is involved in the pathophysiology 

of FMS,97,116 may be responsible for pain sensitivity,117 and 

correlates with pain severity.118 In addition, NO levels cor-

relate with the FIQ score.119 On this basis, Cimen et al120 have 

requested the search for inhibitors of nitric oxide synthase 

(NOS) for FMS treatment, since this enzyme catalyzes the 

(unfavorable) formation of NO. The same effect, however, 

is also achieved with ambroxol: the compound inhibits the 

production and activity of NO.44,121–123

Sex hormones
Since FMS primarily affects women, there is reason to pre-

sume that sex hormones play an important role. Estradiol 

(E
2
) has a key function in pain modulation. The effects of E

2
 

are mediated via estrogen receptors (ERs).124,125 ERs (ERα, 

ERβ) and Na
v
1.8 may be expressed in DRG neurons. In 

knockout mice for ERβ, Na
v
1.8 is upregulated,124 and in addi-

tion voltage-gated sodium channels are inhibited by E
2
.125 In 

principle, hormone deficiency may thus contribute to hyper-

excitability in fibromyalgia. Hormone-replacement therapy, 

however, does not lead to an improvement in symptoms,126 

and sex-hormone deficiency has not been demonstrated for 

FMS.127,128 Nevertheless, ambroxol is able to inhibit experi-

mentally upregulated Na
v
1.8 sodium channels34–36 or those 

sodium channels that are functionally insufficiently blocked 

by E
2
.34 The compound is an approximately 12-fold stronger 

inhibitor of Na
v
1.8 than lidocaine and 40-fold stronger if neu-

ronal sodium channels in general are considered.36 Of note, 

lidocaine has already been used successfully for FMS.129–132,336
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Muscular pain
Both peripheral and central sensitization processes are involved 

in the transition from acute to chronic muscular pain.133–135 One 

of the currently leading theories suggests that acute stimulation 

of specific nociceptors binding isolectin B
4
 (IB

4
) may lead to 

long-term hypersensitivity of nociceptors. Consequently, a 

lasting increase in TTX-r sodium-channel activity (such as 

Na
v
1.8) is required, in order to achieve long-term changes in 

intracellular signalling.136 Na
v
1.8 inhibition with ambroxol 

would in this case be a preventive approach. Recent studies 

again confirmed the importance of IB
4
-positive muscular 

nociceptors for chronic muscular pain,137,138 thereby confirming 

older and similar research results.139,140 Tissue hyperacidity in 

muscles owing to ischemia and inflammation has a decisive 

impact on the initiation and progression of chronic muscular 

pain.141,142 Acid-sensing ion channel (ASIC)-3 and transient 

receptor-potential cation-channel subfamily V, member 1 are 

involved in the activation of muscular nociceptors, the induc-

tion of central sensitization, and chronic muscular pain.143–145 

ASIC3 has been demonstrated to play a major role in triggering 

acid-induced chronic muscular pain.139,146 Its activation again 

increased Na
v
1.8 activity, with essential development of long-

lasting hyperalgesia and chronic widespread muscular pain in a 

mouse model of fibromyalgia.41 Since to date, ASIC3 cannot be 

specifically blocked, Chen et al41 considered selective blockade 

of Na
v
1.8 a good treatment option for chronic muscular pain 

with ischemic conditions.

According to their own reports, patients affected by FMS 

in the US147 and Germany148 had only minor benefit from anti-

inflammatory treatment. Correspondingly, in their microdialy-

sis investigations in muscles of FMS patients, Christidis et al149 

detected no changes in the proinflammatory cytokines IL1β, 

IL6, IL8, or TNFα. In contrast, another cytokine, MCP1, not 

only occurs with increased levels in the blood of fibromyalgia 

patients150 but is also supposed to induce persistent muscular 

hyperalgesia and chronic sensitization.151 Should this be of 

relevance for FMS, ambroxol may again be of therapeutic 

benefit, since it can contribute to a reduction in MCP1.51,95,152 

Muscular pain in FMS patients is also explained by mitochon-

drial dysfunction in muscular cells.84 As just described, this 

could also be improved by ambroxol.59–61 Furthermore, the 

ambroxol-reduced oxidative–toxic enzyme xanthine oxidase45 

correlates with muscular pain severity in FMS.100

Neuropathic pain and small-fiber 
pathology
The latest research on FMS pain has shown that at least 

in a subgroup of patients, a neuropathic component is 

involved.67,153–155 Changes in small nerve fibers and a high 

PainDetect score suggest this,156 even though this question-

naire has not been validated for the disease.155 In a comparison 

of diabetic polyneuropathy with FMS, approximately 30% 

of patients showed an overlap of sensory profiles, whereas 

other distinct profiles were disease-specific.156 Furthermore, 

it is noteworthy that many drugs used for the treatment of 

FMS157 are also used for neuropathic pain.158

There is increasing knowledge in particular about changes 

in small nerve fibers. In this respect, Uçeyler and Sommer159 

and Doppler et al160 considered it important to use the term 

“small-fiber neuropathology” and distinguish this from 

“small-fiber neuropathy”. Interestingly, Doppler et al160 

demonstrated significantly reduced average axon diameters 

in skin biopsies of 32 FMS patients compared to 12 patients 

with small-fiber neuropathy and 40 healthy controls. It 

appears that quite different pathophysiological mechanisms 

lead to the development of small-fiber degeneration and/or 

regeneration.66,161 In FMS, not only changes in peripheral 

small fibers but also in the eye (which belongs to the CNS) 

occur.162,163 Controlled investigations with skin biopsies67 and 

laser-evoked potentials164 showed reduced intraepidermal 

nerve-fiber density in FMS patients compared to healthy 

controls, and thereby also support the theory of at least a 

partial neuropathic origin of pain. As mentioned earlier, we 

were able to report clinical efficacy of topical ambroxol for 

neuropathic pain in previous publications;27–29,165 however, 

experimentally there is also no doubt that ambroxol exerts 

systemic effects as well.34,69–71 In small-fiber neuropathy, pri-

marily small unmyelinated peripheral neurons are damaged; 

in other words, nociceptive C-fibers of the skin primarily 

expressing Na
v
1.8.37–40,166–168 In animal models, approximately 

50% of the C-fibers express just these Na
v
1.8 channels that 

are inhibited by ambroxol,166 and their numbers even increase 

under painful conditions.167,168 In addition, at least in patients 

with pure small-fiber neuropathy, gain-of-function mutations 

of Na
v
1.8 have been detected.169–172 Furthermore, Na

v
1.8 can 

be increasingly expressed in case of distal degeneration of 

small-diameter peripheral axons and thus contribute to central 

sensitization.171 Owing to its mechanism of action, ambroxol 

can be expected to provide some protection from this type 

of sensitization in FMS.

Finally, and as an indication for neuropathic pain 

involvement, patients with FMS show low tolerance of cold 

water,173 whereas the ambroxol-inhibited Na
v
1.8 channel is 

of particular importance for cold pain.38,174 In the animal 

model, ambroxol suppressed cold allodynia by approxi-

mately 75%.69
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Central sensitization, allodynia, and 
hyperalgesia
Central sensitization
It is widely accepted among researchers that the biological 

component of FMS is associated with long-term or even 

permanent functional changes of the nociceptive nervous 

system.175,176 A systematic review on central sensitization 

in fibromyalgia evaluated 13 studies concerning functional 

changes (via functional magnetic resonance imaging). 

Nociceptive stimuli led to more pronounced but otherwise 

comparable activation of the pain matrix in FMS patients 

compared to controls.42 Eight studies investigating structural 

changes (via voxel-based morphometry) provided moderate 

evidence for a correlation between central sensitization and 

a decrease in gray matter in certain regions.42 In their experi-

ments with thermal stimulation, Vierck et al177 demonstrated 

abnormally prolonged sensitivity in FMS patients, which 

again was interpreted as an indication of central sensitization 

and a specific influence of widespread chronic pain from 

deep somatic tissue. Visceral hyperalgesia, somatosensory 

hyperalgesia, and increased expression of Na
v
1.8 are closely 

associated.92 Correspondingly, Na
v
1.8-selective antagonists 

(other than ambroxol) have analgesic efficacy in acid-induced 

chronic widespread-pain models178 and lead to a reduction in 

allodynia and hyperalgesia179 in animal models of neuropathic 

and inflammatory pain. Following experiments in a fibromy-

algia animal model, Chen et al41 thus generally considered 

selective Na
v
1.8 blockers, one of which was ambroxol, as a 

good choice of treatment of chronic pain and for limitation 

of central sensitization.

Allodynia and hyperalgesia
Allodynia and hyperalgesia are common signs in FMS.180–182 

Sleep deprivation can cause these signs,183 as well as oxidative 

stress, mitochondrial dysfunction, and inflammation, with 

the consequence of peripheral nerve damage.57 Functional 

brain-imaging studies have provided compelling evidence for 

abnormal pain processing in FMS correlating with patients’ 

hyperalgesia or allodynia.184 FMS patients experience 

prickling and touch-evoked allodynia at the same frequency 

as patients with diabetic polyneuropathy.156 Furthermore, 

FMS patients show lower heat-pain and cold-pain thresholds 

than controls,185,186 and severe thermal allodynia following 

cutaneous heat exposure has been reported.187 Systemic 

ambroxol, however, suppressed heat hyperalgesia by 100% 

in an animal model.69

Pain symptoms in FMS animal models are more likely 

associated with dysfunction of biogenic amine-mediated CNS 

pain control compared to pain due to nerve injuries.188 However, 

rats in an FMS model showed hypersensitivity to tactile muscle 

pressure and cold stimuli. Once again in an animal model, 

ambroxol reduced cold hyperalgesia and mechanical allodynia 

by approximately 75%.69 The observation that ambroxol also 

reduces mechanical allodynia in an experimentally induced 

inflammation in rats by approximately two-thirds68 suggests that 

the antiallodynic analgesic effect is not necessarily restricted 

to neuropathic pain. It is indeed possible to reduce mechanical 

allodynia in monoarthritis pain with ambroxol by 50%.69

The Na
v
1.8 channel is detected mainly in C- or Aδ-fibers 

and neurons of the posterior horn,37–40 although it is also 

expressed in Aβ-fibers.68,174,189–191 Since in chronic inflam-

mation, which is also discussed for FMS, the excitability 

of Na
v
1.8 is shifted to hyperpolarization, this contributes to 

allodynia, and a blockade using ambroxol should then have 

a particularly pain-relieving effect. For completeness, it 

should not go unmentioned that the intrathecal administra-

tion of ambroxol has also led to an antiallodynic effect in 

animal experiments.68 Furthermore, simultaneous therapy 

with ambroxol reduces heat and cold hyperalgesia due to 

oxaliplatin in an animal model, which the authors felt to 

be transferable to humans.192 In summary, there is plenty of 

evidence for a reduction in FMS hyperalgesia or allodynia 

following ambroxol treatment.

Sympathetic nervous system, glia, 
and dopamine
Sympathetic nervous system
One indication of sympathetic nervous system involvement 

in FMS was detected in a subgroup of obese female FMS 

patients by Okifuji et al.193 They found a strong correlation 

between body-mass index and levels of the sympathomi-

metic epinephrine and IL6. The latter agent is reduced by 

ambroxol.44,46,47 Investigations into heart-rate variability have 

shown persistent excessive sympathetic activity in FMS.194 

Norepinephrine injections can induce FMS pain.195

In 2009, Martinez-Lavin and Solano196 presented a 

hypothesis on FMS in which sodium channels play a major 

role, and the authors suggested that sodium-channel block-

ers could become a therapeutic option for FMS pain. This 

renders the sodium-channel blocker ambroxol interesting 

for therapy: sodium channels localized in DRGs have a 

molecular gatekeeper function for impulses from peripheral 

nociceptors. Trauma, infection, or other factors may induce 

neuroplasticity via overexpression of sympathetic fibers and 

sodium channels in DRGs. The authors considered enhanced 

DRG excitability to play a key role in FMS pain. Since DRGs 
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are potential sites of sympathetic–nociceptive short circuits, 

individuals who are genetically predisposed for sympathetic 

hyperactivity and those with inherent sodium channelo-

pathies would be at risk of developing FMS. In addition, 

stressful environmental conditions in today’s society could 

possibly contribute to sympathetic hyperactivity, and anti-

inflammatory vagus-nerve activity might not be sufficient 

to counteract this. If FMS is interpreted in this context as 

a sympathetically maintained neuropathic pain syndrome, 

sodium-channel blockers gain importance as a therapeutic 

option for FMS pain.196 At least, the sodium channel Na
v
1.8, 

which is selectively blocked by ambroxol, is of importance 

in the sympathetic nervous system. Schofield et al197 demon-

strated that Na
v
1.8 occurs on the sympathetic superior cervi-

cal ganglion and can be blocked. Facer et al198 demonstrated 

the presence of Na
v
1.8-immunoreactive sensory nerve fibers 

in the human myocardium, which are – interestingly with 

regard to sympathetic function – frequently closely associ-

ated with small capillaries.

Glia activation and dopamine
Apart from obviously enhanced sympathetic activity, 

FMS patients also have increased IL8 levels in cerebro-

spinal fluid,199,200 which in principle can be reduced by 

ambroxol.96,201–205 Kadetoff et al200 interpreted their findings 

to be a result of FMS symptoms being mediated by sympa-

thetic activity, rather than being dependent on prostaglandin-

associated mechanisms, and considered this supportive of 

the hypothesis of glia-cell activation in response to pain 

mechanisms.200 Interestingly, intrathecal administration of 

ambroxol leads to an antiallodynic effect in an animal model 

without having an impact on peripheral swelling caused 

by inflammation.68 Moon et al71 also concluded that after 

intrathecal administration of ambroxol that early treatment 

with an Na
v
1.8 inhibitor may be an important factor in the 

clinical management of chronic mechanical allodynia during 

inflammatory or ischemic pain.71

Enhanced levels of IL8 have the potential to activate glia 

cells.206 Activated glia cells in turn can also produce new 

IL8,207 which again promotes sympathetically maintained 

pain.208 In addition, activated glia cells can produce IL1β as 

a result of proinflammatory stimuli,209,210 and IL1β is also 

reduced by ambroxol.44,45 Recent research has shown that glia 

cells maintain neuronal hypersensitivity in DRGs by releasing 

substances that also act on the immune system.211 In addition 

to peripheral changes, persistent glial activation with resulting 

central sensitization is also of importance in FMS, which in 

turn is activated by cytokines from repeated tissue injury.17,212 

Albrecht et al213 considered glial activation in the brains of 

FMS patients, which was demonstrated via imaging proce-

dures (positron-emission tomography and magnetic resonance 

imaging) to be being important in the pathophysiology of the 

disease. In another investigation, 126 fibromyalgia patients 

were genotyped and subgroups formed with regard to their 

binding affinity to translocator protein (TSPO), which is 

upregulated during glial activation. Those patients with high 

TSPO-binding affinity reported significantly more pain and 

FMS symptoms, which again supports glia-related mecha-

nisms in FMS.214 This fits with the observation that naltrexone, 

an inhibitor of microglial activity in the CNS, reduced FMS 

symptoms in some patients in a small pilot study.215

A permanent and robust increase in microglia popula-

tion also contributes to an overexpression of α-synuclein, 

a small soluble protein in the brain of vertebrates which, 

among other actions, regulates the release of dopamine.216 

Su et al217 demonstrated that α-synuclein in addition also 

activates microglia, thereby contributing to the release of 

proinflammatory molecules. This finding has been supported 

by other authors.218 The release of α-synuclein from affected 

neurons was also increased in an animal model of CNS injury 

with ischemia–reperfusion, thereby mediating microglia 

activation.219 The protein has neurotoxic effects, and not 

only leads to the microglia activation described but also to 

increased dopaminergic neurodegeneration.220 Research on 

the pathophysiology of fibromyalgia is increasingly focusing 

not only on glia activation but also on the neurotransmitter 

dopamine. Experimental induction of FMS has demonstrated 

decreased dopamine levels in both the brain and the spinal 

cord.221 Imaging procedures, however, have pointed to dopa-

mine dysfunction as an important factor in increased pain 

sensitivity in FMS.222 Other authors have also considered 

dopamine an important neurochemical moderator of FMS 

pain perception, since their data suggested interrupted dopa-

minergic neurotransmission in FMS.223 It is thus plausible 

that dopamine receptors are investigational targets for new 

FMS medications.113 It should be pointed out that in this 

respect, ambroxol leads to a reduction in α-synuclein,224 ie, 

reduces just that protein that contributes to both glia activa-

tion and dopaminergic neurodegeneration.220 For this reason, 

the medication has also been considered for the treatment of 

Parkinson’s disease.74–76,224

Neurodegeneration and 
neuroregeneration
A systematic review on imaging studies revealed indications 

of structural changes in the CNS of fibromyalgia patients.42 
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The neurodegenerative findings of small-fiber neuropathol-

ogy mentioned earlier are not restricted just to the peripheral 

nervous system either, but have also been reported for the 

cornea (cranial nerve V)162 and axonal nerve injury early in 

the progression of the disease in the retina of FMS patients,163 

which belongs to the CNS. It is generally accepted that the 

regenerative capacity of injured nerves in the CNS is mark-

edly worse than in the peripheral nervous system. Therefore, 

it is remarkable that neuroregenerative properties in the CNS 

have recently been described for ambroxol.225 During a sys-

tematic genetic search for suitable treatment options promot-

ing regenerative neuronal growth, Chandran et al225 found that 

ambroxol was not just the only one of the tested substances 

causing eight gene expressions in treated DRG neurons, but 

also enhanced axonal sprouting from these. Furthermore, 

they were able to demonstrate real neuroregeneration in the 

CNS by ambroxol in an optical nerve model in vivo: studies 

using knockout mice confirmed that systemically adminis-

tered ambroxol significantly and morphologically improved 

regeneration of the optic nerve.225 It has to be pointed out, 

though, that despite the fact that ambroxol obviously crosses 

the blood–brain barrier,79,226 brain levels could be too low 

to cause relevant effects under currently used therapeutic 

dosages.227 This reduces potential side effects, and also a 

therapeutically desired effect. Whether the mother substance 

bromhexine, which definitively crosses the blood–brain bar-

rier without CNS side effects,228 could be of additional benefit 

remains unanswered.

At least in ischemia-induced neurodegeneration, reac-

tive oxygen species have a key function, and ambroxol is 

able to contribute to the reduction of such ischemia-caused 

nerve injury.229 Oxidative stress and lipid peroxidation 

occur not just in fibromyalgia and depression. Some of the 

products resulting from these processes are also predic-

tors of neurodegeneration.108 As a strong radical scavenger 

and inhibitor of lipid peroxidation, ambroxol should under 

these circumstances counteract neurodegenerative changes 

during the progression of FMS. This effect of ambroxol 

has been demonstrated at least for polyneuropathy caused 

by oxaliplatin.192 Oxaliplatin also leads to an increase in 

inflammatory mediators and oxidative stress, and is thus 

peripherally neurotoxic. Simultaneous treatment with 

oral ambroxol in these animal models reduces relevant 

neuropathic pain, and as a result decreases heat and cold 

hyperalgesia, and both of these symptoms have also been 

reported for FMS.154,156,185,186 The authors considered these 

results transferable to humans.

Sodium channels
There is some evidence that sodium channels are important 

in FMS. In an investigation of 73 female FMS patients, 

genetic Na
v
1.7 polymorphism was associated with severe 

fibromyalgia.26 The receptor is assumed to play an important 

role in pain transmission in DRG neurons in FMS.196 Na
v
1.7 

subtypes,170,230–233 as well as Na
v
1.8 mutations,171,234 are also 

associated with small-fiber neuropathy, and at least one 

small-fiber pathology appears to be present in a subgroup of 

FMS.159,160 Although there have been reports of Na
v
1.7 gain-

of-function mutations and even more evidently hypothalamic 

dysfunction, it is not known whether or not this channel sub-

type plays a functional role in the hypothalamus with regard 

to external stressors in man. At least experimentally, however, 

it can be demonstrated that Na
v
1.7 is upregulated in the CNS 

in parallel with osmotic stress235 and that oxidative stress leads 

to sensitization of Na
v
1.8.106 In gain-of-function mutations 

of the SCN10A gene, which encodes for Na
v
1.8, symptoms 

with diffuse painful sensory neuropathy, autonomic symp-

toms and gastrointestinal dysfunction170,171,234,236 resemble 

FMS symptoms and are associated with hyperexcitability 

of DRG neurons.230 Selective sodium-channel blockers are 

currently unavailable for routine clinical practice.237 As pre-

sented herein, quite a few medications used for fibromyalgia 

cause (among other actions) sodium-channel blockade, even 

though this is aspecific.

More than 500 randomized controlled trials (RCTs) on 

the treatment of fibromyalgia were already available in 2008. 

The strongest recommendations of several medical societ-

ies were for various antidepressants.238 It is remarkable that 

many tricyclic antidepressants, selective serotonin-reuptake 

inhibitors, and serotonin–norepinephrine reuptake inhibitors 

also block sodium channels.239 For instance, duloxetine is ben-

eficial for FMS157,238 and blocks both Na
v
1.7 and Na

v
1.8.240,241 

The sodium-channel blockade of duloxetine is stronger than 

that of venlafaxine, which in turn was only attributed minimal 

effects in a systematic review.242 Amitriptyline, which has 

received a strong recommendation for FMS,157,238 also blocks 

Na
v
1.7239,243,244 and Na

v
1.8,244 or rather generally TTX-r chan-

nels (to which Na
v
1.8 belongs) in trigeminal neurons, DRG 

neurons, and gastrointestinal neurons.245–247 On the other hand, 

paroxetine shows less effect in FMS,157,248 and in comparison 

to amitriptyline only blocks Na
v
1.7 at high concentrations.239 

Furthermore, gabapentin, which was recommended in a data 

analysis by Cochrane249 also blocks Na
v
1.7,250,251 and prega-

balin, which was also classified as beneficial,157,249 reduces 

paroxysmal neuropathic itch in patients with a variant of the 
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SCN9A gene, which encodes for Na
v
1.7.252 Even ibuprofen, 

which is often preferred by patients,157 blocks the channel 

subtypes Na
v
1.7253–255 and Na

v
1.8 after systemic255 and topical 

administration.254 Finally, tramadol, which is recommended 

as second-line treatment,157 also blocks sodium channels.256,257 

An interesting fact in this respect is that at least peripheral 

analgesia with opioids is partly mediated via µ-receptors on 

primary afferent Na
v
1.8-positive neurons.258

Although much evidence points to the importance of 

sodium channels in FMS and promising RCTs have been 

conducted, the relevance of sodium channel-blocking anti-

epileptic drugs cannot be confirmed: in a systematic review, 

Wiffen et al249 found no valid indications that the sodium-

channel blockers of this group of substances achieved above-

average therapeutic results in FMS. It tends to be forgotten, 

however, that to date generally, no specific analgesics for the 

blockade of the main targets Na
v
1.7 and Na

v
1.8 are available 

for treatment, and for this very reason could not be assessed 

in this review. Thus far, none of the compounds used for neu-

ropathic pain (including local anesthetics, antidepressants, 

and antiepileptics) shows relevant selectivity for Na
v
1.8 that 

would be comparable to ambroxol.34,35 Should the blockade 

of Na
v
1.8 and/or Na

v
1.7 be an important treatment approach 

for FMS, efficacy of ambroxol is very likely: not only Na
v
1.8 

but also Na
v
1.7 is selectively blocked by ambroxol,107,259 and 

this blockade is even more pronounced in man than in rats.107

Inflammatory mediators
Cytokines
Independent of sodium-channel blockade or antineuropathic 

effects, ambroxol should be able to reduce nociceptive pain 

via its anti-inflammatory properties. This has also been 

reported by us for topical ambroxol in a case series of pain 

patients.29 In addition, it has been shown in humans for acute 

sore throat260,261 and experimentally demonstrated.32,33,46,68,69,262 

Ambroxol exerts its comprehensive anti-inflammatory prop-

erties, for example, via inhibition of many proinflammatory 

cytokines.32

The general importance of cytokines in the induction 

and maintenance of pain has been well demonstrated in both 

animal models and pain syndromes in humans,263 including 

FMS.12,13,264 Cytokines can also contribute to the origin of pain 

in the CNS, and spinal cytokines can exert an external impact 

on peripheral pathology by influencing the efferent neuronal 

system, with effects on peripheral tissue.265 They are also 

important mediators of neuropathic pain,266–268 which is also 

reduced by ambroxol (as already reported). Cytokines also 

have an impact on changes in the hypothalamic–pituitary–

adrenocortical axis,269–271 and thereby on clinical symptoms, 

such as hyperalgesia, fatigue, sleep disorders, allodynia, adre-

nocortical hormone-associated disorders, stress responses, 

anxiety, muscular pain, and cognitive dysfunction;13,200 all 

these are symptoms associated with FMS.19–21 The diverse 

and well-documented impact of ambroxol on cytokines is 

likely to be of major relevance.

Interleukin 6 and interleukin 8
In particular proinflammatory and thus pain-inducing IL6 

and IL8, which are both reduced by ambroxol, have clinical 

relevance in FMS. During the past 10 years, approximately 

100 of 140 studies on FMS have demonstrated changes 

in inflammatory mediators and associated these with the 

pathogenesis and clinical signs of the disease. Several 

studies observed increased serum levels of IL614,199,200,272 

or IL8.199,200,273–275 A systematic review conducted in 2011 

reported evidence for higher serum levels of these cytokines, 

as well as for IL1RA in FMS, but no confirmed changes in 

IL1β, IL4, IL10, MCP1, or TNFα.12

Even before the observation of a real correlation of the 

intensity of the disease with IL6 und IL8 levels, these were 

repeatedly reported as being associated with the clinical 

symptoms of FMS.13,276,277 For instance, Mendieta et al276 

demonstrated that both IL6 and IL8 correlated with clinical 

psychiatric scores, and considered these interleukins as par-

ticularly constant inflammatory mediators in FMS, with their 

levels significantly correlating with the severity of symptoms.

However, serum concentrations do show large variability, 

as demonstrated in a systematic analysis by Uçeyler et al.12 

In particular, a disturbed balance of proinflammatory and 

anti-inflammatory cytokines is likely to play a role in the 

origin and maintenance of FMS-related pain.263 Their patho-

physiological role continues to be disputed, though.12,16,17 In 

contrast to other authors, Ranzolin et al278 did not discover 

differences in IL6 or IL8 in FMS patients compared to healthy 

controls in a recent prospective controlled study. Reasons for 

many partially contradictory findings concerning cytokines 

are multiple impact factors, such as circadian rhythmicity and 

influences from depression, physical activity, and infections, 

which were frequently not clearly assessed in the studies. In 

addition, drugs can have an impact on cytokines, such that 

cytokines vary in subgroups or during the progression of the 

disease. In a systematic investigation of ambroxol for the 

treatment of fibromyalgia, these factors will definitely need to 

be considered, at least for this partial effect of the compound.
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Interleukin 6
During the last 10 years, numerous studies have demonstrated 

higher serum levels of IL6 in FMS,14, 91,199,200,272 and this has 

been confirmed in a systematic review and meta-analysis.12 

Since IL6 not only has algesic effects but is also involved 

in the development of hyperalgesia,279 fatigue, and depres-

sion,13,14 it can be assumed to have a role in the modulation 

of FMS symptoms.208 As it is very difficult to limit neuronal 

hyperexcitability caused by IL6, this interleukin obviously 

plays a major role during the chronification process and in 

the poor response of some pain conditions to treatment.280 

With robust data on increased IL6 levels in FMS, there are 

also equally robust data confirming that ambroxol reduces 

both the release and levels of IL6.44,46,47,205 In a model on 

acute lung injury, this was demonstrated with comparable 

significance to dexamethasone-treated animals.46

Interleukin 8
In the aforementioned review, Uçeyler et al12 also demon-

strated higher serum and plasma levels of IL8. These findings 

were repeatedly confirmed thereafter.199,200,273,274,277 Ang et al150 

found a significant correlation of increased IL8 levels with 

pain severity using the Brief Pain Inventory (BPI): they were 

able to correlate each change in pain intensity according to 

BPI with a corresponding increase in IL8. Using a highly 

sensitive method, Xiao et al277 supported the assumption of 

inflammatory changes in FMS by demonstrating an elevated 

level of the inflammatory marker CRP in 105 FMS patients 

compared to 61 healthy controls. The elevated CRP values 

also showed a significant correlation with IL8 levels. Further-

more, Sturgeon et al93 demonstrated a significant correlation 

between IL8 levels and pain catastrophizing, anxiety, and 

postmenopausal depression. IL8 was also associated with 

pain and sleep disorders.273 In a comparison of cerebrospinal 

fluid findings in rheumatoid arthritis and FMS, Kosek et al199 

demonstrated higher IL8 levels in FMS patients. Kadetoff 

et al200 also demonstrated higher cerebrospinal fluid and 

serum concentrations of IL8 in fibromyalgia, an overall 

constellation that the authors interpreted as an expression 

of sympathetic activity. In an animal model, Moon et al71 

correspondingly showed that intrathecal ambroxol inhibited 

mechanical allodynia and thermal hyperalgesia in a dose-

dependent manner. It can be assumed that a reduction in IL8 

is involved: in vitro as well as in vivo, both the release and 

detectable concentrations of IL8 are reduced by ambroxol, a 

fact that has been repeatedly shown.47,96,201–205 This is probably 

an important finding concerning this “perhaps most important 

interleukin” in FMS.

IL1-receptor antagonist
IL1RA is an inhibitor produced by the body that slows down 

and finally stops the action of the proinflammatory IL1 and 

IL1β by binding at their site on the IL1 receptor. Increased 

serum levels of IL1RA in FMS have been demonstrated in 

many studies;12,199 however, the proinflammatory interleukins 

“to be regulated” – IL1 and the highly reactive IL1β – do not 

at all appear to show elevated serum levels in FMS.12,200 In 

contrast to this, however, Imamura et al281 detected similarly 

elevated levels of IL1β in a comparison of FMS patients to 

osteoarthritis patients, with comparable duration of disease 

and pain intensity. Using questionnaires and plasma analyses 

of 50 FMS patients, Menzies et al19 demonstrated a nega-

tive correlation between subjective stress and IL1β levels. 

Therefore, possibly just the fact that no elevated levels of 

IL1 or IL1β can be detected is an expression of severe FMS 

symptoms or for long duration of the disease. For instance, 

this may be the reason that elevated levels of IL1β in skin 

have indeed been detected, but only in a subgroup of FMS 

patients.43 The impaired balance between IL1 and IL1RA 

remains to be clarified. It is a fact, however, that ambroxol 

has a major impact: it has been well demonstrated to reduce 

IL144,45,48,51 and IL1β,44,45 and thus should have a positive 

preventive effect, at least in cases of initially elevated levels, 

if present.

Interleukins 4 and 10
Investigations have shown decreased levels of the anti-

inflammatory and thus “analgesic” cytokines IL4 and IL10 

in FMS in comparison to healthy controls.18 In a 2011 review, 

however, the same research group could not detect clear 

evidence of serum differences in these two interleukins.12 

Mendieta et al276 also recently reported no relevant changes 

in serum levels of IL10 in FMS.

In contrast to this, other authors have demonstrated 

elevated IL10 levels13,278,281,282 and a significant correlation 

of these with FIQ scores.283 IL10 is also increased in the 

cerebrospinal fluid of FMS patients in comparison to patients 

with rheumatoid arthritis.199 Under ambroxol treatment in 

experimental stimulation of human alveolar macrophages, 

IL10 was not elevated, in contrast to IL12,87 and the same 

applied after bacterial stimulation.284 Ambroxol thereby 

promoted a reduced cytokine response after exogenous 

inflammation and strengthened cell-mediated immunity by 

shifting the “local balance” toward IL12.87 Following expo-

sure to allergens in an artificially sensitized respiratory tract 

in an animal model, however, ambroxol induced an increase 

in IL10 in a “protective” manner.285
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Yigit et al286 genotyped 300 FMS patients and 270 healthy 

controls with regard to IL4 for specific polymorphism of the 

IL4 gene. They detected highly significant differences, sug-

gesting that IL4 may be a suitable genetic marker for FMS. 

Investigations of various authors, however, led to inconsistent 

results by reporting decreased IL4 levels,18,287 no change 

in IL4 levels,288 or increased IL4 levels199 in FMS. In an 

investigation on human mast cells, even very low dosages of 

ambroxol inhibited anti-IgE-induced release of IL4.54

Monocyte chemotactic protein 1
MCP1 (formerly called CCL2) in human monocytes acts in 

an anti-inflammatory fashion by inhibiting the development 

of proinflammatory cytokines. Not only have some investiga-

tions on fibromyalgia shown elevated levels of MCP1,150,274 

but it also induced dose-dependent chronic mechanical 

hyperalgesia for up to 6 weeks in an animal model.151 In their 

interpretation of the results, the authors suggest that MCP1 

induces persistent muscular hyperalgesia and thereby chronic 

sensitivity toward other proalgesic substances. Ang et al150 

reported elevated levels of MCP1 in FMS and demonstrated 

significant correlations of each change with pain severity 

measured using the BPI. They thus presumed that MCP1 

is involved in the pathogenesis of FMS. MCP1 was also 

elevated in 25 FMS patients with an “altered stress response” 

compared to healthy controls.274 There is, however, possibly 

a negative clinical correlation with subjective, actually 

perceived stress.19 The importance of this finding has been 

emphasized by genetic investigations, in which markedly 

elevated MCP1 levels were detected in an FMS subpopula-

tion with a specific mutation.289

If MCP1 is indeed of importance in FMS, patients might 

benefit from treatment with ambroxol. In an animal model, 

inhaled ambroxol reduced MCP1.51,95 The effect of ambroxol 

by inhalation at 7.5 mg/mL was comparable to 0.5 mg/kg 

intraperitoneal dexamethasone. Again, potent effects com-

parable to cortisone have been demonstrated.95 In another 

animal model with several control groups, ambroxol was 

also able significantly to reduce experimentally elevated 

MCP1 for 28 days.152

Inflammasomes
Recent studies identified inflammasomes, cytosolic protein 

complexes in macrophages and neutrophil granulocytes, 

as promoters of classical cytokine-mediated inflammatory 

processes.290 The NLRP3 inflammasome is assumed to be 

activated in FMS291,292 and is considered a new therapeutic 

target.293 Inflammasomes are obviously inhibited in their 

activity if reactive oxygen species (“oxygen radicals”) are 

reduced290 and activated by mitochondrial dysfunction,292 

both of which are presumed to be present in FMS.57 Since 

ambroxol is a strong radical scavenger44,60,62–65 and improves 

mitochondrial dysfunction,59–61 it should also have an impact 

on this newly described pathomechanism.

Interleukin 13, interleukin 5, and 
immunomodulation
Following secondary data analysis, Sturgill et al287 reported 

a remarkable reduction of IL13 in FMS patients. This 

interleukin is produced by T lymphocytes, stimulates the 

differentiation of B lymphocytes, and is generally consid-

ered a central mediator in allergic reactions. In cases where 

decreased IL13 levels have to be discussed as missing 

anti-inflammatory components, ambroxol would apparently 

exacerbate this condition: the release of IL13 is reduced by 

ambroxol.54 Ambroxol also reduces IL13 if administered prior 

to experimentally produced hyperreactivity of the airways and 

subsequent exposition to allergens; however, this is not the 

case if administered afterward. Interestingly, overall this had 

a beneficial and protective effect.285 This applies similarly to 

IL5, which has a positive chemotactic action on eosinophilic 

granulocytes: Sturgill et al287 also demonstrated a reduction of 

IL5 in FMS. Ambroxol also has an inhibiting effect concern-

ing IL5, and if administered prior to provocation in an animal 

model, suppressed hyperreactivity and airway eosinophilia 

and reduced inflammation of subepithelial regions.285 The 

relationships described raise the question of whether potent 

inhibition of the release of IgE-dependent mediators294 and 

immunomodulatory cytokines from basophilic granulocytes 

by ambroxol,54 as well as the immunomodulatory significance 

of Na
v
1.8 sodium-channel inhibition by ambroxol,295 are 

important in FMS and warrant further investigation.

Symptoms associated with 
fibromyalgia
Patients with fibromyalgia also suffer from hypersensitive 

visceral organs. Symptoms of overactive bladder,296 for 

instance, occur more frequently in fibromyalgia patients and 

depend on the severity of the disease. These can be assessed 

using the fibromyalgia bladder index.297 Patients with chronic 

interstitial cystitis or painful bladder disorders, on the other 

hand, show an above-average presence of fibromyalgia.298 

According to investigations on rat bladders by Drewa et al,299 

ambroxol is also able to suppress bladder contractions; they 

thus considered the compound a therapeutic option for the 

treatment of overactive bladder.
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In similar fashion, irritable bowel syndrome (IBS) is also 

associated with fibromyalgia: FMS patients suffer more often 

from this disease,300 and FMS is found more often in patients 

with IBS.301 Besides new insights concerning the potential 

importance of Na
v
1.1 for IBS,302 especially the Na

v
1.8 

receptor, which is selectively blocked by ambroxol, is again 

of importance: in general, investigations with Na
v
1.8-free 

mice and Na
v
1.8-inhibiting compounds showed lower (also 

visceral) hyperexcitability or a reduction of hyperexcitability 

under treatment.68,174,178,179,303–306 Knockout mice without the 

Na
v
1.8 receptor not only show little visceral pain but also 

no referred hyperalgesia whatsoever following stimuli in the 

colon.307 Furthermore, Na
v
1.8 mutations can be associated 

with gastrointestinal dysfunction.234 Since in animal models 

particularly, colon DRG neurons exhibit Na
v
1.8-mediated 

increase in activity of the sodium channels, Hu et al308 con-

sidered this mechanism specific for chronic visceral pain 

and IBS. Selective Na
v
1.8 blockade (such as by ambroxol) 

is thus considered clinically beneficial for visceral pain.309

According to a review, major influence of the sympathetic 

rather than the parasympathetic nervous system has been 

deemed responsible for fibromyalgia-associated symptoms,310 

again with sequelae that might be addressed with ambroxol 

and have already been discussed elsewhere. Another associa-

tion that is clinically not quite as important, but neverthe-

less fits into the concept is the fact that FMS patients more 

frequently suffer from dry eyes, and the prevalence of FMS 

in patients with Sjögren’s syndrome is increased by a rate of 

12%–31%.311–313 Ambroxol leads to an increase in tear-fluid 

secretion314 and can improve sicca symptoms.315

Safety, dosage, and onset and 
duration of effect
In vitro, the onset of Na

v
1.8 blockade by ambroxol starts within 

a few seconds, is concentration-dependent, and fully revers-

ible.34 In paraplegic rats, hypersensitivity to static mechani-

cal stimuli was reduced after approximately 30 minutes for 

approximately 3 hours.70 In earlier topical treatments, the effect 

reported by patients persisted for well over 6 hours.27,29 The 

anti-inflammatory effect should increase over time.

In most countries, ambroxol has been sold as an over-the-

counter drug for decades, owing to its good safety profile, 

and in 2015 the European Medicines Agency reassessed the 

clinical benefit:risk ratio of the drug. The selective sodium-

channel blockade of the Na
v
1.8 channel, which is only insig-

nificantly expressed in the heart and the CNS, is in this case 

clinically beneficial. After systemic administration, ambroxol 

was also safe: even intravenous administration of 1 g (in order 

to boost prenatal lung maturation and for the treatment of 

atelectasis) is well tolerated.316,317 There are individual reports 

of dosages of up to 3 g per day over 53 days318–320 and oral 

administration of 1.3 g ambroxol per day over 33 days.321 In 

a recent pilot study, ambroxol was used orally at dosages of 

25 mg/kg/day up to 1,300 mg/day for Gaucher’s disease and 

showed good safety and tolerability,79 and in an ongoing study 

it is being used at 1,050 mg/day for Parkinson’s disease.76 

Even in an RCT with children under 1 year of age with acute 

respiratory distress syndrome, no adverse events were noted 

with ambroxol up to 40 mg/kg/day.322

With its good bioavailability of about 80%323 and plasma 

levels linearly correlated with oral dosage,69 dosages very 

likely could be used tenfold higher (or even more) than 

actually used (up to 120 mg/d) for potential systemic trials 

for the treatment of fibromyalgia pain without risk. As many 

ambroxol effects apart from selective Na
v
1.8 sodium-channel 

blockade develop more intensely over a longer period, we 

consider treatment for more than 4–6 weeks desirable before 

evaluation. However, this should not be a problem, because 

ambroxol has already been administered clinically at 90 mg 

for 3 months52 and even at 75 mg twice daily without any 

problems for 6 months324 and also at 75 mg twice daily for 

long-term treatment of 1 year.325 A clinical trial investigat-

ing the treatment of FMS with ambroxol could even use a 

design comparable to an ongoing study, which is designed for 

52 weeks using 225–1,050 mg/day for another indication.76

Conclusion
Overall, we think potential RCTs with FMS patients should 

examine the impact of ambroxol on pain, hypersensitivity, 

and inflammation at dosages higher then yet approved for the 

over-the-counter market and for at least 6 weeks. An increas-

ing effect should be expected and possibly could be evident 

clinically not before two weeks of treatment. An impact 

on dysfunctional descending pain pathways should not be 

expected, so patients with a clear response to a medication for 

this (indicating this special origin of pain perception) might 

possibly report less benefit. As it is surprising that the single 

substance ambroxol has so many unexpected effects on FMS-

related mechanisms, the chemical properties (eg, structure 

and affinity) and related substances (eg, the mother substance 

bromhexine) could also be worth examining further.

Summary
Fibromyalgia appears to present in subgroups concerning 

biological pain induction with primarily inflammatory,12,13,264 

neuropathic/neurodegenerative,153–155 sympathetic,193,194,196 
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oxidative,24,81,97 or muscular factors84,132,134 and/or central sen-

sitization.42,175,176 On the basis of this hypothesis, fibromyalgia 

treatment with ambroxol should be systematically investi-

gated, since this compound is the only treatment option used 

thus far that has the potential to address not just individual 

but all of the aforementioned aspects of pain. Nevertheless, 

at this point, the evidence base for ambroxol is currently not 

strong enough for clinical recommendation.
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