R_{2(GFR)}CHADS_2 and R_{2(GFR)}CHA_DS_2 VASC schemes improved the performance of CHADS_2 and CHA_DS_2 VASC scores in death risk stratification of Chinese older patients with atrial fibrillation

Shihui Fu\(^1_2_*,\) Shanjing Zhou\(^3_*,\) Leiming Luo\(^1\) Ping Ye\(^1\)

\(^1\)Department of Geriatric Cardiology, \(^2\)Department of Cardiology and Hainan Branch, \(^3\)Department of Traditional Chinese Medicine and Hainan Branch, Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China

*These authors contributed equally to this work

Background: This analysis was carried out to refine the CHADS_2 and CHA_DS_2 VASC scores by combining creatinine clearance (CrCl) and glomerular filtration rate (GFR) and evaluate the performance of CrCl-based and GFR-based schemes in death risk stratification of Chinese older patients with atrial fibrillation (AF).

Methods: There were 219 older patients with AF, and all-cause mortality was assessed during the follow-up of 1.11 years. Renal function was evaluated using the CrCl formula and different GFR (Modification of Diet in Renal Disease [MDRD], Chinese MDRD [CMDRD], Mayo Clinic Quadratic [Mayo] and Chronic Kidney Disease Epidemiology Collaboration [CKD-EPI]) formulas, and five kinds of R_CHADS_2 and R_CHA_DS_2 VASC schemes were generated by combining CrCl and GFR with CHADS_2 and CHA_DS_2 VASC scores.

Results: In Cox regression multivariate analysis, CrCl < 60 mL/min was moderately associated with death risk (P = 0.122 and P = 0.144). When MDRD, CMDRD, CKD-EPI and Mayo formulas were used to ascertain the GFR, GFR < 60 mL/min/1.73 m\(^2\) was significantly associated with death risk (P < 0.001 for all). In the models with CHADS_2 and CHA_DS_2 VASC scores as the linear covariates, CrCl and GFR as the continuous variables were significantly associated with death risk (P < 0.05 for all). C-statistics of CrCl-based schemes – R_CHADS_2 and R_CHA_DS_2 VASC – moderately exceeded that of CHADS_2 and CHA_DS_2 VASC scores (P = 0.081 and 0.082). C-statistics of GFR-based schemes – R_GFR_CHADS_2 and R_GFR_CHA_DS_2 VASC – significantly exceeded that of CHADS_2 and CHA_DS_2 VASC scores (P < 0.05 for all).

Conclusion: Chinese older patients with AF with lower levels of GFR and GFR < 60 mL/min/1.73 m\(^2\) had a significantly high death risk, and those with lower levels of CrCl or CrCl < 60 mL/min had a significantly or modestly high death risk. There was significantly better performance of GFR-based schemes and moderately better performance of CrCl-based schemes in death risk stratification compared with CHADS_2 and CHA_DS_2 VASC scores.

Keywords: atrial fibrillation, CHADS_2, CHA_DS_2 VASC, older patients, creatinine clearance, glomerular filtration rate

Background

As the most common arrhythmia, atrial fibrillation (AF) has a clear increase in prevalence with an increasing age and is obviously associated with death risk.\(^1_3\) A key step in reducing the death risk for patients with AF is an effective stratification of death risk. Various clinical features have been identified to stratify the death risk. However, there is no mature and practical scheme developed for stratifying the risk.
death risk in patients with AF, and some researchers like Nakagawa et al have successfully applied the CHADS\textsubscript{2} score, commonly used for assessing the thromboembolic events, to effective stratification of death risk in patients with AF.3 Although this transition has an important value for clinical practice, the currently available schemes, such as CHADS\textsubscript{2} and CHA\textsubscript{2}DS\textsubscript{2}VASc scores, are largely derived from dated populations and have a limited discriminatory ability.5,6

Renal function has emerged as a risk factor for mortality in patients with AF, and thus, Piccini et al has made attempts to combine creatinine clearance (CrCl) with the CHADS\textsubscript{2} score. However, as a standard index of renal function, glomerular filtration rate (GFR) has not been systematically analyzed in the clinical studies, and nobody knows if it is appropriate or even better to combine GFR with these schemes, including CHADS\textsubscript{2} and CHA\textsubscript{2}DS\textsubscript{2}VASc scores.7 Moreover, ongoing validations of these schemes in other populations with AF from different ethnic and age groups will confirm their true value. The objectives of this analysis were to refine the CHADS\textsubscript{2} and CHA\textsubscript{2}DS\textsubscript{2}VASc scores by combining not only CrCl but also GFR and evaluate the performance of new CrCl-based and GFR-based schemes in death risk stratification of Chinese older patients with AF.

Methods
 Study participants

The current analysis was made up of 219 patients older than 60 years with AF. All of them had the medical history, clinical symptoms and electrocardiograph records showing AF. The Chinese People’s Liberation Army General Hospital was their designated hospital and had their integrated long-term medical and final death records, which made it easier for us to follow up these patients effectively and judge the end point accurately. The study protocol was approved by ethics committee of the Chinese People’s Liberation Army General Hospital (Beijing, China). Each participant provided written informed consent to be included in the study.

Risk stratification schemes

CHADS\textsubscript{2} score awards 1 point each for the presence of congestive heart failure, hypertension, age \geq75 years and diabetes mellitus and 2 points for prior stroke or transient ischemic attack (TIA). CHA\textsubscript{2}DS\textsubscript{2}VASc score awards 1 point each for the presence of congestive heart failure, hypertension, vascular diseases, diabetes mellitus and female sex; 2 points for prior stroke or TIA and 0, 1 or 2 points depending on age. For each patient, the current analysis obtained the additional risk schemes by combining the CHADS\textsubscript{2} and CHA\textsubscript{2}DS\textsubscript{2}VASc scores with an additional 2 points for CrCl $<60\text{mL/min}$ and GFR $<60\text{mL/min/1.73m}^2$ and designated them as R_2CHADS\textsubscript{2} and R_2CHA\textsubscript{2}DS\textsubscript{2}VASc schemes.

Risk factor definition

Patients with mean systolic blood pressure ≥ 140 mmHg, mean diastolic blood pressure ≥ 90 mmHg or medications for the treatment of hypertension were defined as having hypertension. Mean systolic and diastolic blood pressures were taken as the average of five separate measurements. Patients with fasting glucose concentration ≥ 7.0 mmol/L or treatment with oral hypoglycemic agents/insulins were defined as having diabetes mellitus. Standard echocardiogram was performed, and left ventricular ejection fraction was measured by the Simpson’s method.8 Stroke was defined as the new, sudden focal neurological deficit resulting from a presumed cerebrovascular cause that persisted >24 hours rather than other identifiable causes such as tumor or seizure. Events that involved the symptoms that lasted <24 hours were considered as TIA. Myocardial infarction and peripheral artery disease were combined as a single variable termed vascular diseases. Serum creatinine concentration was measured using an enzymatic method, and the calibration formula of Jaffé’s kinetic method was as follows:9

Jaffé’s kinetic method of serum creatinine (mg/dL) $= 0.795 \times \text{[enzymatic method of serum creatinine (mg/dL)]} + 0.29.$

The enzymatic method of serum creatinine was used in the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula, and the Jaffe’s kinetic method of serum creatinine was used in the other four formulas. CrCl and GFR of all participants were evaluated with different formulas as follows:

- Cockcroft–Gault formula:10

 \[
 \text{CrCl} = \left[140 - \text{age (years)}\right] \times \text{weight (kg)} \\
 \times 0.85 \text{ (if female)} \times 0.72 \times \text{Scr (mg/dL)}
 \]

- Modification of Diet in Renal Disease (MDRD) formula:11

 \[
 \text{MDRD} = 186 \times \text{Scr (mg/dL)}^{1.154} \times \text{age (years)}^{-0.203} \\
 \times 0.742 \text{ (if female)}
 \]

- Chinese MDRD (CMDRD) formula:12

 \[
 \text{CMDRD} = 175 \times \text{Scr (mg/dL)}^{1.234} \times \text{age (years)}^{0.179} \\
 \times 0.79 \text{ (if female)}
 \]

- Mayo Clinic Quadratic (Mayo) formula:13

 \[
 \text{Mayo} = \text{Exp} \left[1.911 + 5.249/\text{Scr (mg/dL)} - 2.114/\text{Scr (mg/dL)}^2 - 0.00686 \times \text{age (years)} - 0.205 \text{ (if female)}\right]
 \]
• CKD-EPI formula:14
 If female and if Scr ≤ 0.7 mg/dL:
 \[
 \text{CKD-EPI} = 144 \times \text{Scr (mg/dL)} / 0.7^{0.329} \times 0.993^{\text{age (years)}}
 \]
 If female and if Scr > 0.7 mg/dL:
 \[
 \text{CKD-EPI} = 144 \times \text{Scr (mg/dL)} / 0.7^{-1.209} \times 0.993^{\text{age (years)}}
 \]
 If male and if Scr ≤ 0.9 mg/dL:
 \[
 \text{CKD-EPI} = 141 \times \text{Scr (mg/dL)} / 0.9^{-0.411} \times 0.993^{\text{age (years)}}
 \]
 If male and if Scr > 0.9 mg/dL:
 \[
 \text{CKD-EPI} = 141 \times \text{Scr (mg/dL)} / 0.9^{-1.209} \times 0.993^{\text{age (years)}}
 \]

End point ascertainment
Given the priority of all-cause mortality in the outcome studies, as well as the high prevalence of multiple organ failure in the elderly, the primary end point in the current analysis was all-cause mortality. The current analysis performed the follow-up to assess the all-cause mortality during the mean time of 1.11 years (406 days; median: 313 days; interquartile range: 199–532 days) and had the survival status for all these patients. Death was determined from death records, a legal document including time, site and other information.

Statistical analysis
Baseline characteristics were summarized as frequencies for categorical variables and median values with interquartile range for continuous variables. Cox regression model was used to explore whether renal function is a significant factor associated with death risk after adjusting for CHADS\(_2\) and CHA\(_2\)DS\(_2\)VASc scores or their components during the follow-up. C-statistic was calculated to assess the discriminatory ability of these schemes for primary outcome. Two-sided \(p\)-value < 0.05 was considered significant. Statistics analysis was performed using Statistical Package for the Social Sciences version 17 (SPSS Inc., Chicago, IL, USA) and MedCalc 11.6 for Windows (MedCalc Software bvba, Mariakerke, Belgium).

Results
For all patients, median age was 86 years, median CHADS\(_2\) score was 3.0 and median CHA\(_2\)DS\(_2\)VASc score was 4.0; 14.6% of patients were female. Over the median follow-up of 1.11 years, 24.2% of patients died. Baseline characteristics of all patients according to death occurrence are shown in Table 1.

In Cox regression univariate analysis (Table 2), not only lower levels of CrCl, MDRD-GFR, CMDRD-GFR, EPI-GFR and Mayo-GFR but also CrCl < 60 mL/min, MDRD-GFR < 60 mL/min/1.73 m\(^2\), CMDRD-GFR < 60 mL/min/1.73 m\(^2\) and Mayo-GFR < 60 mL/min/1.73 m\(^2\) were significantly associated with death risk (\(p<0.05\) for all). After accounting for all the factors that constituted the CHADS\(_2\) and CHA\(_2\)DS\(_2\)VASc scores in the Cox regression multivariate analysis, CrCl < 60 mL/min was modestly associated with death risk (\(p=0.122\) and \(p=0.144\)). When MDRD, CMDRD, CKD-EPI and Mayo formulas were used to ascertain the GFR, GFR < 60 mL/min/1.73 m\(^2\) was significantly associated with death risk after adjusting for the components of CHADS\(_2\) and CHA\(_2\)DS\(_2\)VASc scores (\(p<0.001\) for all). In the models developed with CHADS\(_2\) and CHA\(_2\)DS\(_2\)VASc scores used as the linear covariates, CrCl, MDRD-GFR, CMDRD-GFR, EPI-GFR and Mayo-GFR as the continuous variables were significantly associated with death risk (\(p<0.05\) for all).

As provided in Table 3, C-statistics of R\(_{2\text{CKD}}\)CHADS\(_2\) and R\(_{2\text{CMDRD}}\)CHADS\(_2\) and CHA\(_2\)DS\(_2\)VASc schemes moderately exceeded that of CHADS\(_2\) and CHA\(_2\)DS\(_2\)VASc scores (\(p=0.081\) and \(p=0.082\)). C-statistics of R\(_{2\text{MDRD}}\)GFRCHADS\(_2\), R\(_{2\text{CMDRD}}\)GFRCHADS\(_2\), R\(_{2\text{MDRD}}\)GFRCHA\(_2\)DS\(_2\)VASc, R\(_{2\text{CMDRD}}\)GFRCHA\(_2\)DS\(_2\)VASc, R\(_{2\text{CKD}}\)GFRCHADS\(_2\) and R\(_{2\text{MDRD}}\)GFRCHA\(_2\)DS\(_2\)VASc schemes significantly exceeded that of CHADS\(_2\) and CHA\(_2\)DS\(_2\)VASc scores (\(p<0.05\) for all). There were no differences in C-statistics between R\(_{2\text{MDRD}}\)GFRCHADS\(_2\), R\(_{2\text{CMDRD}}\)GFRCHADS\(_2\), R\(_{2\text{MDRD}}\)GFRCHA\(_2\)DS\(_2\)VASc and R\(_{2\text{MDRD}}\)GFRCHA\(_2\)DS\(_2\)VASc schemes in AF.

Discussion
As a frequent arrhythmia in clinical practice, AF increases in prevalence with age and accounts for an increased death risk.\(^{1–3}\) Nakagawa et al have manifested that impaired renal function was related to an increased mortality among 387 Japanese patients with AF.\(^{4}\) The current analysis validated that GFR as the continuous variable and GFR < 60 mL/min/1.73 m\(^2\) were significantly and independently associated with death risk, whereas the CrCl as the continuous variable or CrCl < 60 mL/min was significantly or modestly associated with death risk during the follow-up of older patients with AF. Meanwhile, the current analysis evaluated the renal function with not only the CrCl formula but also different GFR formulas and refined five different kinds of R\(_2\)CHADS\(_2\) and R\(_2\)CHA\(_2\)DS\(_2\)VASc schemes by combining CrCl and GFR with CHADS\(_2\) and CHA\(_2\)DS\(_2\)VASc scores. Moreover, the addition of GFR to CHADS\(_2\) and CHA\(_2\)DS\(_2\)VASc scores fared significantly better than that to CHADS\(_2\) and

Clinical Interventions in Aging downloaded from https://www.dovepress.com/ by 54.70.40.11 on 11-Dec-2018
Table 1 Baseline characteristics of all patients stratified by the death occurrence

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total (n=219)</th>
<th>Survivor (n=166)</th>
<th>Dead (n=53)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure/left ventricular function <40%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke/TIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHADS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CrCl, mL/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMDRD-GFR, mL/min/1.73 m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI-GFR, mL/min/1.73 m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo-GFR, mL/min/1.73 m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo-GFR <60 mL/min/1.73 m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{CMDRD-GFR, CHADS2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{EPI-GFR, CHADS2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{Mayo-GFR, CHADS2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Notes: CHADS2: risk stratification system that awards 1 point each for the presence of congestive heart failure, hypertension, age ≥75 years and diabetes mellitus and 2 points for prior stroke or TIA: CHADS2:VASc risk stratification system that awards 1 point each for the presence of congestive heart failure, hypertension, vascular diseases, diabetes mellitus and female sex, 2 points for prior stroke or TIA and 0, 1 or 2 points depending on age: R_{CHADS2}: CHADS2 +2 points if CrCl <60 mL/min and GFR <60 mL/min/1.73 m²; R_{CHADS2,VAsC}: CHADS2,VAsC +2 points if CrCl <60 mL/min and GFR <60 mL/min/1.73 m². Results are given as median values (interquartile range) and frequencies (%).

Table 2 Effects of renal function indices on death risk in Cox regression analyses

<table>
<thead>
<tr>
<th>Renal function indices</th>
<th>HR (95% CI)</th>
<th>P-value</th>
<th>Adjusted HR (95% CI)</th>
<th>P-value</th>
<th>Adjusted HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrCl</td>
<td>0.949 (0.931–0.967)*</td>
<td><0.001</td>
<td>0.952 (0.934–0.970)*</td>
<td><0.001</td>
<td>0.952 (0.934–0.970)*</td>
<td><0.001</td>
</tr>
<tr>
<td>CrCl <60 mL/min</td>
<td>1.794 (1.013–3.176)*</td>
<td>0.045</td>
<td>1.579 (0.884–2.818)*</td>
<td>0.122</td>
<td>1.546 (0.862–2.772)*</td>
<td>0.144</td>
</tr>
<tr>
<td>MDRD-GFR</td>
<td>0.967 (0.954–0.979)*</td>
<td><0.001</td>
<td>0.970 (0.957–0.983)*</td>
<td><0.001</td>
<td>0.969 (0.956–0.983)*</td>
<td><0.001</td>
</tr>
<tr>
<td>CMDRD-GFR <60 mL/min/1.73 m²</td>
<td>1.865 (1.340–2.502)*</td>
<td><0.001</td>
<td>1.767 (1.310–2.383)*</td>
<td><0.001</td>
<td>1.793 (1.328–2.421)*</td>
<td><0.001</td>
</tr>
<tr>
<td>Mayo-GFR</td>
<td>0.969 (0.957–0.981)*</td>
<td><0.001</td>
<td>0.972 (0.960–0.984)*</td>
<td><0.001</td>
<td>0.971 (0.959–0.984)*</td>
<td><0.001</td>
</tr>
</tbody>
</table>
| Notes: CHADS2: risk stratification system that awards 1 point each for the presence of congestive heart failure, hypertension, age ≥75 years and diabetes mellitus and 2 points for prior stroke or TIA: CHADS2:VASc risk stratification system that awards 1 point each for the presence of congestive heart failure, hypertension, vascular diseases, diabetes mellitus and female sex, 2 points for prior stroke or TIA and 0, 1 or 2 points depending on age: R_{CHADS2}: CHADS2 +2 points if CrCl <60 mL/min and GFR <60 mL/min/1.73 m²; R_{CHADS2,VAsC}: CHADS2,VAsC +2 points if CrCl <60 mL/min and GFR <60 mL/min/1.73 m². Results are given as median values (interquartile range) and frequencies (%).
Table 3 Comparison of abilities in death risk stratification between different models

<table>
<thead>
<tr>
<th>Risk stratification models</th>
<th>C-statistics (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compared with CHADS₂ and CHA₂DS₂VASc</td>
<td>R²(GFR)-CHADS₂ and R²(GFR)-CHA₂DS₂VASc</td>
</tr>
<tr>
<td>CHADS₂</td>
<td>0.674 (0.591–0.757)</td>
<td>0.077</td>
</tr>
<tr>
<td>CHA₂DS₂VASc</td>
<td>0.665 (0.581–0.748)</td>
<td>0.082</td>
</tr>
<tr>
<td>R²(MDRD-GFR)-CHADS₂</td>
<td>0.732 (0.657–0.807)</td>
<td>0.007</td>
</tr>
<tr>
<td>R²(MDRD-GFR)-CHA₂DS₂VASc</td>
<td>0.718 (0.641–0.795)</td>
<td>0.005</td>
</tr>
<tr>
<td>R²(EPI-GFR)-CHADS₂</td>
<td>0.737 (0.662–0.813)</td>
<td>0.003</td>
</tr>
<tr>
<td>R²(EPI-GFR)-CHA₂DS₂VASc</td>
<td>0.721 (0.643–0.799)</td>
<td>0.003</td>
</tr>
<tr>
<td>R²(EPI-GFR)-CHA₂DS₂VASc</td>
<td>0.721 (0.643–0.799)</td>
<td>0.003</td>
</tr>
<tr>
<td>R²(EPI-GFR)-CHA₂DS₂VASc</td>
<td>0.721 (0.643–0.799)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Notes: CHADS₂: risk stratification system that awards 1 point each for the presence of congestive heart failure, hypertension, age ≥75 years and diabetes mellitus and 2 points for prior stroke or TIA; CHA₂DS₂VASc: risk stratification system that awards 1 point each for the presence of congestive heart failure, hypertension, vascular disease, diabetes mellitus and female sex, 2 points for prior stroke or TIA and 0, 1 or 2 points depending on age; CHADS₂: CHADS₂ + 2 points if CrCl < 60 mL/min and GFR < 60 mL/min/1.73 m²; R₂(GFR)-CHADS₂: CHADS₂ + 2 points if CrCl < 60 mL/min and GFR < 60 mL/min/1.73 m².

Abbreviations: CrCl, creatinine clearance; MDRD, Modification of Diet in Renal Disease; GFR, glomerular filtration rate; CMDRD, Chinese MDRD; EPI, epidemiology; Mayo, Mayo Clinic Quadratic.

CHA₂DS₂VASc scores, whereas the addition of CrCl to CHADS₂ and CHA₂DS₂VASc scores fared marginally better than that to CHADS₂ and CHA₂DS₂VASc scores.

How to implement the effective stratification of death risk and accordingly decrease the death risk in patients with AF are of great concern. Various clinical factors have the ability to predict the death risk. However, there was no reliable schema developed for stratifying the death risk in patients with AF, and some researchers like Nakagawa et al have successfully applied the CHADS₂ score, generally used for appraising the thromboembolic likelihood, to stratifying the death risk in patients with AF. This transition had an important value for clinical practice, but the current schemes including the CHADS₂ and CHA₂DS₂VASc scores have a limited discriminatory ability. Renal function is a powerful risk factor for mortality in patients with AF, and thus, Piccini et al have made attempts to combine CrCl with the CHADS₂ score. However, as a standard index of renal function, GFR has not been adequately assessed, and nobody knows if it is appropriate or even better to combine GFR with these scoring systems (CHADS₂ and CHA₂DS₂VASc scores). The current analysis certified that GFR-based schemes – R²(GFR)-CHADS₂ and R²(GFR)-CHA₂DS₂VASc refined by four different formula-calculated GFR provided a significant improvement of predictive ability for death risk in older patients with AF, but with the addition of CrCl to CHADS₂ and CHA₂DS₂VASc scores – R²(GFR)-CHADS₂ and R²(GFR)-CHA₂DS₂VASc, there was only a modest improvement in death risk stratification.

We are unaware of other published studies that have used GFR to refine the CHADS₂ and CHA₂DS₂VASc scores and verified that GFR-based schemes performed better than original versions in death risk stratification of Chinese older patients with AF.

The current analysis has some limitations. First, as the current analysis was made up of 219 Chinese older patients with AF, to validate the current conclusion in a larger study population will be more valuable and very necessary. Second, due to the priority of all-cause mortality in the outcome studies, as well as the high prevalence of multiple organ failure in the elderly, all-cause mortality rather than cardiovascular/stroke-related mortality was considered in the current analysis.

Conclusion

The current analysis confirmed that Chinese older patients with AF with lower levels of GFR and GFR < 60 mL/min/1.73 m² had a significantly high death risk and those with lower levels of CrCl or CrCl < 60 mL/min had a significantly or modestly high death risk. To aid the death risk scoring, the current analysis evaluated the renal function using not only CrCl formula but also different GFR formulas and then generated five different kinds of R²(CHADS₂) and R²(CHA₂DS₂VASc) schemes by combining CrCl and GFR with CHADS₂ and CHA₂DS₂VASc scores. Meanwhile, the current analysis provided evidence for the significantly better performance of GFR-based schemes – R²(GFR)-CHADS₂.
and $R_{2(GFR)} \cdot CHADS_{2} \cdot VASc$ – and the moderately better performance of CrCl-based schemes – $R_{2(CC)} \cdot CHADS_{2}$ and $R_{2(CC)} \cdot CHA_{2}DS_{2} \cdot VASc$ – in death risk stratification compared with other published schemes without considering renal function (CHADS$_2$ and CHA$_2$DS$_2$VASc scores). To our knowledge, it is the first time that GFR was applied to refine the CHADS$_2$ and CHA$_2$DS$_2$VASc scores, and GFR-based schemes – $R_{2(GFR)} \cdot CHADS_{2}$ and $R_{2(GFR)} \cdot CHA_{2}DS_{2} \cdot VASc$ – were testified to be superior to original versions in the risk stratification of Chinese older patients with AF.

Acknowledgment
This work was supported by grants from the National Key Basic Research Project (2012CB517503 and 2013CB530804), Health Special Scientific Research Project of Chinese People’s Liberation Army (12BJZ34 and 14BJZ12) and Sanya Medical and Health Science and Technology Innovation Project (2016YW21).

Disclosure
The authors report no conflicts of interest in this work.

References