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Objective: The aim of this study was to document the immune activating and anti-inflammatory 

effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human 

immune cells in vitro.

Methods: In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy 

blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After 

incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, 

CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were 

tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory 

cytokines, chemokines, and growth factors.

Results: Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker 

on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some 

cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust 

increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels 

were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-

inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor 

involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, 

showing a highly selective growth factor response.

Conclusion: The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and 

altered the production of both immune activating and anti-inflammatory cytokines and chemo-

kines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF 

growth factor involved in postinjury and postinflammation repair and regeneration. This suggests 

that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after 

the inactivation and retain the complex beneficial biological activities previously demonstrated 

for the cell walls from live B. coagulans GBI-30, 6086 (GanedenBC30) probiotic bacteria.

Keywords: anti-viral, anti-inflammatory, cytokines, growth factors, lipoteichoic acid, inactivated 

bacillus coagulans GBI-30, 6086, Staimune

Plain language summary
This study was done to test a new consumable health product, made by inactivating a specific 

strain of beneficial probiotic gut bacteria. We have previously shown that this strain of gut bacteria 

activates human immune cells and helps mature certain immune cells that are of importance for 

detecting foreign antigens. The inactivating process allows the bacterium to be used in broader 

applications, such as foods, where a living bacterium could spoil the food or give it a very limited 
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shelf life. It was important to show that the inactivated bacteria had 

similar properties to the live bacteria.

To test this, we used blood samples from healthy humans and 

isolated a part of the white blood cells that include immune cells 

and stem cells. The blood samples contained the same types of cells 

as in the blood circulation in our intestinal walls, where antigens 

from the gut are presented to immune cells. We cultured the cells 

with the inactivated bacterial cells for 24 hours. We examined the 

immune cells for their activation status. We tested the liquid culture 

medium for secreted biomarkers.

We found that the inactivated bacterial cells had similar 

effects as the live ones with respect to immune activation and anti-

inflammatory effects. We also found novel effects that showed that 

the human cells secreted a growth factor important for tissue repair 

after trauma and injury.

Introduction
The gut microbial community, “gut microbiome”, has a 

vast impact on the health of the human host.1,2 An integral 

collaboration exists between microbial forms colonizing 

the gut and our immune function, metabolism, and brain 

function.3 The interaction between gut microbes and host 

cells and tissue takes place in several ways, including 

via bacterial cell wall components and secreted metabo-

lites. The most immediate and direct interaction between 

microbes and host cells involves the outer layers of bacterial 

cell wall components engaging with receptors on immune 

cells, such as dendritic cells directly sampling antigens in 

the gut lumen. This interaction presents different types of 

bacterial cell wall components of Gram-positive versus 

Gram-negative bacteria. Gram-negative bacteria present 

lipopolysaccharides (LPSs), which are recognized by 

toll-like receptor-4 (TLR-4),4 whereas the outer cell walls 

of Gram-positive bacteria present teichoic acid and lipo-

teichoic acid to immune cells, recognized by TLR-2.5 For 

many pathogenic bacteria, lipoteichoic acid is associated 

with virulence,6 whereas lipoteichoic acid from beneficial 

probiotic bacteria trigger complex beneficial immune 

modulation. Lipoteichoic acid has been widely used as a 

model TLR-2 ligand to explore a wide variety of immune 

activating mechanisms at the cellular and molecular level, 

and interestingly has proven to exert both proinflammatory7,8 

and anti-inflammatory9,10 activities in vitro. The structural 

complexity of lipoteichoic acid is said to impact the host 

immune response. The chemical composition of this acid 

differs between microbes and between strains of similar 

microbes. This is of high importance in triggering diverse 

effects on host cells and is likely one of the key factors in 

the highly selective immune-modulating effects induced by 

different microbial strains.

The consumption of beneficial probiotic bacteria is 

associated with a range of health benefits tied to inflamma-

tion regulation, such as gastrointestinal disease,11 respira-

tory tract infections,12 neuro-immune and neuropsychiatric 

disorders,13 satiety and psychosocial behavior in obese 

individuals,14 and alleviation of symptoms of anxiety and 

depression,15 as a result of the extensive communication 

between the gastrointestinal and central nervous systems, 

also referred to as the “gut–brain axis”.16 While the con-

sumption of probiotic bacteria is considered highly safe, 

there are many useful applications for inactivated probiotic 

strains, such as increased shelf life, as well as usefulness 

in many types of food products where metabolically 

active, living bacteria may spoil the appearance of the 

food. Inactivated probiotic bacteria also have a use in spe-

cific clinical situations involving immune-compromised 

individuals where there could potentially be a risk of 

translocation of gut bacteria into the bloodstream. Inacti-

vated probiotic bacteria can be produced, for example by 

heating, leaving the outer bacterial cell wall as the main 

mechanism of interaction with host immune cells. Heat-

killed Lactobacillus plantarum L-137 (HK L-137) has 

been widely studied over the past decades for its effects 

in rodents and humans. Animal studies have shown that 

consumption of HK L-137 offers protection against influ-

enza virus infection, associated with increased production 

of interferons, suggesting a general support of antiviral 

immune defense activity.17 Clinical trials have shown that 

the daily intake of HK L-137 supports a healthy immune 

function, including enhanced acquired immune responses 

and TH1-related immune function,18 and reduced incidence 

of upper respiratory tract infections.19 Consumption was 

also associated with improved oral health.20 The heat-killed 

bacterial cells are also known to exert antiallergic21 and 

antitumor22 effects, in part due to the potent induction of 

IL-12 and interferons23 by lipoteichoic acids on the bacte-

rial cell wall surfaces. Furthermore, the L-137 strain has 

higher levels of lipoteichoic acids exposed on the surface, 

with higher amounts of alanine, than the closely related 

L. plantarum JCM1149 strain;24 this correlates with the 

higher induction of IL-12 by the L-137 strain than by the 

JCM1149 strain.25

Another group of lactic acid-producing probiotic bac-

teria includes several unique strains of the spore-forming 

B. coagulans (previously classified as L. sporogenes). 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2017:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

109

Inactivated GBI‑30 and immune modulation

The teichoic acid from B. coagulans walls has a higher 

lipid content than most Gram-positive bacteria, and is a 

glycerophosphate polymer substituted with two neutral 

sugars, glucose and galactose. It is unique in lacking amino 

acid substituents, otherwise considered a characteristic of 

teichoic acids.26

Cell walls from the live B. coagulans GBI-30, 6086 strain 

(GanedenBC30) have demonstrated immune modulating and 

anti-inflammatory effects in vitro.27 Our team previously 

showed that immune-modulating effects of the BC30 strain 

were associated both with the cell wall fraction and with 

the metabolites produced by the live bacteria in vitro.28 The 

probiotic strain was further shown to prolong the survival 

and reduce symptoms in mice infected with Clostridium 

difficile.29,30 Clinical studies showed that consuming BC30 

helped alter the gut microbiome by increasing the numbers 

of beneficial bacteria,31 and ex vivo testing of blood from 

elderly humans who had consumed BC30 for 28 days showed 

increased anti-inflammatory cytokine responses.32 Results 

from a recent clinical trial suggest that the consumption 

of BC30 supports exercise performance and helps reduce 

exercise-induced muscle damage.33

Recently, inactivated B. coagulans GBI-30, 6086 

cells have been produced for oral consumption. The work 

presented here was undertaken to document whether the 

immune activating and anti-inflammatory properties asso-

ciated with the cell walls of the live BC30 bacteria were 

protected in the inactivated product. An important focus 

for this work was to document the biological activities of 

the inactivated B. coagulans GBI-30 bacterial cells when 

presented to human immune cells in a cell culture system 

that allows cross-talk between antigen-presenting mono-

cytes and dendritic cells with lymphocytes and natural 

killer cells, and thus mimics events in the gut mucosal 

immune tissue.

Materials and methods
Reagents
Phosphate-buffered saline, Roswell Park Memorial Insti-

tute 1640 (RPMI-1640) medium, penicillin–streptomycin 

100×, IL-2, and LPS were purchased from Sigma-Aldrich 

Co. (St. Louis, MO, USA). CD69 fluorescein isothio-

cyanate, CD56 phycoerythrin, CD3 peridinin chlorophyll 

protein, CD25 brilliant violet 421 and heparin Vacutainer 

vials were purchased from BD Biosciences (Franklin 

Lakes, NJ, USA). The Bio-Plex Pro™ human cytokine 

27-Plex was purchased from Bio-Rad Laboratories Inc. 

(Hercules, CA, USA).

Inactivated B. coagulans GBI‑30 
(Staimune™)
Inactivated B. coagulans GBI-30, 6086 cells were provided 

by Ganeden Inc. (Mayfield Heights, OH, USA). Bacterial cell 

numbers were 15 billion (1.5×1010) CFU per gram prior to 

inactivation. Inactivated bacteria were diluted in physiologi-

cal saline and added to human peripheral blood mononuclear 

cell cultures at doses from 0.78×106–100×106 inactivated 

cells/mL cell culture.

Peripheral blood mononuclear cell 
cultures
Healthy human volunteers between the age of 50 and 60 years 

served as blood donors upon informed consent, as approved 

by the Sky Lakes Medical Center Institutional Review Board 

(FWA 2603). Freshly drawn peripheral venous blood samples 

in sodium heparin were layered onto Lympholyte-Poly and 

centrifuged for 35 minutes at 450 g. The upper peripheral blood 

mononuclear cells (PBMC)-rich interface was harvested using 

sterile transfer pipettes into new vials and washed twice with 

10 mL PBS, without calcium or magnesium, by centrifugation 

for 10 minutes. The cells were resuspended into RPMI 1640 

with 10% fetal bovine serum, l-glutamine, and antibiotics 

(penicillin and streptomycin) to a cell density of 106/mL. 

Triplicate cultures were established for each of the eight doses 

of inactivated GBI-30 tested. Untreated cell cultures (negative 

controls) were established in hexaplicate. Two sets of positive 

control cultures were established in triplicates, one set using 

LPS (10 ng/mL) and another set using IL-2 (100 IU/mL) to 

activate the immune cells by two different pathways.

Cytokine testing
Supernatants were harvested from the human immune cell 

24-hour cultures, and the levels of 27 cytokines, chemokines, 

and growth factors were analyzed. Testing was performed on 

culture supernatants from cell cultures treated with the six 

higher doses of inactivated GBI-30. The following markers: 

IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, 

IL-12 (p70), IL-13, IL-15, IL-17, eotaxin, basic FGF, G-CSF, 

GM-CSF, Interferon-gamma (IFN-γ), IP-10, MCP-1, MCAF, 

MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α, and VEGF 

were quantified using Bio-Plex protein arrays (Bio-Rad 

Laboratories Inc.) and utilizing xMAP technology (Luminex, 

Austin, TX, USA).

Statistical analysis
Averages and SDs for each data set were calculated using 

Microsoft Excel. Statistical analysis was performed using 
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the 2-tailed, independent t-test. Statistical significance was 

indicated when P<0.05 and a high level of significance 

when P<0.01.

Results
Immune cell activation
Immune cell activation by inactivated B. coagulans GBI-30 

cells was determined by measuring cell-surface expression of 

the activation marker CD69. The gating on immune cells with 

different forward and side scatter properties allowed analysis 

of CD69 expression on lymphocytes versus monocytes/macro-

phages (Figure 1). Treatment of both cell types with inactivated 

GBI-30 cells for 24 hours resulted in activation across a broad 

dose range. The results for CD69 expression on lymphocytes 

showed that even at the lowest dose the CD69 expression was 

not returning to baseline, and suggests that much lower doses 

would still have been able to activate lymphocytes (Figure 

1A). In contrast, the most robust and statistically significant 

activation of monocytes was in a narrower dose range, return-

ing toward baseline at the lowest dose shown (Figure 1B).
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Figure 1 Expression of the CD69 cellular activation marker on lymphocytes and monocytes.
Notes: *P<0.05; **P<0.01. CD69 expression on lymphocytes (A) and monocytes (B) in human PBMC cultures treated for 24 hours with serial dilutions of inactivated 
Bacillus coagulans GBI‑30 cells. Mean fluorescence intensity for CD69 expression is shown. Data presented as mean ± SD from triplicate cultures and represent one of three 
separate experiments using PBMC from three different healthy human donors. For lymphocytes, the mean ± SD for the controls were: UT 1,432±32, LPS 1,635±33, and IL‑2 
1,910±115. For monocytes, the mean±SD for the controls were: UT 9,448±373, LPS 12,803±286, and IL‑2 11,494±1,455.
Abbreviations: LPS, lipopolysaccharide; PBMC, peripheral blood mononuclear cells; UT, untreated.
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The use of fluorescently labeled antibodies to CD3, 

CD56, and CD69 allowed the monitoring of changes to 

lymphocyte subsets, including CD3+ T lymphocytes, CD3+ 

CD56+ Natural Killer T (NKT)  cells, CD3−CD56+ NK 

cells, and non-T non-NK lymphocytes. Treatment of PBMC 

cultures with inactivated GBI-30 cells for 24 hours led to 

the activation of T lymphocytes, NKT cells, NK cells, and 

non-T non-NK cells (Figure 2). T lymphocyte activation was 

seen across a broad dose range, and at the third-lowest dose 

(3.13×106 bacteria/mL), the CD69 expression was as robust 

as for LPS-induced CD69 expression (Figure 2A). The T 

lymphocyte activation remained highly significant even at 
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Figure 2 Expression of the CD69 cellular activation marker on immune cell subsets.
Notes: *P<0.05; **P<0.01. CD69 expression on T lymphocytes (A), NKT cells (B), NK cells (C), and non‑T non‑NK cells (D) in human PBMC cultures treated for 24 hours 
with serial dilutions of inactivated Bacillus coagulans GBI‑30 cells. Mean fluorescence intensity for CD69 expression is shown. Data presented as mean ± SD from triplicate 
cultures and represent one of three separate experiments using PBMC from three different healthy human donors. For T lymphocytes, the mean ± SD for the controls were: 
UT 1,192±23, LPS 1,346±20, and IL‑2 1,638±97. For NKT cells, the mean ± SD for the controls were: UT 1,908±36, LPS 2,687±126, and IL‑2 3,669±493. For NK cells, the 
mean ± SD for the controls were: UT 2,880±259, LPS 4,770±503, and IL‑2 8,930±1,613. For non‑T non‑NK cells, the mean±SD for the controls were: UT 2,364±146, LPS 
3,393±137, and IL‑2 2,935±184.
Abbreviations: LPS, lipopolysaccharide; PBMC, peripheral blood mononuclear cells; UT, untreated.
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the lowest dose of inactivated GBI-30. Activation of NKT 

cells was also observed across the entire dose range, and at 

some doses, the activation was highly significant, compared 

to untreated control cultures (Figure 2B). NK cell activation 

was most robust at the lower doses and less prominent at 

higher doses (Figure 2C). The CD69 expression in the non-T 

non-NK lymphocyte population was seen for a broad dose 

range as well, returning to baseline at the lowest dose tested 

(Figure 2D). LPS was used as a positive control (10 ng/mL) 

and resulted in an increase in CD69 expression on all cell 

types. IL-2 was used as a second positive control (100 IU/

mL) and also showed an increase in CD69 on all cell types.

Please note that occasionally, a large variation in CD69 

expression was seen within one set of triplicate cultures, as 

reflected by large error bars, and in some cases, an average 

response in the triplicate set appears out of line with the 

overall dose response. We suggest that this is due to the 

nature of the test product, where the inactivated bacterial 

cells may clump within a culture well instead of dispersing, 

thus not providing optimal interaction between bacterial 

cells and PBMC within those wells. An example is the very 

low CD69 expression on non-T non-NK lymphocytes at 

the dose of 12.5×106 inactivated GBI-30/mL, where only 

one of the three triplicate culture wells showed the CD69 

expression level comparable to the dose above and the dose 

below (Figure 2D).

Immune‑activating cytokines B. coagulans
Supernatants from the PBMC cultures exposed to inactivated 

B. coagulans GBI-30 cells for 24 hours were simultaneously 

assayed for the levels of 27 different cytokines, chemokines, 

and growth factors, using a magnetic bead-based array and 

Luminex xMAP technology. Increases in the levels of cyto-

kines with various immune activating and regulating proper-

ties were seen. This included a robust upregulation of certain 

proinflammatory cytokines, including IL-1β, IL-6, IL-17, and 

TNF-α (Figure 3). Increases were also seen for the cytokines 

IL-4, IL-7, IL-8, IL-9, and IL-12p70 (data not shown). Fur-

thermore, increases were seen for four biomarkers involved 

in antiviral immune defense activity, namely IFN-γ, and the 

three chemokines MCP-1, MIP-1α, and MIP-1β (Figure 4).

Anti‑inflammatory cytokines
In parallel to increases in immune-activating, proinflamma-

tory cytokines, higher doses of the inactivated B. coagulans 

GBI-30 cells also triggered robust increases in the two anti-

inflammatory cytokines IL-1ra and IL-10 (Figure 5). The 

increases were comparable between these cytokines, with an 

approximal 300-fold increase above the levels in untreated 

cell cultures.

Growth factors
The exposure of human PBMC to inactivated GBI-30 

triggered changes in growth factor production (Figure 6). 

Highly selective changes were seen for the growth factors 

granulocyte-colony stimulating factor (G-CSF) and granulo-

cyte macrophage-colony stimulating factor (GM-CSF), both 

having differential effects on stem cell biology (Figure 6A 

and B), where treatment of PBMC with inactivated GBI-30 

led to a very strong increase in G-CSF production, in contrast 

to a mild reduction in GM-CSF production.

Discussion
The work reported here on the inactivated B. coagulans 

GBI-30, 6086 cells is a direct extension of previous work 

by our team, involving the live B. coagulans GBI-30, 6086. 

Our previous results have demonstrated that the cell wall 

from BC30 has complex biological properties, including 

both immune-activating and anti-inflammatory properties.27

The current work showed that the inactivated B. 

coagulans GBI-30 cells triggered an increase in the CD69 

activation marker on multiple human immune cell types, 

whereas previous work focused only on NK cells. CD69 

is an early activation marker on many cell types, and is 

directly involved in the molecular apparatus responsible for 

NK cell-mediated killing of virus-infected and transformed 

cells.34–36 In addition, CD69 has a broad range of functions, 

including T-cell/B-cell interactions, homing of cells into 

appropriate tissue environments, and the process of gen-

erating and maintaining immunological memory.37,38 The 

ability of inactivated GBI-30 to induce CD69 on multiple 

cell types suggests a broad effect involving cells from both 

the innate and the adaptive immune systems. Further work 

will need to evaluate the various cell types in the non-T 

non-NK subset of cells, which includes dendritic cells, B 

lymphocytes, circulating hematopoietic, mesenchymal, 

and endothelial stem cells. Previous work on live BC30 

showed that exposure of human mononuclear phagocytes 

triggered a favorable maturation of antigen-presenting cells 

toward both macrophage and dendritic cell phenotypes.28 

This is important, since dendritic cells are first-line antigen-

presenting cells in gut mucosal immune tissue, capable of 

unique surveillance activity and antigen recognition across 

intact epithelial barriers,39 and therefore may represent the 

cell type that initially encounters consumed BC30 cells in 

the gut mucosa in vivo.
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Inactivated B. coagulans GBI-30 cells triggered robust 

increases in the production of multiple cytokines, chemo-

kines, and growth factors. The current data span a broader 

range of cytokines, chemokines, and growth factors than 

previously tested for live BC30. This has helped confirm 

the potent immune-activating properties of BC30. It has also 

helped demonstrate novel biological properties associated 

with antiviral and regenerative functions. The increases in the 

biomarkers IFN-γ, MCP-1, MIP-1α, and MIP-1β, involved in 

antiviral immune defense mechanisms and cellular recruit-

ment, are of special importance. IFN-γ has direct antiviral 

properties, activates macrophages, and enhances NK cell 

killing activity of transformed cells. The three chemokines 

facilitate recruitment of immune cells to sites of inflamma-

tion, whether caused by injury or by infection. The increase 

in two anti-inflammatory cytokines, IL-1ra and IL-10, points 

to the complexity of inactivated GBI-30 immune modulation. 

We speculate that the anti-inflammatory effect represents a 

later part of the cascade triggered by inactivated GBI-30, 

with the purpose of resolving the initial proinflammatory 

immune activation and limiting the inflammatory process 

in space and time.

Several growth factors known to play specific roles 

in endogenous regeneration were upregulated in the 

PBMC cultures. Highly selective, contrasting effects 

were seen for the two stem cell growth factors G-CSF 

and GM-CSF. Inactivated B. coagulans GBI-30-treated 

PBMC cultures showed a robust increase in G-CSF 

levels, reaching over 7,000-fold above untreated cul-

tures at the highest dose, in contrast to mildly reduced 

GM-CSF levels. This is an important differentiation, 

since G-CSF supports stem cells to produce neutrophils, 

whereas GM-CSF promotes the production of multiple 

cell types, including eosinophils, involved in immune 

defense against multicellular parasites and also in inflam-

mation in allergies and asthma. In addition, G-CSF is 

used therapeutically to support stem cell mobilization, 

migration, and tissue repair.40 Therefore, the selective 
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Figure 3 Changes in proinflammatory cytokine levels in human PBMC cultures.
Notes: *P<0.05; **P<0.01. Changes in cytokine levels in human PBMC cultures treated for 24 hours with serial dilutions of inactivated Bacillus coagulans GBI‑30 cells are 
shown as percent change from untreated cell cultures. Data presented as mean ± SD from duplicate testing of culture supernatants from one of three separate experiments 
using PBMC from three different healthy human donors.
Abbreviation: PBMC, peripheral blood mononuclear cells.
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effect of inactivated B. coagulans GBI-30 cells on 

growth factor production may be directly beneficial in 

repair and regeneration of the gut mucosal tissue, for 

example in situations of ulceration. The effect may also 

affect systemic changes via many cell types, including 

inflammation-modulating mesenchymal stem cells.41,42 

Mesenchymal stem cells are able to sense signals from, 

and migrate into injured, inflamed, and ischemic tissue. 

They can cross the blood–brain barrier and contribute 

to repair of brain injuries such as stroke. Interestingly, 

it has been shown that the treatment of mesenchymal 

stem cells from healthy human donors with IL-1, TNF-α, 

and IFN-γ production contributed to a strong increase in 

G-CSF production by the mesenchymal stem cells43 and 

subsequently the increase in G-CSF reprogrammed LPS-

activated microglial cells to secrete fewer inflammatory 

mediators. This sequential process may apply to events 

when mononuclear cells, which include multiple types of 

stem cells, are exposed to inactivated B. coagulans GBI-

30 cells. Further work is needed to document whether 

a cascade of events is triggered by inactivated GBI-30, 

where an initial immune-activating signal upregulated 

the production of proinflammatory cytokines, followed 

by anti-inflammatory processes intended to resolve the 

inflammation, combined with reparative growth factors.

Three observations from the current work reported here 

are of key importance in the validation of similar biologi-

cal activities of the inactivated B. coagulans GBI-30 cells, 

compared to the immune-modulating properties of cell wall 

fractions from living BC30: 1) Both can increase the CD69 

activation marker on lymphocytes, 2) both are able to increase 

production of the proinflammatory cytokine IL-6, and 3) both 

are capable of increasing the anti-inflammatory cytokine 

IL-10. This suggests that cell wall components, including 

lipoteichoic acid, have remained at least partially preserved 

by the inactivation process.

A direct dose comparison to our previous in vitro work 

is not feasible. Previous work on the cell wall’s immune-
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Figure 4 Changes in levels of cytokines involved in antiviral immunity in human PBMC cultures.
Notes: *P<0.05; **P<0.01. Changes in cytokine levels in human PBMC cultures treated for 24 hours with serial dilutions of inactivated Bacillus coagulans GBI‑30 cells are 
shown as percent change from untreated cell cultures. Data presented as mean ± SD from duplicate supernatants from one of three separate experiments using PBMC from 
three different healthy human donors.
Abbreviation: PBMC, peripheral blood mononuclear cells.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2017:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

115

Inactivated GBI‑30 and immune modulation

activating properties was performed on material that went 

through repeated freeze/thaw and bead-milling cycles, thus 

breaking down the cell walls into smaller particles, each 

capable of engaging appropriate receptors on the surface 

of the PBMC. In contrast, the current work involved the 

addition of intact bacterial cells to the human immune cell 

cultures.27

The complex properties of inactivated GBI-30 suggest 

possible multifaceted clinical responses after consumption, 

involving immune activation, anti-inflammatory effects, and 

effects involving stem cell mobilization, homing, and repro-

gramming involved in accelerated repair. The direct effects 

of inactivated GBI-30 are expected to translate to immune 

activation at the level of the gut mucosa and trigger rapid 

systemic effects. This is different from a study on the live 

BC30 where ingested spores will give rise to living bacteria 

that can colonize the intestinal tract, and where an impor-

tant part of the biological effects is due to secreted bacterial 

metabolites. Future work on inactivated B. coagulans GBI-30 

cells should include a human clinical study to examine acute 

effects, using the study design previously published by our 

team on efficacious immune-modulating natural products,44,45 

Figure 5 Changes in anti‑inflammatory cytokine levels in human PBMC cultures treated for 24 hours.
Notes: *P<0.05; **P<0.01. The first sentence should read:  Changes in IL‑1ra (A) and IL‑10 (B) cytokine levels in human PBMC cultures treated for 24 hours with serial 
dilutions of inactivated Bacillus coagulans GBI‑30 cells are shown as percent change from untreated cell cultures. Data presented as mean ± SD from duplicate supernatants 
from one of three separate experiments using PBMC from three different healthy human donors.
Abbreviation: PBMC, peripheral blood mononuclear cells.
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Figure 6 Changes in growth factor levels in human PBMC cultures treated for 24 hours.
Notes: **P<0.01. Changes in G‑CSF (A) and GM‑CSF (B) growth factor levels in human PBMC cultures treated for 24 hours with serial dilutions of inactivated Bacillus 
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as well as nutraceutical products that have effects on human 

stem cell biology.46,47
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