The diagnostic and prognostic values of Ki-67/MIB-1 expression in thyroid cancer: a meta-analysis with 6,051 cases

Deng-hua Pan¹
Dong-ye Wen¹
Yi-huan Luo²
Gang Chen³
Hong Yang¹
Jun-qiang Chen²
Yun He¹

¹Department of Ultrasonography, ¹Department of Gastrointestinal Surgery, ³Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China

Abstract: Growing evidence has demonstrated that Ki-67/MIB-1 has an effect on the clinical progression and prognosis in cancers. However, the diagnostic and prognostic values of Ki-67/MIB-1 in thyroid cancer remain unclear.

Materials and methods: The meta-analysis was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies were retrieved from PubMed, EBSCO, EMBASE, ISI Web of Science, China National Knowledge Infrastructure, WanFang and Chinese VIP databases. MetaDiSc and STATA12.0 were used to analyze the meta-analysis. Fixed-effect analysis and random-effect analysis were applied to pool the relative ratio based on heterogeneity in this meta-analysis.

Results: In the meta-analysis, 51 eligible studies were included. The pooled sensitivity of Ki-67/MIB-1 was 0.61 (95% confidence interval [CI]: 0.59–0.63) and specificity was 0.75 (95% CI: 0.74–0.77) in thyroid cancer. The pooled positive likelihood ratio was 3.19 (95% CI: 2.30–4.42) and negative likelihood ratio was 0.43 (95% CI: 0.35–0.54). In the diagnosis of thyroid cancer, the pooled diagnostic odds ratio of Ki-67/MIB-1 was 8.54 (95% CI: 5.03–14.49). The area under the symmetric receiver operating characteristic curve was 0.804 (standard error =0.031). Our results showed that there were statistical associations between Ki-67/MIB-1 and age (odds ratio [OR] =1.71, 95% CI: 1.14–2.57, P=0.010), tumor size (OR =1.86, 95% CI: 1.17–2.96, P=0.008), lymph node metastasis (OR =2.49, 95% CI: 1.42–4.39, P=0.002), metastasis status (OR =6.96, 95% CI: 2.46–19.69, P<0.001), tumor node metastasis stage (OR =6.56, 95% CI: 3.80–11.34, P<0.001) and extrathyroid extension (OR =1.91, 95% CI: 1.27–2.87, P=0.002).

Conclusion: Our results demonstrated that Ki-67/MIB-1 might act as a potential factor in diagnosing thyroid cancer in Chinese. Also, the meta-analysis indicated that Ki-67/MIB-1 might have an effect on prognosis in non-Chinese thyroid cancer patients.

Keywords: thyroid cancer, Ki-67/MIB-1, diagnosis, progression, prognosis, meta-analysis

Introduction: Thyroid carcinoma, accounting for nearly 1% of all the cancers, is the most common malignancy in the endocrine organs.¹ Traditionally, thyroid carcinomas are classified into papillary thyroid cancer (PTC), follicular thyroid cancer, medullary thyroid cancer, poorly differentiated thyroid cancer and anaplastic thyroid cancer, based on histopathology.² In China, it has been reported that 90 per 100,000 people were...
diagnosed with thyroid cancer and 6.8 people died among these patients. In USA, it has been estimated that 1,980 people died of the disease in 2016 and there will be 64,300 new patients of thyroid cancer. The diagnosis of thyroid cancer is often based on magnetic resonance imaging, ultrasound, computed tomography, fine needle aspiration and radionuclide imaging. Although various methods are well applied in clinics, patients often have poor outcome. Reports have shown that the patients’ age when being diagnosed, sex, tumor size, lymph node, distant metastases and pathologic differentiation of the cancer are the risk factors of prognosis in thyroid cancer.

However, no studies showed the markers had prognostic value in thyroid cancer. Cell proliferative activity is an important factor in cancer biologic behavior. Ki-67, considered as a nuclear antigen, is expressed in all cell nuclei, except those in the G0 phase. Further, MIB-1 acts as a monoclonal antibody which increases against Ki-67. In recent years, Ki-67 has been studied in many cancers, including cervical cancer, lung cancer, breast cancer and thyroid cancer. It has been reported that Ki-67 is an independent prognostic factor in thyroid cancer patients. A study predicted that patients with Ki-67 labeling index (LI) >3% would show a worse cause-specific survival than those with Ki-67 LI <3%. However, Gennem et al reported that Ki-67 LI (≥4%) is an independent factor and predictor of cause-specific survival.

Though many studies have demonstrated Ki-67/MIB-1 is expressed in thyroid cancer, there is no systematic literature assessing the relationship between Ki-67/MIB-1 expression and clinical factors in thyroid cancer patients. So, the significance of Ki-67/MIB-1 for prognostication of thyroid cancer remains uncertain. Thus, a literature-based meta-analysis study was performed to evaluate the diagnostic and prognostic values of Ki-67/MIB-1 in thyroid cancer.

Materials and methods

Studies selection

Studies were selected to demonstrate the diagnostic and prognostic values of Ki-67/MIB-1 for thyroid cancer. Electronic literatures were searched in PubMed, EBSCO, EMBASE, ISI Web of Science, WanFang, China National Knowledge Infrastructure and Chinese VIP databases from April 1, 1989 to July 31, 2016. The following keywords were used to identify the related publications: “thyroid cancer”, “Ki-67”, “MIB-1”, “proliferative marker”, “proliferative index”, “diagnosis”, “prognostic”, “survival”. The eligible studies were selected in accordance with the following criteria: 1) studies should be published in full assays; 2) the goal of the publication was to illustrate the clinical significance of Ki-67/MIB-1 in primary thyroid cancer; 3) sufficient data were used to determine the connection between Ki-67/MIB-1 and clinicopathologic parameters; 4) when the same patient cohort was reported in different publications, only the most complete and recent study was selected in the meta-analysis.

Also, we screened the references from the reviews and identified articles.

Data extraction and assessment of study quality

Three authors (Deng-hua Pan, Dong-yue Wen and Yi-huan Luo) read the studies carefully and independently. The information of the publications was collected from each study: first author’s name, publication date, the number of patients, patient age, country, follow-up time, antibody of testing Ki-67/MIB-1, the method of detecting Ki-67/MIB-1 expression and threshold used for assessing Ki-67/MIB-1 expression positively. True positive, true negative, false positive and false negative were extracted to construct a diagnostic contingency table. Disease-free survival (DFS) or mortality or distant recurrences-free survival was used to measure the effect of Ki-67/MIB-1 expression on survival in thyroid cancer patients. The following clinical parameters were extracted to evaluate the connection between Ki-67/MIB-1 and thyroid cancer aggressiveness: age, tumor size, lymph node metastasis, metastasis status, extrathyroid extension, tumor node metastasis stage. Minimal size of patients and minimal follow-up time are not defined in this meta-analysis. Studies that met the following criteria were excluded: 1) reviews, conference papers, case reports, expertise public opinion, letters, zoopery were not included; 2) studies without sufficient information to calculate the impact of diagnosis, survival and prognosis of Ki-67/MIB-1 in primary thyroid cancer were excluded; 3) studies with duplicated data from similar or the same population were excluded. QUADAS-2 was used to assess the quality of the studies for diagnosis. Newcastle–Ottawa scale (NOS) was used to assess the quality of the studies for prognosis. The study with NOS scores ≥6 was identified as a high-quality study and the study with NOS scores <6 was considered as a low-quality study.

Statistical methods

According to the cut-off values, Ki-67/MIB-1 expression was divided into positive and negative groups. The pooled
sensitivity and specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR−), diagnostic odds ratio (DOR) and the area under the symmetric receiver operating characteristic curve were used to measure the diagnosis of Ki-67/MIB-1 in thyroid cancer. The odds ratio (OR) and 95% confidence intervals (CIs) were used to estimate the relationship between Ki-67/MIB-1 and clinicopathologic parameters in thyroid cancer patients. When the OR was >1, it indicated that high Ki-67/MIB-1 was a risk factor in thyroid cancer. Hazard ratio (HR) and 95% CI were calculated to measure the effect of Ki-67/MIB-1 on prognosis. Also, when the HR was >1, it indicated that high level of Ki-67/MIB-1 was related to worse survival in thyroid cancer patients.

Further, Cochran’s Q-test was performed to measure heterogeneity. Also, I² was calculated to assess the inconsistency of the studies. When I² was over 50% or chi-squared P-value was >0.1, fixed-effect meta-analysis was performed; otherwise, random-effect meta-analysis was used when there was less or no heterogeneity (when I² was less than 50% or chi-squared P-value was <0.1). MetaDiSc was used to measure the diagnosis of Ki-67/MIB-1 in thyroid cancer. STATA12.0 was used to calculate the progression and prognosis of Ki-67/MIB-1 in thyroid cancer. The potential publication bias was investigated through funnel plot and by computation of Begg’s test. When the P-value was <0.05, it was considered significant.

Results

Description of studies

The flow chart of search process is presented in Figure 1. One thousand one hundred and sixty-two relevant studies were identified. After reviewing the abstracts and full text, only 51 studies were found to be eligible and were included in the meta-analysis. The characteristics of these articles are summarized in Tables 1–3. Table 1 gives the main information of the studies included in diagnosis. Thirty-seven studies were included in qualitative synthesis (n=51) and thyroid cancer (n=155)
<table>
<thead>
<tr>
<th>First author</th>
<th>Country</th>
<th>Patients</th>
<th>Type of cancer</th>
<th>Type of control</th>
<th>Antibody</th>
<th>Test method</th>
<th>Threshold, %</th>
<th>TP</th>
<th>FP</th>
<th>FN</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horii et al.</td>
<td>Japan</td>
<td>50</td>
<td>PTC, FTC, ATC</td>
<td>Adenomatous goiter, FA</td>
<td>Ki-67 monoclonal antibody</td>
<td>IHC</td>
<td>20</td>
<td>276</td>
<td>2</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Huang et al.</td>
<td>China</td>
<td>160</td>
<td>PTC</td>
<td>FA, goiter</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>5</td>
<td>103</td>
<td>9</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>Chou et al.</td>
<td>Taiwan</td>
<td>46</td>
<td>PTC</td>
<td>NG, normal tissue</td>
<td>Mouse monoclonal antibody anti-Ki-67</td>
<td>IHC</td>
<td>10</td>
<td>16</td>
<td>2</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Nie et al.</td>
<td>China</td>
<td>26</td>
<td>PTC</td>
<td>TA, NG, toxic goiter</td>
<td>Anti-Ki-67</td>
<td>IHC</td>
<td>25</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Liang et al.</td>
<td>China</td>
<td>200</td>
<td>PTC</td>
<td>NG, TA</td>
<td>Ki-67</td>
<td>IHC</td>
<td>25</td>
<td>93</td>
<td>1</td>
<td>7</td>
<td>99</td>
</tr>
<tr>
<td>Gan et al.</td>
<td>China</td>
<td>135</td>
<td>PTC</td>
<td>Adjacent tissue of thyroid carcinoma, normal tissue, NG, FA</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>10</td>
<td>38</td>
<td>26</td>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>China</td>
<td>94</td>
<td>PTC, FTC, MTC, ATC</td>
<td>NG, TA</td>
<td>Ki-67</td>
<td>IHC</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>45</td>
<td>29</td>
</tr>
<tr>
<td>Shang et al.</td>
<td>China</td>
<td>100</td>
<td>PTC, FTC, OCTC</td>
<td>PTA, FTA, OCTA</td>
<td>Anti-Ki-67</td>
<td>IHC</td>
<td>1.50</td>
<td>42</td>
<td>29</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>Cui et al.</td>
<td>China</td>
<td>87</td>
<td>PTC, FTC</td>
<td>TA, normal tissue</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>10</td>
<td>35</td>
<td>3</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Feng et al.</td>
<td>China</td>
<td>199</td>
<td>PTC, FTC, MTC</td>
<td>NG, FA, adjacent tissue of thyroid carcinoma</td>
<td>Ki-67</td>
<td>IHC</td>
<td>5</td>
<td>58</td>
<td>16</td>
<td>18</td>
<td>107</td>
</tr>
<tr>
<td>Jin et al.</td>
<td>China</td>
<td>79</td>
<td>PTC, FTC, MTC, ATC</td>
<td>TA, normal thyroid gland tissue beside adenoma</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>25</td>
<td>39</td>
<td>3</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Huang et al.</td>
<td>China</td>
<td>70</td>
<td>PTC</td>
<td>Thyroid hyperplasia, TA</td>
<td>Anti-Ki-67</td>
<td>IHC</td>
<td>10</td>
<td>20</td>
<td>9</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>Li and Du</td>
<td>China</td>
<td>136</td>
<td>PTC</td>
<td>NG, NG with adenoma hyperplasia, NGWPH</td>
<td>Anti-Ki-67</td>
<td>IHC</td>
<td>10</td>
<td>55</td>
<td>27</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>Hao et al.</td>
<td>China</td>
<td>236</td>
<td>PTC</td>
<td>NG, TA</td>
<td>Ki-67</td>
<td>IHC</td>
<td>ND</td>
<td>17</td>
<td>2</td>
<td>101</td>
<td>116</td>
</tr>
<tr>
<td>Song et al.</td>
<td>China</td>
<td>592</td>
<td>PTC</td>
<td>NG, nonmalignant follicular adenoma</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>10</td>
<td>179</td>
<td>56</td>
<td>262</td>
<td>95</td>
</tr>
<tr>
<td>Tan et al.</td>
<td>Turkey</td>
<td>39</td>
<td>PTC, FTC</td>
<td>FA</td>
<td>Ki-67</td>
<td>IHC</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Zeng et al.</td>
<td>China</td>
<td>108</td>
<td>TC</td>
<td>Normal tissue</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>5</td>
<td>46</td>
<td>11</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>Qin et al.</td>
<td>China</td>
<td>120</td>
<td>PTC</td>
<td>NG, normal tissue</td>
<td>Anti-Ki-67</td>
<td>IHC</td>
<td>10</td>
<td>25</td>
<td>78</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Zhao et al.</td>
<td>China</td>
<td>129</td>
<td>PTC</td>
<td>Multinodular goiters, follicular adenomas, Hashimoto’s thyroiditis</td>
<td>Ki-67</td>
<td>IHC</td>
<td>ND</td>
<td>34</td>
<td>22</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>Jiang et al.</td>
<td>China</td>
<td>63</td>
<td>PTC</td>
<td>TA</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>10</td>
<td>23</td>
<td>2</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>Yao et al.</td>
<td>China</td>
<td>103</td>
<td>PTC, FTC, MTC, ATC</td>
<td>Normal tissue, NG, FA</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>25</td>
<td>60</td>
<td>10</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>Yang et al.</td>
<td>China</td>
<td>55</td>
<td>FTC</td>
<td>FA</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>5</td>
<td>15</td>
<td>6</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Li et al.</td>
<td>China</td>
<td>246</td>
<td>PTC</td>
<td>Normal tissue, NG, NGWPH</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>10</td>
<td>68</td>
<td>22</td>
<td>8</td>
<td>68</td>
</tr>
<tr>
<td>Shi et al.</td>
<td>China</td>
<td>130</td>
<td>TC</td>
<td>TA, NG, normal thyroid gland tissue</td>
<td>Rabbit monoclonal antibody</td>
<td>IHC</td>
<td>10</td>
<td>42</td>
<td>10</td>
<td>8</td>
<td>70</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>China</td>
<td>146</td>
<td>PTC</td>
<td>Multinodular goiter</td>
<td>Ki-67</td>
<td>IHC</td>
<td>1.65</td>
<td>57</td>
<td>9</td>
<td>19</td>
<td>61</td>
</tr>
<tr>
<td>Maruta et al.</td>
<td>Japan</td>
<td>108</td>
<td>FC</td>
<td>FA</td>
<td>Anti-Ki-67</td>
<td>IHC</td>
<td>50</td>
<td>47</td>
<td>35</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>Guo et al.</td>
<td>China</td>
<td>117</td>
<td>PTC, FTC, ATC</td>
<td>TA, normal thyroid tissues</td>
<td>Anti-Ki-67</td>
<td>IHC</td>
<td>10</td>
<td>62</td>
<td>2</td>
<td>87</td>
<td>30</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>China</td>
<td>33</td>
<td>PTC</td>
<td>Hyalinizing trabecular tumor</td>
<td>MIB-1</td>
<td>IHC</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Zhou et al.</td>
<td>China</td>
<td>120</td>
<td>PTC</td>
<td>TA, NG, Hashimoto’s thyroiditis</td>
<td>Anti-Ki-67</td>
<td>IHC</td>
<td>25</td>
<td>34</td>
<td>6</td>
<td>46</td>
<td>34</td>
</tr>
<tr>
<td>Li et al.</td>
<td>China</td>
<td>370</td>
<td>PTC</td>
<td>Benign thyroid nodule</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>1.00</td>
<td>112</td>
<td>48</td>
<td>68</td>
<td>142</td>
</tr>
<tr>
<td>Xu et al.</td>
<td>China</td>
<td>62</td>
<td>PTC</td>
<td>Thyroid benign tumor</td>
<td>Ki-67</td>
<td>IHC</td>
<td>5</td>
<td>32</td>
<td>3</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>China</td>
<td>95</td>
<td>PTC</td>
<td>NGWPH</td>
<td>Ki-67</td>
<td>IHC</td>
<td>10</td>
<td>26</td>
<td>44</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>Zhou et al.</td>
<td>China</td>
<td>158</td>
<td>PTC, FTC, ATC</td>
<td>TA, NG, Hashimoto’s thyroiditis</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>25.00</td>
<td>50</td>
<td>7</td>
<td>58</td>
<td>43</td>
</tr>
<tr>
<td>Zhu et al.</td>
<td>China</td>
<td>96</td>
<td>PTC</td>
<td>Thyroid hyperplasia</td>
<td>Anti-Ki-67</td>
<td>IHC</td>
<td>5</td>
<td>40</td>
<td>10</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Li and Pu</td>
<td>China</td>
<td>150</td>
<td>PTC</td>
<td>Follicular adenoma, normal tissue</td>
<td>Ki-67</td>
<td>IHC</td>
<td>5</td>
<td>18</td>
<td>9</td>
<td>32</td>
<td>91</td>
</tr>
<tr>
<td>Li and Zhang</td>
<td>China</td>
<td>120</td>
<td>PTC</td>
<td>TA, NG, normal tissue</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>10</td>
<td>25</td>
<td>8</td>
<td>5</td>
<td>82</td>
</tr>
<tr>
<td>Feng and Wang</td>
<td>China</td>
<td>60</td>
<td>MTC</td>
<td>Adjacent tissue of thyroid carcinoma</td>
<td>Mouse monoclonal antibody</td>
<td>IHC</td>
<td>1</td>
<td>36</td>
<td>0</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

Abbreviations: ATC, anaplastic thyroid cancer; FA, follicular adenoma; FN, false negative; FP, false positive; FTA, follicular thyroid adenoma; FTCC, follicular carcinoma; FvPTC, follicular variant of papillary thyroid carcinoma; IHC, immunohistochemistry; MTC, medullary thyroid carcinoma; ND, no data; NG, nodular goiter; NGWPH, nodular goiter with papillary hyperplasia; PTA, papillary thyroid adenoma; OCTA, oxyphilical cell thyroid adenoma; OCTC, oxyphilical cell thyroid carcinoma; PTC, papillary thyroid carcinoma; PTMC, papillary thyroid microcarcinoma; TA, thyroid adenoma; TP, true positive; TN, true negative.
Table 2 The relationships between Ki-67/MiB-1 expression and clinicopathologic parameters

<table>
<thead>
<tr>
<th>Clinicopathologic parameters</th>
<th>Studies (n)</th>
<th>Test group</th>
<th>Control group</th>
<th>Heterogeneity</th>
<th>Meta-analysis model</th>
<th>OR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>P, %</td>
<td>P-value</td>
<td></td>
</tr>
<tr>
<td>Age (45 years)</td>
<td>10</td>
<td>124</td>
<td>303</td>
<td>91</td>
<td>239</td>
<td>0.00</td>
<td>0.806</td>
</tr>
<tr>
<td>Tumor size (4 cm)</td>
<td>5</td>
<td>35</td>
<td>165</td>
<td>76</td>
<td>730</td>
<td>2.00</td>
<td>0.395</td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td>15</td>
<td>233</td>
<td>345</td>
<td>226</td>
<td>509</td>
<td>50.20</td>
<td>0.014</td>
</tr>
<tr>
<td>Metastasis status</td>
<td>7</td>
<td>75</td>
<td>133</td>
<td>121</td>
<td>920</td>
<td>59.80</td>
<td>0.021</td>
</tr>
<tr>
<td>TNM stage</td>
<td>7</td>
<td>113</td>
<td>146</td>
<td>103</td>
<td>247</td>
<td>0.00</td>
<td>0.96</td>
</tr>
<tr>
<td>Extrathyroid extension</td>
<td>4</td>
<td>64</td>
<td>225</td>
<td>79</td>
<td>413</td>
<td>31.30</td>
<td>0.224</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; OR, odds ratio; TNM, tumor node metastasis.

Table 3 The features of the studies relating Ki-67/MiB-1 to patients’ prognosis

<table>
<thead>
<tr>
<th>Type of survival</th>
<th>First author</th>
<th>Country</th>
<th>Year</th>
<th>Patients</th>
<th>Age</th>
<th>Median FU</th>
<th>Test method</th>
<th>Antibody</th>
<th>Threshold, %</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease-free survival (DFS)</td>
<td>Kjellman et al<sup>1</sup></td>
<td>Sweden</td>
<td>2003</td>
<td>30</td>
<td>62</td>
<td>146 months</td>
<td>IHC</td>
<td>MiB-1</td>
<td>1.85</td>
<td>4.93 (1.91–12.77)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Ito et al<sup>12</sup></td>
<td>Japan</td>
<td>2010</td>
<td>371</td>
<td>49</td>
<td>125 months</td>
<td>IHC</td>
<td>Anti Ki-67 antibody</td>
<td>1</td>
<td>4.13 (2.19–7.75)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Miyauchi et al<sup>22</sup></td>
<td>Japan</td>
<td>2013</td>
<td>390</td>
<td>50.8</td>
<td>88 months</td>
<td>IHC</td>
<td>Anti Ki-67 antibody (clone MiB-1)</td>
<td>>10</td>
<td>15.33 (4.13–56.96)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mortality</td>
<td>Wang et al<sup>23</sup></td>
<td>Sweden</td>
<td>1996</td>
<td>21</td>
<td>53</td>
<td>10.5 years</td>
<td>IHC</td>
<td>Ki-67</td>
<td>5</td>
<td>0.514 (0.086–3.089)</td>
<td>0.467</td>
</tr>
<tr>
<td></td>
<td>Tisel et al<sup>46</sup></td>
<td>Sweden</td>
<td>2003</td>
<td>36</td>
<td>45</td>
<td>20 years</td>
<td>IHC</td>
<td>Anti-Ki67</td>
<td>1</td>
<td>2.12 (0.862–5.233)</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td>Ito et al<sup>12</sup></td>
<td>Japan</td>
<td>2010</td>
<td>371</td>
<td>49</td>
<td>125 months</td>
<td>IHC</td>
<td>Anti Ki-67 antibody</td>
<td>3</td>
<td>25.64 (2.49–250)</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Chen et al<sup>20</sup></td>
<td>USA</td>
<td>2011</td>
<td>9</td>
<td>64.8</td>
<td>32.5 months</td>
<td>IHC</td>
<td>MiB-1</td>
<td>5</td>
<td>0.088 (0.008–1.026)</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td>Miyauchi et al<sup>22</sup></td>
<td>Japan</td>
<td>2013</td>
<td>390</td>
<td>50.8</td>
<td>88 months</td>
<td>IHC</td>
<td>Anti Ki-67 antibody (clone MiB-1)</td>
<td>>10</td>
<td>34.08 (3.81–305.16)</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Gnemmi et al<sup>24</sup></td>
<td>France</td>
<td>2014</td>
<td>82</td>
<td>ND</td>
<td>68 months</td>
<td>IHC</td>
<td>MiB-1</td>
<td>4</td>
<td>6.126 (1.662–22.574)</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Jovanovic et al<sup>23</sup></td>
<td>Macedonia</td>
<td>2015</td>
<td>20</td>
<td>51.2</td>
<td>73 months</td>
<td>IHC</td>
<td>MiB-1</td>
<td>6.50</td>
<td>24.25 (3.63–161.99)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Feng and Wang<sup>40</sup></td>
<td>China</td>
<td>2014</td>
<td>42</td>
<td>53.2</td>
<td>7.8 years</td>
<td>IHC</td>
<td>MiB-1</td>
<td>1</td>
<td>2.28 (0.61–8.55)</td>
<td>0.228</td>
</tr>
<tr>
<td>Distant recurrences-free survival (DRFS)</td>
<td>Gnemmi et al<sup>24</sup></td>
<td>France</td>
<td>2014</td>
<td>82</td>
<td>ND</td>
<td>68 months</td>
<td>IHC</td>
<td>MiB-1</td>
<td>4</td>
<td>7.322 (3.141–17.07)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; DFS, disease-free survival; DRFS, distant recurrences-free survival; FU, follow-up; HR, hazard ratio; IHC, immunohistochemistry; ND, no data.
detecting the diagnostic value of Ki-67/MIB-1 in thyroid cancer were included in our analysis, including 4,818 samples (2,601 cases and 2,217 controls). The quality assessment of the included studies in diagnosis is shown in Figure 2. The risks of bias in “index test” and “reference standard” were unclear in this meta-analysis. Table 2 shows the correlation between clinicopathologic parameters and Ki-67/MIB-1, including 4,375 samples (1,317 cases and 3,058 controls). As shown in Table 3, a total of 10 studies reporting the relation between Ki-67/MIB-1 and thyroid cancer patient survival were included, of which three studies had data on DFS, seven on mortality and only one on distant recurrences-free survival (DRFS). The studies included in survival analysis had 1,083 samples. The age of patients ranged from 45 to 64.8 years, and the median follow-up time ranged from 68 months to 20 years. Immunohistochemistry (IHC) was used to detect the expression of Ki-67/MIB-1 in all the included studies. The cut-off value ranged from 1% to 10%. The quality assessment of the studies included in prognosis is shown in Table 4.

Effect of Ki-67/MIB-1 on diagnosis

Due to heterogeneity, random-effect model was used to calculate the overall performance of Ki-67/MIB-1 in thyroid tissues in diagnosing thyroid cancer. Ki-67/MIB-1 was found to be a valuable diagnostic factor for thyroid cancer. The pooled sensitivity was 0.61 (95% CI: 0.59–0.63; Figure 3A) and specificity was 0.75 (95% CI: 0.74–0.77; Figure 3B). The pooled LR+ was 3.19 (95% CI: 2.30–4.42; Figure 3C) and the pooled LR− was 0.43 (95% CI: 0.35–0.54; Figure 3D). The pooled DOR of Ki-67/MIB-1 was 8.54 (95% CI: 5.03–14.49; Figure 4). The area under the symmetric receiver operating characteristic curve was 0.804 (standard error =0.031; Figure 5).

For Ki-67/MIB-1, the summary indexes of 37 studies are displayed in forest plots. High heterogeneity was found in sensitivity (I^2=94.5%, $P<0.001$) and specificity (I^2=94.7%, $P<0.001$). Also, subgroup analysis was performed to identify the possible reasons for heterogeneity. There were 12 studies with Ki-67/MIB-1 cut-off value \leq5%, which revealed a pooled sensitivity of 0.70 (95% CI: 0.67–0.73), specificity of 0.80 (95% CI: 0.77–0.83) and DOR of 7.49 (95% CI: 3.61–15.52). Fifteen studies had Ki-67/MIB-1 cut-off value of 10%, a pooled sensitivity of 0.56 (95% CI: 0.53–0.59), specificity of 0.67 (95% CI: 0.63–0.70) and DOR of 7.73 (95% CI: 2.68–22.30). There were eight studies with a cut-off value $>10\%$, and the pooled sensitivity, specificity and DOR were 0.78 (95% CI: 0.75–0.81), 0.79 (95% CI: 0.74–0.84) and 15.40 (95% CI: 3.41–69.62), respectively. In the subgroup analysis of PTC, the results showed that the pooled sensitivity, specificity and DOR were 0.63 (95% CI: 0.60–0.65), 0.74 (95% CI: 0.72–0.76) and 8.22 (95% CI: 4.08–16.56), respectively.

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Selection</th>
<th>Comparability</th>
<th>Outcome</th>
<th>Total score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kjellman et al1</td>
<td>2003</td>
<td>* * *</td>
<td>* * *</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Feng and Wang2</td>
<td>2015</td>
<td>* * *</td>
<td>* *</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Ito et al12</td>
<td>2010</td>
<td>* * *</td>
<td>* * *</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Jovanovic et al13</td>
<td>2015</td>
<td>* * *</td>
<td>* *</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Gnemmi et al14</td>
<td>2014</td>
<td>* * *</td>
<td>* *</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Mlyauchi et al21</td>
<td>2013</td>
<td>* * *</td>
<td>* *</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chen et al20</td>
<td>2011</td>
<td>* * *</td>
<td>* * *</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Wang et al22</td>
<td>1996</td>
<td>* * *</td>
<td>* * *</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Tisell et al24</td>
<td>2003</td>
<td>* * *</td>
<td>* *</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Notes: A: representative of the exposed cohort; B: selection of the nonexposed cohort; C: ascertainment of exposure; D: demonstration that outcome of interest was not present at the start of study; E: comparability of cohorts on the basis of the design or analysis; F: assessment of outcome; G: adequacy of follow-up for outcomes to occur (≥ 2 years or outcomes occurred in all patients); H: adequacy of follow-up of cohorts (follow-up rate \geq75%).

Abbreviation: NOS, Newcastle–Ottawa scale.
OncoTargets and Therapy downloaded from https://www.dovepress.com/ by 54.70.40.11 on 01-Apr-2019
For personal use only.
Powered by TCPDF (www.tcpdf.org)

2.48–9.17), respectively (Table S1).

Table 2 shows the main results of the effects value of Ki-67/MiB-1 on clinicopathologic parameters in thyroid cancer.

Figure 3 Forest plots for the accuracy of Ki-67/MiB-1 for the diagnosis of thyroid cancer.

Notes: (A) Sensitivity; (B) specificity; (C) positive LR (LR+); (D) negative LR (LR−).

Associations of Ki-67/MiB-1 with clinicopathologic parameters

Table 2 shows the main results of the effects value of Ki-67/MiB-1 on clinicopathologic parameters in thyroid cancer.

Figure 3 Forest plots for the accuracy of Ki-67/MiB-1 for the diagnosis of thyroid cancer.

Notes: (A) Sensitivity; (B) specificity; (C) positive LR (LR+); (D) negative LR (LR−).

Abbreviations: CI, confidence interval; df, degrees of freedom; LR, likelihood ratio.

papillary thyroid microcarcinoma (PTMC), the results showed that the pooled sensitivity, specificity and DOR were 0.45 (95% CI: 0.37–0.52), 0.86 (95% CI: 0.77–0.92) and 4.76 (95% CI: 2.48–9.17), respectively (Table S1).
patients. The results suggested that older patients (≥45 years old) had high level of Ki-67/MIB-1 with a pooled OR of 1.71 (95% CI: 1.14–2.57; P=0.010; I²=0.00%, P=0.806; Figure 6A). The level of Ki-67/MIB-1 was higher in large tumor size (>4 cm) than in small-sized tumor (<4 cm; pooled OR =1.86, 95% CI: 1.17–2.96, P=0.008; I²=2.00%, P=0.395; Figure 6B). Overall, 15 studies had data to estimate the relationship between Ki-67/MIB-1 and lymph node metastasis. The pooled OR estimated from 15 studies indicated that Ki-67/MIB-1 was lower in negative lymph node metastasis than in positive lymph node metastasis (pooled OR =2.49, 95% CI: 1.42–4.39, P=0.002; I²=50.20%, P=0.014; Figure 6C). Also, the association between Ki-67/MIB-1 and metastasis status was calculated and the combined OR was 6.96 (95% CI: 2.46–19.69, P<0.001; Figure 6D). The combined OR for tumor node metastasis stage was 6.56 (95% CI: 3.80–11.33, P<0.001; I²=0.00%, P=0.960), suggesting that overexpression of Ki-67/MIB-1 was significantly correlated with advanced stage (Figure 6E). In addition, four studies provided insufficient information to estimate the effect of extrathyroid extension. The pooled OR was 1.91 (95% CI: 1.27–2.87, P=0.002; Figure 6F).

Impact of Ki-67/MIB-1 expression on survival in thyroid cancer

Furthermore, three studies assessing the association of Ki-67/MIB-1 expression on DFS were identified in this meta-analysis. The combined HR was 5.19. It was demonstrated that overexpression of Ki-67/MIB-1 was associated with worse DFS in thyroid cancer by fixed-effect model (95% CI: 3.18–8.46, P<0.001; I²=36.1%, P=0.209; Figure 7). The meta-analysis showed overexpression of Ki-67/MIB-1 had effect on mortality (HR =3.56, 95% CI: 1.17–10.83, P=0.025) in eight studies, with heterogeneity (I²=73.5%, P<0.001; Figure 8). Worsened mortality was found among patients with Ki-67/MIB-1 cut-off value >10% (HR =34.08, 95% CI: 3.81–305.00, P=0.002) by subgroup analysis. Nevertheless, when Ki-67/MIB-1 was more than 5%, the patients were afflicted with poor mortality (HR =28.06, 95% CI: 6.68–117.87, P<0.001) in thyroid cancer. No connection was found between Ki-67/MIB-1 and thyroid cancer when Ki-67/MIB-1 was less than 5% (HR =1.98, 95% CI: 0.65–6.06, P=0.230). In subgroup analysis, no significant association was found between medullary thyroid cancer and mortality (HR =0.96, 95% CI: 0.24–2.16). In addition,
A Study ID	OR (95% CI)	% weight
Tiselit et al. | 9.82 (1.04–92.78) | 1.69
Lee et al. | 2.66 (0.12–58.12) | 1.72
Jin et al. | 3.25 (0.80–13.17) | 6.82
Feng et al. | 1.02 (0.35–2.94) | 18.66
Heikkila et al. | 2.18 (0.22–21.70) | 3.12
Wang et al. | 1.47 (0.44–4.93) | 12.06
Zhou et al. | 1.20 (0.56–2.58) | 33.39
Li and Pu | 1.56 (0.15–16.46) | 3.32
Li and Zhang | 1.76 (0.53–5.86) | 11.30
Feng and Wang | 2.40 (0.65–8.90) | 7.91
Overall (I^2=0.0%, P=0.806) | 1.71 (1.14–2.57) | 100

B Study ID	OR (95% CI)	% weight
Tiselit et al. | 4.44 (0.68–28.86) | 4.23
Lee et al. | 4.52 (0.17–121.33) | 0.83
Ito et al. | 2.95 (0.86–10.16) | 9.21
Heikkila et al. | 0.61 (0.15–2.49) | 20.85
Miyachi et al. | 1.91 (1.09–3.37) | 64.88
Overall (I^2=2.0%, P=0.396) | 1.86 (1.17–2.96) | 100

C Study ID	OR (95% CI)	% weight
Lim et al. | 0.92 (0.34–2.49) | 10.08
Lee et al. | 1.19 (0.05–26.97) | 2.68
Jin et al. | 11.13 (1.34–92.60) | 4.79
Feng et al. | 3.80 (1.24–11.64) | 9.31
Heikkila et al. | 17.67 (0.84–372.35) | 2.78
Miao et al. | 3.37 (0.97–11.67) | 8.59
Yao et al. | 2.18 (0.48–9.96) | 7.12
Shi et al. | 0.32 (0.04–2.86) | 4.56
Wang et al. | 7.29 (1.39–38.15) | 6.49
Xu et al. | 3.14 (0.59–16.62) | 6.45
Zhou et al. | 3.94 (1.59–9.75) | 10.66
Ito et al. | 1.96 (0.53–7.28) | 8.19
Li and Zhang | 5.34 (0.26–108.26) | 2.84
Li and Pu | 7.31 (1.76–30.42) | 7.58
Feng and Wang | 0.24 (0.06–0.95) | 7.87
Overall (I^2=50.2%, P=0.014) | 2.49 (1.42–4.39) | 100

D Study ID	OR (95% CI)	% weight
Ito et al. | 11.77 (2.11–65.67) | 14.93
Heikkila et al. | 0.46 (0.05–4.58) | 11.28
Miao et al. | 60.79 (3.18–1160.0) | 8.33
Zong et al. | 21.00 (5.24–84.22) | 17.39
Miyachi et al. | 2.03 (0.59–6.91) | 18.67
Manata et al. | 18.47 (2.18–156.63) | 12.21
Ito et al. | 5.74 (1.39–23.63) | 17.19
Overall (I^2=59.8%, P=0.021) | 6.96 (2.46–19.69) | 100

Figure 6 (Continued)
no significant relationship was observed between PTC and mortality (HR = 1.47, 95% CI: 2.23–5.18; Table S2).

Publication bias
The Begg’s test and funnel plot showed that there was no evidence of publication bias present among all the analyses in our meta-analysis (all P>0.05; Figures 9 and 10).

Discussion
Cell proliferative activity is regarded as an important factor for evaluating the biologic behavior of cancer cells. It is a key process in the development of tumors when the balance between cell death and proliferation is destroyed. We used IHC to detect cell cycle-specific antigens and this method can assess the proliferative activity of cells. Ki-67/MIB-1 is the most widely used marker for assessing the proliferative capacity of tumor cells. Increased expression of Ki-67/MIB-1 has been linked to increased invasiveness in many cancers. Many meta-analyses have shown that high expression of Ki-67/MIB-1 contributed to poor survival in many tumors. However, there is no consensus on the association between high level of Ki-67/MIB-1 and thyroid cancer at present. Meta-analysis is a systematical method applied widely to evaluate the prognostic indicators in different trials. Thus, in this meta-analysis, we explored the diagnosis and prognosis of Ki-67/MIB-1 expression in thyroid cancer.

In our study, we found the valuable predicting effect of Ki-67/MIB-1 for the diagnosis of thyroid cancer with a high accuracy for Chinese. In clinical practice, detecting Ki-67/MIB-1 expression may contribute to diagnosing thyroid cancer when combined with clinical symptoms, laboratory examinations and other radiologic imaging. Our analysis demonstrated that patients with overexpression of Ki-67/MIB-1 seemed to have a poor survival in thyroid cancer. Also, Ki-67/MIB-1 was found to be associated with tumor size, lymph node metastasis, metastasis status, extrathyroid extension and other clinicopathologic parameters. However, the mechanism of Ki-67/MIB-1 in thyroid cancer is still unclear. Ki-67/MIB-1 as a cellular marker has a positive effect on cell proliferation. Ki-67/MIB-1 expression detected by IHC can evaluate tumor cell proliferation. A previous study confirmed that Sp1 plays an important role in regulation of Ki-67/MIB-1 gene expression. Another study pointed out that E2F2 transcription factor was positively correlated with Ki-67/MIB-1 expression in human glioblastoma and E2F1–3 factors are the transcriptional activator in tumor progression and the retinoblastoma tumor suppressor.
Ki-67/MiB-1 expression in thyroid cancer

which contributed to the heterogeneity. Also, various cut-off values were used to define thyroid cancer with Ki-67/MiB-1 positive expression by different investigators, which potentially contributed to the heterogeneity. So, it is difficult to apply a standard critical value in clinical practice. Spyratos et al. found that few tumors with low proliferation rate were under misclassification when the cut-off value of Ki-67/MiB-1 was 10%, and it is acceptable to identify a highly proliferative tumor with a Ki-67/MiB-1 cut-off value of 25%. In this meta-analysis, the cut-off values of Ki-67/MiB-1 ranged from 0.5%

pathway regulates E2F1–3 factors which could control cellular proliferation.75

In this meta-analysis, heterogeneity existed among the studies. Heterogeneity was still a potential problem which affected the meta-analysis results, though random-effect models were used to analyze the data. Meanwhile, in order to reduce heterogeneity, only the studies with the method of IHC to detect Ki-67/MiB-1 were included in this meta-analysis. However, evaluation standards, study location, number of patients, sex and age of patients were different,

Figure 7 Meta-analysis evaluating the association between Ki-67/MiB-1 and DFS (fixed-effect analysis).
Note: The combined fixed-effect HR was 5.19 (95% CI: 3.18–8.46, \(P\leq 0.001\)), indicating that high level of Ki-67/MiB-1 was associated with worse DFS.
Abbreviations: CI, confidence interval; DFS, disease-free survival; HR, hazard ratio.

Figure 8 Meta-analysis evaluating the association between Ki-67/MiB-1 and mortality (random-effect analysis).
Notes: The pooled fixed-effect HR was 3.56 (95% CI: 1.17–10.83, \(P=0.025\)), indicating that high level of Ki-67/MiB-1 was associated with increased risk of mortality. Weights are from random-effect analysis.
Abbreviations: CI, confidence interval; HR, hazard ratio.
Figure 9 Assessment of publication bias for clinicopathologic parameters.

Notes: (A) Age; (B) tumor size; (C) lymph node metastasis; (D) metastasis status; (E) TNM stage; (F) extrathyroid extension.

Abbreviations: OR, odds ratio; SE, standard error; TNM, tumor node metastasis.

To 25%. Therefore, different Ki-67/MIB-1 cut-offs may cause heterogeneity. Higher sensitivity, specificity and DOR were found in patients with cut-off value >10% by diagnostic subgroup analysis. Furthermore, those patients may have worse mortality. Given the small size of studies included in mortality analysis, further research with larger sample size would be needed to explore the impact of KI-67/MIB-1 on mortality. Besides, HRs were extracted from survival curves.
or calculated from data which might be less than another variance. Most of the studies included in diagnosis were from China; however, most of the studies related to DFS and mortality were from outside of China. We found that Ki-67/MIB-1 had a diagnostic value in Chinese. However, we did not have enough data to calculate the relationship between Ki-67/MIB-1 and mortality for Chinese. So, regional variation may become a score of heterogeneity. Besides, due to several types of thyroid cancer dealt with in the same study, we conducted subgroup analysis in this meta-analysis. Ki-67/MIB-1 had diagnostic effect on different thyroid cancer types. We did not find significant association between Ki-67/MIB-1 and mortality for Chinese. So, regional variation may become a score of heterogeneity. Besides, due to several types of thyroid cancer dealt with in the same study, we conducted subgroup analysis in this meta-analysis. Ki-67/MIB-1 had diagnostic effect on different thyroid cancer types. We did not find significant association between Ki-67/MIB-1 and different thyroid cancer types.

Despite the above limitations, the current meta-analysis proves the associations between high Ki-67/MIB-1 and tumor deterioration, poor DFS and increased mortality in patients with thyroid cancer. In conclusion, we showed that high expression of Ki-67/MIB-1 was significantly connected with tumor size, lymph metastasis, metastasis status, extrathyroid extension and poor prognosis of thyroid cancer in this study.

Conclusion
Our meta-analysis shows that Ki-67/MIB-1 may be a biomarker for clinical deterioration in Chinese and has an effect on prognosis in thyroid cancer among non-Chinese. Therefore, detection of Ki-67/MIB-1 in the clinic will be beneficial to the treatment and prognostic assessment for thyroid cancer patients. However, well-designed prospective studies are necessary to further confirm our results.

Acknowledgments
The study was supported by funds from the Guangxi Scientific Research and Technology Development Plan (1598011-4). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the paper.

Disclosure
The authors report no conflicts of interest in this work.

References
Supplementary materials

Table S1 Subgroup analysis evaluating the diagnostic value of Ki-67/MiB-1 in thyroid cancer

<table>
<thead>
<tr>
<th>Groups</th>
<th>No of studies</th>
<th>Pooled sensitivity (95% CI)</th>
<th>Pooled specificity (95% CI)</th>
<th>DOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-off, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤5</td>
<td>12</td>
<td>0.70 (0.67–0.73)</td>
<td>0.80 (0.77–0.83)</td>
<td>7.49 (3.61–15.52)</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>0.56 (0.53–0.59)</td>
<td>0.67 (0.63–0.70)</td>
<td>7.73 (2.68–22.30)</td>
</tr>
<tr>
<td>>10</td>
<td>8</td>
<td>0.78 (0.75–0.81)</td>
<td>0.79 (0.74–0.84)</td>
<td>15.40 (3.41–69.62)</td>
</tr>
<tr>
<td>Types</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTC</td>
<td>21</td>
<td>0.63 (0.60–0.65)</td>
<td>0.74 (0.72–0.76)</td>
<td>8.22 (4.08–16.56)</td>
</tr>
<tr>
<td>PTMC</td>
<td>2</td>
<td>0.45 (0.37–0.52)</td>
<td>0.86 (0.77–0.92)</td>
<td>4.76 (2.48–9.17)</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; DOR, diagnostic odds ratio; PTC, papillary thyroid carcinoma; PTMC, papillary thyroid microcarcinoma.

Table S2 Subgroup analysis evaluating the prognostic value of Ki-67/MiB-1 for mortality in thyroid cancer

<table>
<thead>
<tr>
<th>Groups</th>
<th>Pooled HR</th>
<th>95% CI</th>
<th>Heterogeneity test</th>
<th>Statistical method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univariate cut-off, %</td>
<td></td>
<td></td>
<td>χ², %</td>
<td>P-value</td>
</tr>
<tr>
<td>≤5</td>
<td>1.98</td>
<td>0.65–6.06</td>
<td>68.80</td>
<td>0.007</td>
</tr>
<tr>
<td>>5</td>
<td>28.06</td>
<td>6.68–117.87</td>
<td>0.00</td>
<td>0.818</td>
</tr>
<tr>
<td><10</td>
<td>2.73</td>
<td>0.89–8.38</td>
<td>72.20</td>
<td>0.001</td>
</tr>
<tr>
<td>Types</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTC</td>
<td>1.47</td>
<td>2.23–5.18</td>
<td>87.10</td>
<td><0.001</td>
</tr>
<tr>
<td>MTC</td>
<td>0.96</td>
<td>0.24–2.16</td>
<td>65.50</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; HR, hazard ratio; MTC, medullary thyroid carcinoma; PTC, papillary thyroid carcinoma.