Forced exercise attenuates neuropathic pain in chronic constriction injury of male rat: an investigation of oxidative stress and inflammation

Hossein Ali Safakhah1,2
Nasroallah Moradi Kor2,3
Atiyeh Bazargani3
Ahmad Reza Bandegi4
Hamid Gholami Pourbadie5
Baharak Khoshkolgh-Sima6
Ali Ghanbari2

1Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; 2Research Center of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; 3Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; 4Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; 5Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran

Background and objective: Initial peripheral/central nerve injuries, such as chronic constriction injury (CCI)/spinal cord injury, are often compounded by secondary mechanisms, including inflammation and oxidative stress, which may lead to chronic neuropathic pain characterized by hyperalgesia or allodynia. On the other hand, exercise as a behavioral and non-pharmacological treatment has been shown to alleviate chronic neuropathic pain. Therefore, this study was conducted to examine whether or not exercise reduces neuropathic pain through modifying oxidative stress and inflammation in chronic constriction injury of the sciatic nerve.

Materials and methods: Wistar male rats weighing 200±20 g were randomly divided into five groups (normal, sham, CCI, pre-CCI exercise, and post-CCI exercise group). Sciatic nerve of anesthetized rats was loosely ligated to induce CCI, and they were then housed in separate cages. The rats ran on treadmill at a moderate speed for 3 weeks. Mechanical allodynia and thermal hyperalgesia were determined using von Frey filament and plantar test, respectively. Tumor necrosis factor-alpha (TNF-α) assayed in the cerebrospinal fluid, malondialdehyde, and total antioxidant capacity were measured in the serum using Western blot test, thiobarbituric acid, and ferric reducing ability of plasma (FRAP), respectively.

Results: The mechanical allodynia (P<0.024) and thermal hyperalgesia (P=0.002) in the CCI group were higher than those in the sham group. Exercise after CCI reduced (P=0.004) mechanical allodynia and thermal hyperalgesia (P=0.025) compared with the CCI group. Moreover, the level of FRAP in the CCI group was (P=0.001) lower than that in the sham group, and post-CCI exercise reversed FRAP amount toward the control level (P=0.019). The amount of malondialdehyde did not differ between groups. Level of TNF-α increased in the CCI group (P=0.0002) compared with sham group and post-CCI exercise could reverse it toward the level of control (P=0.005).

Conclusion: Post CCI-exercise but not pre CCI-exercise reduces CCI-induced neuropathic pain. One of the possible involved mechanisms is increasing the total antioxidant capacity and reducing the amount of TNF-α.

Keywords: CCI, TNF-α, treadmill exercise, neuropathic pain, oxidative stress

Introduction

Neuropathic pain is an excruciating form of chronic pain that is produced by initial injuries to peripheral or central nervous systems with a complex pathophysiology. In normal situations, the pain begins when a severely painful or damaging stimulus activates primary pain sensory neurons with high activity threshold. However, the response threshold of nociceptors decreases following the neural injury, and neuropathic pain appears often with allodynia (painful response to non-painful stimuli) and hyperalgesia (increased severity of response to painful stimuli).
Neuropathic pain is divided into peripheral and central type, based on the order of injured neurons, the former is related to the injury of the first order of sensory neurons, and the latter is related to the second or third order neurons depending on whether the spinal cord or the brain is injured. Different animal models have been developed to simulate and thus study the peripheral neuropathy. Most of these models are based on procedures performed on the sciatic nerve. In this study, the chronic constriction injury (CCI) of the sciatic nerve, common method for causing peripheral neuropathy, was used to simulate the neuropathic pain.

Numerous conditions, including autoimmune diseases (e.g., multiple sclerosis), metabolic disorders (such as diabetes), vascular diseases (e.g., stroke), trauma, and cancer cause neuropathic pain in humans. The most prevalent neuropathies in humans are diabetic polyneuropathy and neuropathies caused by chronic lumbar pains. Following peripheral nerve injuries, various mechanisms, including increased expression of voltage-dependent sodium channels in the injured primary sensory neurons and adjacent normal neurons, induced peripheral and central hyper-sensitivity, structural changes, such as neuronal sprouting, and oxidative stress lead to neuropathic pain. Oxidative stress plays a critical role in pathogenesis of different conditions, including neurological disorders, spinal cord injury and neuropathic pain. A close relationship between oxidative stress and inflammation has been reported so that oxidative stress following inflammation can induce more inflammation through different pathways and vice versa. Oxidative stress such as protein oxidation and lipids peroxidation causes neuronal damage. In addition, it has been reported that oxidative stress in diabetes promotes neuronal degeneration through increase of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6. On the other hand, TNF-α in turn leads to neuropathic pain by increasing excitability of sensory neurons in pain pathways. It was suggested that TNF-α increases α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor conductance on pain pathways and therefore decreases threshold activation of nociceptors, which leads to neuronal hyperexcitability and pathologic pain. Due to the multiplicity of mechanisms involved in neuropathic pain, pharmacological treatments (nonsteroidal anti-inflammatory drugs, opioids, antidepressants, and anticonvulsants) that have been introduced so far could not treat or prevent the spread of pain and caused many side effects as well. In this respect, using a method with no side effects or with minimum side effects is of great interest.

Exercise, especially regular exercise, as a behavioral and non-pharmacological method has positive effects on health. It has been reported that exercising has positive effects on brain injuries caused by strokes in animal models. Treadmill exercise, as a non-invasive treatment, has many potential effects on the consequences of spinal cord injury such as pain. The exact mechanism of hypalgesia after exercise is not known, but it is believed that the activity of endogenous opioid system and release of central and peripheral beta-endorphins play an important role in this phenomenon. Furthermore, other reports reveal that exercise decreases neuropathic pain through reducing the inflammatory factors. Lopez-Alvarez et al reported that reduced brain-derived neurotrophic factor (BDNF) and nerve-growth factor (NGF) levels in the spinal sensory neurons following exercise, alleviates neuropathic pain in sciatic injured rats. A recent study showed that increased pain and reduced dorsal horn GABAergic tone in sciatic nerve injured mice were significantly inhibited through treadmill exercise. Numerous studies show that exercise changes the antioxidant capacity and can act as an antioxidant. Regular exercise induces the endogenous antioxidant system, which may protect the body from consequences of injuries caused by the oxidative stress. Exercise may have a beneficial effect in diabetes, as the most frequent cause of peripheral neuropathy, through reducing blood glucose, intermediate and end products of advanced glycosylation. Activation of glial cells and glycogen synthase kinase 3 (GSK-3) leads to proinflammatory cytokine release such as TNF-α and IL-1B. On the other hand proinflammatory cytokines are involved in peripheral nerve damage, sensory neuron hyperexcitability and neuropathic pain induction. Bayod et al reported that exercise reduces GSK-3 activity of hippocampal neurons in rodents. It has been also reported that exercise through increasing release of systemic norepinephrine inactivates GSK-3B, which in turn reduces microglial cell proliferation and its proinflammatory cytokine release. Furthermore, it has been reported that regular routine exercise can prevent or at least decreases inflammation.

Regardless of the precise mechanism of exercise in the course of diseases, it is obvious that exercise positively affects different diseases showing its value as a complementary treatment. The review of previous studies showed that the studies performed on effects of exercise in neuropathic conditions focused mostly on the effects of exercise after neuropathy, and there is no report about its effects before neuropathy. Therefore, this study was performed to examine the effects of exercise on pain before neuropathy.
Materials and methods

Animals

This study was performed on Wistar adult male rats weighing 200±20 g, with free access to food and water and housed at 12:12 light-dark cycles at a fixed temperature of 22°C±2°C. The study was approved by the Ethics Committee of the Faculty of Medicine, Semnan University of Medical Sciences, under permit number 93/584235. All experimental procedures were performed according to National Institutes of Health guidelines for caring and working with laboratory animals.

Experimental design

The study design is shown in Table 1.

Procedures of the surgery and induction of neuropathy

The rats were first anesthetized using intraperitoneal injection of ketamine (80 mg/kg) and xylazine (10 mg/kg). Upon being sure of their deep anesthesia, the rats’ left thigh was shaved, and a 2-cm incision was made on their thigh using a surgical blade. Once the muscle was cut to expose the sciatic nerve, the connective tissue was cleared off using two small glass bars, and four loose ligations were made on the nerve at one millimeter intervals using catgut chromic sutures 4.0 around the common sciatic nerve. Then, the muscle and the skin were stitched separately using silk sutures 4.0.5 All the rats were housed in separate cages for 24 h after the surgery to recover and begin eating and drinking.

Preparation of the cerebrospinal fluid

The cerebrospinal fluid was drawn from cisterna magna using a method introduced by Liu and Duff.39 To do so, the rats were anesthetized using ketamine (80 mg/kg) and xylazine (10 mg/kg). Their necks were shaved, and their heads were fixed in a stereotaxic apparatus at 45°. Once the site was disinfected with betadine, a longitudinal incision was made on the midline from the end of the occipital bone toward the neck, and the surrounding muscles were cleared off. A thin capillary tube with an external diameter of 0.5 mm was gently inserted in the cisterna magna in order that the transparent cerebrospinal fluid enters the tube. The sample was collected in a microtube and kept at −80°C until TNF-α assay.

Preparation of serum sample

Once the cerebrospinal fluid was prepared, a blood sample was drawn from the rats’ heart while they were still anesthetized. The serum was then removed from the blood using a centrifuge with 2000 RPM for 10 min and kept at −80°C until malondialdehyde (MDA) and ferric reducing ability of plasma (FRAP) assays.

The study groups and exercising protocol

This study was performed on 45 rats that were randomly divided into five groups (normal, sham, CCI, pre-CCI exercise, and post-CCI exercise group). The rats excluded from the study were as follows: 2 rats during the training stage (familiarity with the treadmill) due to their inability to run on the treadmill, 1 rat due to its resistance to anesthesia, and another rat that was paralyzed after the surgery. Each group consisted of 6–9 rats.

The forced exercise was implemented on a rat treadmill at a moderate speed for 21 days. The rats ran on the treadmill 5 days a week, 30 min per day, at the speed of 16 m/min close to 70% VO2 max for 3 weeks. Prior to the main exercising program, the rats ran on the treadmill for 5 days, 10 min per day, at the speed of 10 m/min in order to adapt to the conditions of exercise, and rats that were unable to perform the training task were excluded from the study.26

The study groups

Group 1 (normal): Behavioral and biochemical experiments were performed in this group without any intervention.

Group 2 (sham): Once the skin and muscles on the sciatic nerve were cut in this group, the incision site was stitched without manipulating the nerve. Behavioral tests were

Table 1 Experimental design and groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>3 weeks exercise, days -21 to 0</th>
<th>Surgery day, day 1</th>
<th>Recovery time, days 2-4</th>
<th>3 weeks exercise, days 5-25</th>
<th>Tests, day 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Sham</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>CCI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Pre-CCI Exercise</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>√</td>
</tr>
<tr>
<td>Post-CCI Exercise</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

Abbreviation: CCI: chronic constriction injury.
performed in this group 3 weeks after rehabilitation (recovery from surgery and walking without lagging) (3 days).40

Group 3 (CCI): Once the skin and muscles on the sciatic nerve were cut in this group, 4 loose stitches were made on the nerve. No exercising intervention was applied in this group and behavioral and biochemical tests were performed 3 weeks after rehabilitation (3 days).

Group 4 (pre-CCI exercise): This group underwent the same conditions in Group 3, except that the rats exercised 3 weeks just before the induction of neuropathy.

Group 5 (post-CCI exercise): The neuropathy was induced in this group as in Group 3. After 3 days of rehabilitation, the exercising program was performed for 3 weeks, and the day after, behavioral and biochemical tests were performed.

Methods for assessment of behavioral responses to the neuropathic pain
The following tests were used to examine the rats’ behavior and find the effects of exercise on their neuropathic pain.

Mechanical allodynia
The rats were placed on a wired mesh inside a Plexiglas compartment (20×20×30 cm), and different Von Frey filaments were used to measure the mechanical allodynia after 10 min when the rats adapted to the new environment. These filaments are made in a way that the pressure exerted on the surface does not change with increases in the pressure applied by the experimenter due to their flexibility. Each filament exerts a certain amount of pressure (in grams) on the surface in proportion to its diameter. The filaments used in this study exert 2–60 g of pressure on the surface (Stoelting Company, Wood Dale, IL, USA). The pressure exerted by the filaments ranged 2, 4, 6, 8, 10, 15, 26, 60 g, starting from the lowest pressure and continuing to higher pressures respectively if there was no response. Each filament was pressed to the rat’s left plantar 3 times at intervals of 5 s, each time for 1 s, and if the rat responded 2 consecutive times (raised its foot), the pressure was determined as the response threshold, and the test was not continued any longer. If a rat did not respond even to the filament 60, it was considered as the response threshold.41

Thermal hyperalgesia
In this test, the rats were placed in the Plantar Test device, the infrared radiation source was placed under their injured foot, and the radiation began with regulated intensity after the rats adapted to the new environment. When the device was turned on, the ray radiated to the rats’ foot plantar surface and the device recorded the start time. If the rats moved their feet because of burning, the apparatus stopped working, and its timer showed the duration of rats’ tolerance in seconds. This test was performed 3 times at intervals of 5 min, and the mean of the 3 times was taken as the response. The duration of test was determined as 60 s.5

Biochemical tests
Measurement of MDA
The MDA was measured using the rat’s serum. The lipid peroxidation was measured through the thiobarbituric acid method. The oxidative stress increases peroxidation of unsaturated fatty acids and thus various aldehydes, including MDA, are produced. Therefore, MDA is considered a marker of oxidative stress and reacts with thiobarbituric acid in acid regions at high temperatures. The maximum absorption was evaluated at 535 nm using a spectrophotometer.42

Measurement of total antioxidant capacity (TAC)
The rat’s serum was used to measure the FRAP, which is used to determine the TAC. In this test, the antioxidants are measured by reducing the ferric iron. This method is based on the ability of serums to reduce the ions Fe3+ to Fe2+, and the output is a blue complex with the maximum light absorption at wavelength of 593 nm.43

Measurement of TNF-α
The rat’s cerebrospinal fluid was used to measure TNF-α. The level of TNF-α in the cerebrospinal fluid was measured using the Western blot test introduced by Boneberg and Hartung.44 To ensure the identical protein loading for electrophoresis, the concentration of protein in the cerebrospinal fluid was measured using Bradford protein assay. A certain amount of the sample under electrophoresis was placed on 12% sodium dodecyl sulfate polyacrylamide gel, and the proteins were then transferred to the polyvinylidene difluoride membrane. To quantify the TNF-α level of cerebrospinal fluid, 4 ng of recombinant TNF-α (eBioscience, Vienna, Austria) was loaded on the gel as a standard control. The membrane was blocked for 90 min using 2% non-fat powder milk (Amer sham, EclAdvance™, Buckinghamshire, UK) and was then incubated using the TNF-α antibody (1/1000 dilution, Invitrogen Corporation, Camarillo, CA, USA). The membrane was incubated using horseradish peroxidase (HRP) -conjugated secondary antibodies, and the X-ray film was produced within 1 min using chemiluminescence kit. Quantification of results was performed by densitometry scan of the films. Data analysis was done using Image J software (National Institute of Health, Bethesda, MD, USA).
Data analysis
The data were statistically analyzed using the one-way analysis of variance and Tukey’s post-hoc test. All data were stated as mean ± standard deviation of relevant variables, and \(P<0.05 \) was considered significant. The Graphpad prism 5.0 statistical software (GraphPad, San Diego, CA, USA) was used to analyze the data.

Results
CCI induced mechanical allodynia and thermal hyperalgesia were prevented by moderate post-CCI exercise
Mechanical allodynia
Threshold of response to mechanical stimulus decreased in CCI group compared to sham group (\(P=0.024 \)). Exercise on treadmill after induction of CCI increased the threshold of response to the mechanical stimulus in contrast to the CCI group (\(P=0.004 \), \(F \left[4 \text{ and } 30 \right]=8.2 \)). However, exercise before induction of CCI did not make any significant changes in the threshold against that in the CCI group (Figure 1A). There was no difference between intact and sham groups.

Thermal hyperalgesia
As in the case of mechanical allodynia, thermal hyperalgesia was examined after CCI induction. The CCI group showed a prominent decrease in the threshold of response to the thermal stimulus compared with sham group (\(P=0.002 \)). The post-CCI exercise group showed an increase in the withdrawal response to the pain caused by the thermal stimulus on the feet against that in the CCI group (\(P=0.025 \), \(F \left[4 \text{ and } 28 \right]=6.02 \)). However, the group exercising before induction of CCI did not show any significant difference in the level of pain caused by the thermal stimulus compared with the CCI group (Figure 1B).

The increased TNF-\(\alpha \) in the cerebrospinal fluid due to CCI was reversed by post-CCI exercise. The measurement of TNF-\(\alpha \) cytokine in the cerebrospinal fluid showed a significant difference between the CCI group and the sham group; the level of TNF-\(\alpha \) in the CCI group was higher than that in the sham group (\(P=0.0002 \)). Exercise after induction of CCI (\(P=0.005 \), \(F \left[4 \text{ and } 19 \right]=12.86 \)) decreased the TNF-\(\alpha \) level against that in the CCI group (Figure 2). As seen in Figure 2, the level of TNF-\(\alpha \) (no difference between intact and sham groups) implied that the surgical incision did not influence the expression of cytokine.

TAC was decreased by CCI and post-CCI exercise reversed it to the control level. The measurement of serum MDA as an output of the oxidative stress showed no significant difference between post-CCI exercise group and the control group. A similar result was obtained between pre-CCI exercise group and the control group (Figure 3).

The measurement of TAC showed a significant difference between CCI group and the control group; the level of serum antioxidant capacity in the CCI group was lower than the sham group (\(P=0.001 \)). Exercise after induction of CCI (\(P=0.019 \), \(F \left[4 \text{ and } 27 \right]=6.6 \)) increased the FRAP level compared with the CCI group, while, exercise before induction of CCI did not make a significant difference in the level of TAC with respect to the CCI group (Figure 4).

Figure 1 The effect of exercise on the CCI-induced neuropathic pain.
Notes: (A) The threshold of response to the mechanical stimulus in the CCI group reduced compared with the sham group (\(P=0.024 \)), and the post-CCI exercise could reverse the threshold to the control level (\(P=0.004 \)). (B) The threshold of response to the thermal stimulus in the CCI group was lower than the sham group (\(P=0.002 \)). Post CCI exercise increased the threshold of response (\(P=0.025 \)) compared with CCI group. The data are shown as mean ± SEM. \(n=6–8 \). *\(P<0.05 \), **\(P<0.01 \).
Abbreviation: CCI, chronic constriction injury.
Neuropathic pain appearing after diseases, such as diabetes, cancer, and neural constriction injuries affects patients for a long time forcing them to seek treatment frequently, which imposes high costs on patients and the health system. All the introduced treatments not only impose many side effects on patients but also fail to resolve the pain completely.

The results showed that moderate exercise after induction of neuropathy increased the threshold of mechanical pain (decreased mechanical allodynia) and thermal pain. The hypoalgesic effect of the physical activity appeared after 3 weeks of running at a moderate speed. This result conformed to results showing that aerobic exercises decrease the mechanical allodynia and thermal hyperalgesia arising from peripheral nerve injuries. Chen et al. also reported that exercise on treadmill decreases mechanical allodynia and the pain caused by the thermal stimulus of CCI in rats.

The measurement of TNF-α cytokine in the cerebrospinal fluid showed that the level of TNF-α in the CCI group significantly increased compared with the sham group. In this regard, Okamoto et al indicated that the amount of cytokines increases at the site of injury following the neuropathy caused by the CCI. Pathologic conditions in the nervous system, such as neuronal injuries and strokes following ischemia, stimulate the microglia and production and release of inflammatory molecules, including cytokines. The results of our study revealed that exercise on treadmill after induction of neuropathy significantly reduced the TNF-α proinflammatory cytokines compared with the non-exercise neuropathic group (CCI group), and as mentioned before, the neuropathic pain in this group (the post-CCI exercise group) significantly decreased compared with the non-exercise neuropathic group. This result agreed with numerous reports showing that exercise after sciatic injuries reduces the proinflammatory cytokines. Moreover, it has been shown that proinflammatory cytokines, such as TNF-α, induce neuropathic pain. In conformity to this result, Chen et al showed that exercise on treadmill reduced allodynia and hyperalgesia on the 21st day.
after CCI.因此，似乎炎症性细胞因子在神经痛的发病率中起着重要的作用，因为各种研究已经显示了神经痛和炎性细胞因子之间的相关性。33-36 由于 TNF-α 可以促进其他炎性标记物的生成，如 IL-6、前列腺素和 C 反应蛋白，这可能导致临床表现（疼痛和发烧）以及疾病，减少 TNF-α 可以抑制其他炎性介质，这些介质导致临床症状的抑制。因此，一方面，修复神经痛的方法是减少炎性介质。在这方面，一项机制的修复在神经痛的发病率是减少炎性细胞因子。

这项研究的结果表明，FRAP，即氧化应激标志物，显著减少 CCI 后。氧化应激是生理途径，其不平衡在神经损伤的病理过程中起着重要作用。38 与这一结果相似，各种研究报道了氧化应激，即氧化产物的不平衡和氧化产物的不平衡，尤其是氧化应激的干预。14 Di Naso 等人报告，氧化应激的生产量或氧化应激的生产量的减少，或者氧化应激的干预使糖尿病的发病率。

在这项研究中，预 CCI 的锻炼显著增加了 FRAP，而在对照组中。此外，MDA 的水平，即另一种氧化应激标志物，没有显示出任何显著差异。FRAP 测试一致，预 CCI 组在Franca 和锻炼组。一致性结果，预 CCI 组的 FRAP 测试，各种研究显示锻炼改变了抗氧化能力。61,62 根据这项研究，一些重要的氧化应激标志物，如超氧化物歧化酶和谷胱甘肽过氧化物酶，被激活，并在物理活动期间，特别是在一定程度强度下，可能会作为最有效的抗氧化剂。30,31 然而，矛盾的研究报告指出，锻炼可能增加氧化应激，如规律的物理活动，如运动量和锻炼时间，已被证明能够引起氧化应激，而其对健康的积极影响。

Vina 等人报告，锻炼可以增加自由基在大鼠和人类体内的产生。64 各种报道指出，MDA 作为氧化应激的标志在锻炼后增加。65-67 然而，其他报告表明，规律的适度锻炼可以降低 MDA 的水平，或者不改变 MDA 在肝脏中的水平，69 作为这项研究无显著变化被观察到在血浆 MDA 水平。根据现有结果，Niess 等人报告，血浆 MDA 在已受训练和未受训练的人在休息位置时，没有显著差异。Dovepress

Forced exercise alleviates chronic neuropathic pain

1463

Journal of Pain Research downloaded from https://www.dovepress.com/ by 54.70.40.11 on 01-Nov-2019
For personal use only.
cise to modify TAC and TNF-α level is the most possible reason for ineffectiveness of exercise on neuropathic pain induced by CCI. Michailidis et al reported that following acute exercise, TAC level significantly increases within 2 h and returns to pre-exercise level 6 h later. Since in our study pain examination was performed 3 weeks post-CCI, it is largely acceptable that effect of pre-CCI exercise on the study pain examination was performed 3 weeks post-CCI, in this case, CCI-induced reactive oxygen species production could not be reversed by reduced level of TAC. Eventually, with regard to vicious cycle between oxidative stress and inflammation, pre-CCI exercise was largely unable to alleviate induced neuropathic pain. In general, the results of this study show that exercise before induction of neuropathy under conditions followed in this study cannot reduce the pain after neuropathy. However, increases in duration, intensity, and type of exercise before neuropathy may have significant hypoalgesic effects on neuropathic pain. The results imply that exercise under the same conditions can significantly reduce neuropathic pain and parameters relevant to the oxidative stress and proinflammatory cytokines when practiced after induction of neuropathy.

Conclusion
The results imply that FRAP decreases and proinflammatory cytokine TNF-α increases during neuropathic pain, and post-neuropathy but not pre-neuropathy exercise as a non-pharmacological method reduces the neuropathic pain by modifying oxidative stress and inflammation.

Acknowledgments
This study was funded by the Deputy of the Research and Technology of Semnan University of Medical Sciences, and the authors hereby appreciate the Deputy.

Disclosure
The authors report no conflicts of interest in this work.

References

