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Abstract: The emergence of colistin-resistant Pseudomonas aeruginosa in cystic fibrosis (CF) 

patients, particularly after long-term inhalation treatments, has been recently reported. Nanoen-

capsulation may enable preparations to overcome the limitations of conventional pharmaceutical 

forms. We have determined the time-dependent viability of P. aeruginosa biofilms treated with 

both free and nanoencapsulated colistin. We also examined the relationship between the optimal 

anti-biofilm activity of nanostructured lipid carrier (NLC)-colistin and the structural organiza-

tion of the biofilm itself. The results showed the more rapid killing of P. aeruginosa bacterial 

biofilms by NLC-colistin than by free colistin. However, the two formulations did not differ in 

terms of the final percentages of living and dead cells, which were higher in the inner than in 

the outer layers of the treated biofilms. The effective anti-biofilm activity of NLC-colistin and 

its faster killing effect recommend further studies of its use over free colistin in the treatment 

of P. aeruginosa infections in CF patients.

Keywords: cystic fibrosis, colistin sulfate, lipid nanoparticles, P. aeruginosa, confocal laser 

scanning microscopy, anti-biofilm activity

Introduction
Pseudomonas aeruginosa is a gram-negative opportunistic pathogen that frequently 

infects the lungs of cystic fibrosis (CF) patients in the form of chronic biofilm 

infections.1 The antimicrobial resistance of bacteria assuming a biofilm mode of growth 

poses challenges not only to host immune clearance mechanisms but also to health 

care settings, in the form of an increased risk of hospital-acquired infections.2 The 

high level of antibiotic resistance that characterizes biofilms can be attributed to their 

structurally heterogeneous microenvironments, some of which contain metabolically 

inactive cell population,3,4 as well as to the differential expression of multiple gene 

networks and extracellular matrix by the resident bacterial species.4

Over the last decade, increasing attention has been paid to antimicrobial peptides 

(AMPs) as therapeutic agents, because resistance to them is thus far rare. Moreover, 

these peptides are able to modulate the innate immune response.5–7 The AMP colistin 

is a cyclic cationic decapeptide that attacks negatively charged bacterial membranes, 

thereby disrupting both the outer and inner membranes of gram-negative species.7 

Although the use of colistin as an antimicrobial is restricted by its high nephrotoxic-

ity, the increasing emergence of multiresistant pathogens has renewed interest in its 

therapeutic potential.8 In fact, nowadays, colistin is administered to CF patients and 

to other patients with chronic respiratory diseases for the treatment of lung infections 
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caused by P. aeruginosa.9 However, colistin resistance, 

mediated by the post-translational modification of lipopoly-

saccharide, has emerged, perhaps driven by the increasing 

clinical use of this drug.10,11 Although resistance rates are 

still low in many countries, the recent identification of a 

plasmid-borne colistin resistance gene (mcr-1) in human, 

animal, and environmental isolates of Enterobacteriaceae 

may soon lead to rapid increases in resistance on a global 

scale.12,13 An awareness of this threat has catalyzed the search 

for less toxic antimicrobials as well as the development of 

synthetically modified forms enabling dose reductions, longer 

administration intervals, and reduced systemic toxicity. An 

alternative is new delivery strategies, such as the use of solid 

lipid nanoparticles and nanostructured lipid carriers (NLCs) 

to deliver colistin in CF patients with P. aeruginosa respira-

tory infections. The nebulization of antimicrobials carried in 

lipid nanoparticles improves drug bioavailability and allows 

a reduced dosing frequency.14 In principle, the administration 

of encapsulated drugs could overcome preexisting resistance 

mechanisms, including the decreased uptake and increased 

efflux of the drug, as well as biofilm formation.15 In a previ-

ous study, we demonstrated the higher anti-biofilm activity 

of NLC-colistin than of free colistin in both susceptible and 

resistant P. aeruginosa strains isolated from the sputum 

samples of CF patients.16 As biofilms play a key role in the 

natural history of P. aeruginosa respiratory infections in CF, 

the use of NLC-colistin may offer new approaches to their 

treatment. However, the mechanism underlying the improved 

efficiency of NLC-colistin in biofilm removal is unknown.16 

Pamp et al17 showed that free colistin acts preferentially on 

bacteria with low metabolic rates; this is the case for bacte-

ria in the deepest layers of a biofilm, as metabolic activity 

decreases with increasing distance from the biofilm surface. 

Whether the same differential response occurs with NLC-

colistin has not been determined. Thus, this study explored 

the efficacy of NLC-colistin versus the free drug with respect 

to biofilm viability over time and across the different layers 

of the biofilm.

Materials and methods
Preparation of lipid nanoparticles
NLCs were prepared using the hot melt homogenization 

technique.18 The lipid core consisted of Precirol®ATO 5 

(Gattefossé, Madrid, Spain) and Miglyol 812 (Sasol, Hamburg, 

Germany), which were mixed with colistin sulfate (Zhejiang 

Shenghua Biok Biology Co., Ltd., China). The tempera-

ture of the mixture was gradually increased to the melting 

temperature of the solid lipids. The surfactant solution was 

1.3% (w/v) Polysorbate 80 (Panreac Química, Castellar del 

Vallès, Barcelona, Spain) and 0.6% (w/v) Poloxamer 188 

(BASF, Ludwigshafen, Rhineland-Palatinate, Germany). 

The mixture was emulsified by sonication for 15 s at 

20 W. The nanoparticles were recrystallized by an over-

night incubation at 4°C to stimulate particle formation. 

They were then washed three times by centrifugation at 

2,500 rpm in Amicon centrifugal filtration units (100,000 

MWCO). All prepared nanoparticles were freeze-dried with 

trehalose (15%).

Bacterial strain, culture conditions, and 
biofilm formation
P. aeruginosa strain PA01 in 20 mL of Mueller-Hinton II 

broth cation adjusted (Becton Dickinson Diagnostic Sys-

tems, Inc., Sparks, MD, USA) was grown overnight at 37°C 

with continuous shaking at 250 rpm. The culture was then 

adjusted to a concentration of 1–5×108 cfu/mL, and 200 µL 

was used to inoculate µ-Slide 8 glass bottom wells (Ibidi, 

cat. num. 80827, Munich, Germany). Each well was previ-

ously coated with a 0.01% (w/v) poly-lysine hydrobromide 

(Sigma-Aldrich, Dorset, UK) solution to enhance bacterial 

cell adhesion and to prevent biofilm removal during the 

experiments. The slides were incubated at 37°C for 24 h to 

allow biofilm formation.

Confocal laser scanning microscopy 
imaging
Biofilms on the eight-well glass were washed once with 

Ringer ¼ to remove unfixed bacteria and then treated 

with free and NLC-colistin at a colistin concentration of 

128 µg/mL, based on previously published results.16 They 

were then incubated at 37°C for 20, 30, 40, 60, 80, and 

100 min after which they were rinsed once with Ringer ¼. 

To stain the biofilms, a mixture of SYTO 9 and propidium 

iodide prepared at a dilution ratio of 1:2 (1.5 µL of SYTO 

9 and 3 µL of propidium iodide in 1 mL of Ringer ¼) was 

applied to the entire biofilm. After 30 min of incubation in 

the dark at 37°C, the stained biofilms were washed once with 

Ringer ¼ to remove nonspecific staining. Fluorescence was 

observed using a Leica TCS-SL filter-free spectral confocal 

laser-scanning microscope (Leica Microsystems, Mannheim, 

Germany) equipped with a 488-nm argon laser, 543-nm and 

633-nm He/Ne lasers (Scientific and Technological Centers, 

University of Barcelona, Bellvitge Campus, L’Hospitalet de 

LLobregat, Spain), and a 63× magnification oil immersion 

objective (1.4 numerical aperture). The image resolution 

was 1,024×1,024 pixels. All experiments were performed 

in duplicate. Confocal laser scanning microscopy (CLSM) 

images were analyzed using ImageJ software (National 
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Institutes of health, Bethesda, MD, USA). The percentages 

of alive and dead bacterial cells were calculated from the 

total cell number.

Results and discussion
Time-dependent killing of strain PaO1 
biofilms by free and NLC-colistin
Enumeration of the viable and dead bacteria for every treat-

ment showed an increase in bacterial death over time in the 

strain PAO1 biofilms (Figure 1). In the control (untreated) 

biofilms, most of the cells were viable, with live/dead ratios 

of 78.2% (green) and 21.8% (red), respectively. This result 

was in agreement with a previous report.19 The baseline 

viability was taken into account in the interpretation of 

the experimental data. A nonlethal effect was observed in 

biofilms exposed for 20 min to free colistin, with the pro-

portions of living and dead bacteria almost identical to that 

of the control (~80% and 20%, respectively). The killing 

efficiency reached a maximum of 80% after 60 min of treat-

ment with the free formulation. By contrast, after 20 min 

of exposure to NLC-colistin, ~75% of the individual cells 

were dead (red fluorescence) and after 60 min of treatment 

almost 100%, thus demonstrating the rapid killing effect of 

the encapsulated drug.

The results shown in Figure 1 are in good agreement 

with the CLSM images of the untreated and treated biofilms 

(Figure 2). The latter mostly stained green (Figure 2), indi-

cating a high level of bacterial viability. After 20 and 40 min 

of exposure to NLC-colistin (Figure 2), the red population 

increased over time such that very few green-staining cells 

were observed, consistent with the significant damage of bac-

teria residing in the treated biofilm. After a 60-min incubation 

with NLC-colistin, all bacterial cells stained red. In the biofilms 

treated with free colistin (Figure 2), the percentages of the red 

and green populations of bacteria after 20 min were almost 

identical to those of the control. After 40 and 60 min (Figure 2), 

the red population in the free colistin treatment was always 

smaller than that in the NLC-colistin treatment, evidence of 

the faster killing of bacterial biofilms by the latter. This may 

reflect the ability of the lipid nanoparticles to easily penetrate 

the biofilm matrix, with the nanoparticulated drug then reach-

ing the bacteria faster and more easily than free colistin.21,22 

Islan et al22 reported similar results using levofloxacin-loaded 

lipid nanoparticles. In that study, rapid killing of P. aeruginosa 

biofilms by NLC-levofloxacin was achieved after 60 min of 

exposure.

Figure 1 graphical representation of living and dead bacteria treated or not treated 
with the different colistin formulations.
Note: Error bars represent the standard deviation of the mean (time: 0, 20, 40, 
and 60 min).
Abbreviations: F-C, free colistin; NLC-C, colistin nanoparticulated in nanostruc-
tured lipid carrier.

Figure 2 Confocal laser scanning microscopy images of Pseudomonas aeruginosa 
strain PAO1 biofilms.
Notes: Control: untreated biofilm. Drug exposure time: 20, 40, and 60 min. Green: 
viable bacteria; red: dead bacteria.
Abbreviations: free-col, free colistin; NLC-col, colistin nanoparticulated in 
nanostructured lipid carrier.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2017:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4412

sans-serramitjana et al

Differentiation of distinct bacterial 
subpopulations in the strain PAO1 biofilm
Biofilms are a complex, multicellular structure that favors the 

generation of physiologically distinct subpopulations of bac-

teria that together form a community able to adapt to rapidly 

changing environmental conditions.23 To explore whether 

free and nanoencapsulated colistin differentially act on the 

subpopulations residing within the biofilm, the viability of 

bacteria in the different layers of the biofilm was determined. 

As seen in Table 1, the bacterial density was much higher in 

the inner layers of the biofilm, consistent with the previously 

reported high density of cells located close to the substratum 

in P. aeruginosa biofilms.24 The biofilms were investigated 

in greater detail by dividing them in half, which revealed that 

71% of the total number of cells occupied the inner layers 

(Table 1). This was essentially the case in all three types of 

biofilms (control, free colistin, and NLC-colistin) despite the 

demonstrated heterogeneity among biofilms with respect to 

their thickness and the strength of their surface attachment.25 

Nonetheless, our results can be explained by the initiation of 

cell detachment in the upper layers of the biofilm26 as well as 

the accumulation of high densities of smaller cells in deeper 

parts of the biofilm in response to external stress conditions. 

Also, it is likely that the washing step with buffer altered the 

external parts of the biofilm while leaving its deeper parts 

relatively undisturbed. Although weakly attached bacteria 

will be discarded by carefully washing the biofilms after 

24 h of incubation, simultaneous disruption of the superficial 

layers of the biofilm is difficult to avoid.

The two colistin formulations did not differ in their 

effects on the various biofilm subpopulations, as the per-

centages of living and dead cells were higher in the inner 

than in the outer layers of biofilms treated with free colistin 

or NLC-colistin (Table 1). Our results demonstrate that 

both formulations are able to penetrate the deeper layers 

of the biofilm and thus access a dormant and anaerobically 

growing subpopulation.27,28 A reduction of the free colistin 

concentration, the delayed penetration of the free drug into 

the deeper portions of the multilayered biofilm, and the lack 

of specificity of NLC-colistin in killing metabolically active 

bacteria versus starved cells may account for our results, as 

proposed in similar studies.17,29 Further experiments will be 

aimed at improving the experimental conditions to optimize 

the performance of NLC-colistin.

Conclusion
In our previous works,16,18 we demonstrated the identical antimi-

crobial activity of free colistin and NLC-colistin. Here we have 

shown that NLC-colistin was clearly more effective than its free 

form in eradicating biofilms of P. aeruginosa, the most relevant 

pathogen in CF patients. Thus, the use of lipid nanoparticles may 

be an interesting strategy to prevent the growth and develop-

ment of microbial biofilms in the clinical setting. NLC-colistin 

was much faster than free colistin in killing P. aeruginosa, 

based on the ability of the encapsulated drug to reach both the 

superficial and the deep regions of the biofilm. Further experi-

ments are needed to identify the precise mechanism underlying 

the efficient removal of biofilms by NLC-colistin.
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Table 1 Percentage of the bacterial population living in the various layers and percentages of live and dead bacteria of the Pseudomonas 
aeruginosa strain PAO1 biofilm after 20, 40, and 60 min of treatment with F-C and NLC-C

Treatment Biofilm 
layer

Percentage of the bacterial population (%)

t=0 min t=20 min t=40 min t=60 min

Total Live Dead Total Live Dead Total Live Dead Total Live Dead

c+ Outer 28.5 22.5 6.1
Inner 71.5 55.8 15.7

F-c Outer 32.4 29.0 3.4 35.2 20.9 14.3 37.9 6.6 31.3
Inner 60.3 50.3 9.9 64.8 30.1 34.8 62.1 7.6 54.5

Nlc-c Outer 20.8 5.5 15.3 17.4 0.9 16.5 19.6 0.2 19.5
Inner 79.2 19.7 59.6 82.6 3.9 78.7 80.4 0.9 79.5

Abbreviations: c+, untreated biofilm; F-C, free colistin; NLC-C, colistin nanoparticulated in nanostructured lipid carrier.
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