Past and current perspective on new therapeutic targets for Type-II diabetes

Abstract: Loss of pancreatic β-cell function is a hallmark of Type-II diabetes mellitus (DM). It is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. Recently, United Kingdom Prospective Diabetes Study reported that Type-II DM is a progressive disorder. Although, DM can be treated initially by monotherapy with oral agent; eventually, it may require multiple drugs. Additionally, insulin therapy is needed in many patients to achieve glycemic control. Pharmacological approaches are unsatisfactory in improving the consequences of insulin resistance. Single therapeutic approach in the treatment of Type-II DM is unsuccessful and usually a combination therapy is adopted. Increased understanding of biochemical, cellular and pathological alterations in Type-II DM has provided new insight in the management of Type-II DM. Knowledge of underlying mechanisms of Type-II DM development is essential for the exploration of novel therapeutic targets. Present review provides an insight into therapeutic targets of Type-II DM and their role in the development of insulin resistance. An overview of important signaling pathways and mechanisms in Type-II DM is provided for the better understanding of disease pathology. This review includes case studies of drugs that are withdrawn from the market. The experience gathered from previous studies and knowledge of Type-II DM pathways can guide the anti-diabetic drug development toward the discovery of clinically viable drugs that are useful in Type-II DM.

Keywords: Type-II diabetes mellitus, therapeutic targets, discontinued drugs, insulin resistance

Introduction

Diabetes mellitus (DM) is the oldest disease known to mankind since about 3,000 years ago and is referred to in ancient Egyptian treatise. The prevalence of DM is continuously increasing and recent estimate shows that DM incidence will rise from 366.2 million people to 551.8 million by 2030. Generally, DM is classified as either Type-I or II, but Type-II DM is more prevalent form of diabetes. The long-term macrovascular and microvascular complications associated with Type-II DM typically ends up in morbidity and mortality. Type-II DM has a complex and multifactorial pathogenesis. It occurs either due to impaired insulin secretion by pancreas or development of insulin resistance at target tissues. Insulin maintains the energy homeostasis by increasing glucose uptake into peripheral tissues and decreasing release of stored lipids from adipose tissue. Dysfunction of β-cell decreases insulin secretion and alters the glucose homeostasis. Multiple biochemical pathways show the correlation between hyperglycemia and vascular complications. Type-II DM has a role in the development of cardiovascular and kidney diseases. Type-II DM is manifested by increased glucose production, defective insulin secretion and abnormal insulin action. The β-cell associated changes in the secretion of insulin initiates the cellular signaling cascade. Activation of advanced glycation end products, stimulation
of Di-acyl glycerol kinase pathway and oxidative stress reduces the β-cell functioning.

The currently available anti-diabetic drugs used to treat Type-II DM are associated with potential adverse effects. Excessive insulin release by widely used anti-diabetic drugs like sulfonylureas causes hypoglycemia. Similarly, use of peroxisome proliferator-activated receptor (PPAR-γ) agonists is associated with weight gain, fluid retention, urinary bladder cancer, osteoporosis and cardiovascular complications. Rosiglitazone is PPAR agonist and widely used anti-diabetic drug. It acts primarily through the activation of AMP-activated protein kinase (AMPK) and its use is associated with weight gain and edema. Similarly, the antidiabetic effect of metformin exhibits the partial involvement of AMPK and shows the associated adversities. Despite promising preclinical results, the drug 5-Aminoimidazole-4-carboxamide nucleotide failed to demonstrate its efficacy in phase I clinical trial. Due to safety concerns, many promising molecules like dual-acting PPAR γ/α or pan modulators of PPAR are still awaiting the US Food and Drug Administration (FDA) approval. Remedial approaches for the management of Type-II DM are aimed to delay the onset of complications following treatment with antidiabetic drugs. The search for more efficacious and safer antidiabetic agents is an active area of research. Newer drugs lacking the adverse effects of conventional antidiabetics and having ability to control hyperglycemia are critically needed. Incidence of Type-II DM can be minimized by identification of risk factors responsible for its occurrence. Understanding of mechanisms of actions of antidiabetic drugs, signaling pathways and therapeutic targets of Type-II DM can guide the development of clinically useful antidiabetic drugs. Present review provides an overview of underlying mechanisms of action of antidiabetic drugs. This paper also contains information on promising therapeutic targets of Type-II DM evolved from pharmacological and molecular studies.

Promising therapeutic targets

The treatment of Type-II DM and management of diabetic complications is a complex area of therapy. Limited treatment opportunities and shortage of therapeutic agents used to delay the diabetic complications are main hurdles in the treatment of Type-II DM. This therapeutic mystery can be resolved by the identification of novel therapeutic targets and development of new drugs. Postprandial euglycemia is maintained by gut-derived peptide hormones (incretins), glucagon-like peptide-1 (GLP-1) (neuropeptide) and gastric inhibitory polypeptide/glucose-dependent insulinitropic peptide (GIP) through the stimulation of insulin secretion. Dipeptidyl peptidase-IV (DPP-IV) is a protease enzyme responsible for degradation of incretins. Inhibition of DPP-IV prevents the degradation of incretins, GLP-1 and GIP. It leads to elevated lowering of blood glucose level and control of hyperglycemia. Alogliptin is selective DPP-IV inhibitor approved by FDA for the treatment of Type-II DM in 2013. Development of insulin resistance in humans and rodents is a consequence of abnormal or overexpressed glycogen synthase kinase 3 (GSK-3). Two isozymes of GSK-3 that is, GSK-3α and GSK-3β are present in mammals. GSK-3β-2 is an alternative splice variant of GSK-3β. Although, GSK-3α and GSK-3β have close similarity in their catalytic domains, they differ at their N- and C-terminal regions. Selective GSK-3 inhibitors demonstrated their efficacy in animal models of Type-II DM through the increased insulin action in insulin-resistant skeletal muscle. Identification and understanding of therapeutic targets in Type-II DM is essential for the designing of therapeutic strategy. Various therapeutic targets in Type-II DM are summarized in Tables 1 and 2.

SIRT-1: insulin resistance and insulin availability

SIRT-1 refers to sirtuin (silent mating type information regulation 2 homolog)-1. It is a member of sirtuin protein family known as nicotinamide adenine dinucleotide (NAD) dependent histone deacetylase, which is preserved in evolution from bacteria to humans. In human, seven different types of sirtuin are present. SIRT-1 is a protein deacetylase present in the cytoplasm and nucleus of cell. SIRT-1 is widely studied for its effects in various metabolic disorders. SIRT-1 utilizes oxidized NAD as a cofactor and is negatively regulated either by nicotinamide adenine dinucleotide or its deacetylation product nicotinamide. SIRT-1 deacetylates various substances, including uncoupling protein 2 (UCP-2) and peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α). SIRT-1 also exhibits control over metabolic tissues such as skeletal muscles, liver and adipose tissues. The UCP2 is a specific uncoupling protein present in the inner membrane of brown adipocytes’s mitochondria and acts as negative regulator of insulin secretion. However, PGC-1α is the main regulator of glucose production in the liver that controls the entire gluconeogenic pathway. Interestingly, SIRT-1 is prominently expressed in β-cells of pancreas. SIRT-1 regulates the insulin secretion and sensitizes the peripheral tissues to the action of insulin. SIRT-1 regulates the PPAR-γ expression and thereby controls the process of adipogenesis and fat storing in the adipose tissues. Additionally, SIRT-1 plays an important role in the differentiation of muscle cells and regulation of metabolism in the liver. Therefore, extensive involvement of SIRT-1
Table 1 Classification of diabetic therapeutic targets according to molecular group and signaling molecules

<table>
<thead>
<tr>
<th>Signal transduction and molecular mechanism</th>
<th>Targets</th>
<th>Genes</th>
<th>Subcellular locations</th>
<th>Biological process</th>
<th>Associated drug(s)</th>
<th>Related disease(s) with this gene</th>
<th>Associated pathways</th>
</tr>
</thead>
<tbody>
<tr>
<td>G protein-coupled receptor</td>
<td>Glucagon-like peptide 1 receptor, gastric inhibitory polypeptide receptor and bile acid sequestrate</td>
<td>GLP1R, GiPR, GPBAR1</td>
<td>Plasma membrane, extracellular, endoplasmic reticulum, nucleus</td>
<td>GLP1R, GiPR</td>
<td>GPBAR1 stimulates the adenylyl cyclase pathway results in increased insulin synthesis and release</td>
<td>Glucagon-like peptide 1 receptor (GLP1R), gastric inhibitory polypeptide receptor (GiPR), bile acid sequestrate receptor (GPBAR1)</td>
<td>a) Signaling by GPCR, b) Peptide ligand-binding receptors, c) Integration of energy metabolism.</td>
</tr>
<tr>
<td></td>
<td>Free fatty acid receptor or GPCR40</td>
<td>FFAR1, GPR119, GPR39</td>
<td>Nucleus, plasma membrane, peroxisome</td>
<td>Protein metabolism</td>
<td>FFAR1; Palmitic acid, oleic acid, linoleic acid, oleoylglycerol, anandamide</td>
<td>Diabetes mellitus, obesity, glucagonoma, organ neoplasms, insulinoma, gastrinoma, fatty liver, metabolic disease</td>
<td>a) Signaling by GPCR, b) Peptide ligand-binding receptors, c) Peptide ligand-binding receptors, d) Peptide ligand-binding receptors, e) Integration of energy metabolism.</td>
</tr>
<tr>
<td>Tyrosine kinase</td>
<td>Insulin receptors</td>
<td>INSR</td>
<td>Plasma membrane, cytosol, endosome, extracellular, endoplasmic reticulum, mitochondria, nucleus</td>
<td>Phosphorylation of receptor substrates results in increased insulin synthesis and release</td>
<td>Insulins, Sulfonylureas, Meglitinides</td>
<td>Diabetes mellitus, Donohue syndrome, Rabson-Mendenhall syndrome, glucagonoma, pancreatic neoplasms, insulinoma, gastrinoma, fatty liver, metabolic disease</td>
<td>a) GPCR pathway, b) Insulin receptor signaling cascade, c) Translation insulin regulation cascade, d) Nanog in mammalian ESC pluripotency.</td>
</tr>
<tr>
<td>Dehydrogenase type I</td>
<td>11β-hydroxysteroid dehydrogenase type I</td>
<td>HSD11B1</td>
<td>Endoplasmic reticulum, nucleus, cytosol, endosome, extracellular, endoplasmic reticulum, mitochondria, nucleus</td>
<td>Metabolism</td>
<td>BvT-14225, BvT-2733, Pyridyl sulfonamide</td>
<td>Obesity, hypertension, cortisone reductase deficiency, dermatitis, diabetes mellitus, Type-II diabetes</td>
<td>a) Metabolism, b) Steroid hormone biosynthesis, c) Prostaglandin synthesis.</td>
</tr>
<tr>
<td>Oxireductase</td>
<td>Cytochrome P450 family 3, subfamily A, polyepitope 4</td>
<td>CYP3AA1</td>
<td>Endoplasmic reticulum, cytosol, extracellular, cytosol</td>
<td>Metabolism</td>
<td>Ritonavir</td>
<td>Breast neoplasm, prostatic neoplasm, osteosarcoma, diabetes mellitus, Type-II diabetes</td>
<td>a) Biological oxidations, b) Chemical carcinogenesis, c) Cytochrome P450 – arranged by substrate type.</td>
</tr>
</tbody>
</table>

(Continued)
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Signal transduction and molecular mechanism</th>
<th>Targets</th>
<th>Genes</th>
<th>Subcellular locations</th>
<th>Biological process</th>
<th>Associated drug(s)</th>
<th>Related disease(s) with this gene</th>
<th>Associated pathways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth factor</td>
<td>Fibroblast growth factor 21</td>
<td>FGF21</td>
<td>Extracellular, cytosol, mitochondria, nucleus, peroxisome</td>
<td>Effects on normalizing glucose, lipid, and energy homeostasis</td>
<td>–</td>
<td>Hepatitis, torsades de pointes, diabetes mellitus, kidney failure, anxiety</td>
<td>A) Apoptotic pathways in synovial fibroblasts</td>
</tr>
<tr>
<td>Glucose co-transporter</td>
<td>Sodium–glucose co-transporter-2</td>
<td>SLC5A2</td>
<td>Plasma membrane, cytosol</td>
<td>1) Insulin-mediated glucose uptake in muscle and adipose tissue. 2) GLUT1 mediates insulin-independent glucose transport</td>
<td>Canagliflozin, dapagliflozin, empagliflozin, sergliflozin (inhibitors)</td>
<td>Obesity, fatty liver, diabetes mellitus, anorexia, ketosis, hypertension, stress, metabolic syndrome x, metabolic disease, lipodystrophy, liver neoplasm</td>
<td>a) Transmembrane transport of small molecules b) Metabolism c) Hexose transport</td>
</tr>
<tr>
<td>Transcription factor</td>
<td>Peroxisome proliferator-activated receptor gamma</td>
<td>PPARG</td>
<td>Extracellular, endoplasmic reticulum, peroxisome, nucleus, cytoskeleton</td>
<td>On activation, they induce peroxisome proliferation and lead to metabolism of dietary fats</td>
<td>Aleglitazar, muraglitazar, tesaglitazar</td>
<td>Inflammation, hypertension, diabetes mellitus, obesity, acute lung injury, acute kidney injury</td>
<td>a) Nuclear receptor transcription pathway b) Metabolism c) Fatty acid, triacylglycerol, and ketone body metabolism d) Pathways in cancer</td>
</tr>
<tr>
<td>Transcription factor</td>
<td>Nuclear factor of kappa light polypeptide gene enhancer in B-cells, single transducer and activation of transcription 4, RANK1</td>
<td>NFκB1, STAT4, TNFRSF11A</td>
<td>Nucleus, cytosol, plasma membrane, endoplasmic reticulum, peroxisome</td>
<td>Regulation of cytokine production, proliferation</td>
<td>Curcumin, anethol, ursolic acid, capsaicin</td>
<td>Adenocarcinoma, colonic neoplasms, diabetes mellitus, obesity, liver cirrhosis, kidney failure, brain ischemia, liver diseases, hyperoxaluria, ovarian cysts, fatty liver, cerebral hemorrhage, breast neoplasms, autoimmune disease</td>
<td>a) TNF-α mediated signaling events b) 4-1BB pathway c) RANK signaling in Osteoclasts d) Cytosolic sensors of pathogen-associated DNA e) GPCR signaling f) TGF-β pathway g) IL12-mediated signaling events</td>
</tr>
<tr>
<td>Transcription factor</td>
<td>Estrogen-related receptor-α</td>
<td>ESRRA</td>
<td>Nucleus, mitochondria, peroxisome</td>
<td>Metabolism</td>
<td>Cyclohexamethylaminem, 5,7-dihydroxy-4-methoxyisoflavone</td>
<td>Breast neoplasm, metabolic disease, diabetes mellitus, carcinoma, adenocarcinoma, neoplasm</td>
<td>a) Fatty acid, triacylglycerol, and ketone body metabolism</td>
</tr>
<tr>
<td>Serine/threonine protein kinase</td>
<td>AMPK mechanistic targets of rapamycin</td>
<td>PRKABI, MTOR</td>
<td>Nucleus, extracellular, cytosol, endoplasmic reticulum</td>
<td>Anabolism, catabolism, metabolism</td>
<td>Metformin, phenformin, acadesine</td>
<td>Disease progression, stomach neoplasms, colonic neoplasms, diabetes mellitus, multiple myeloma, neurotoxicity, hepatocellular carcinoma, renal carcinoma, ovarian neoplasm</td>
<td>a) Insulin receptor signalling</td>
</tr>
<tr>
<td>Ligase</td>
<td>Acetyl CoA, carboxylase α, Acetyl CoA, Carboxylase β</td>
<td>ACACA, ACACB</td>
<td>Cytosol, mitochondrion, chloroplast, nucleus, peroxisome</td>
<td>Skeletal muscle fatty acid oxidation</td>
<td>–</td>
<td>Carcinoma, fatty liver, insulin resistance, breast neoplasm, malignant neoplasm, hyperlipidemia, hypercholesterolemia, hypertriglyceridemia</td>
<td>a) Defective BTD causes biotidinase deficiency</td>
</tr>
<tr>
<td>Interleukin receptor</td>
<td>Interleukin 12, interleukin 1, interleukin 18</td>
<td>IL12B, IL1R, IL18</td>
<td>Extracellular, cytosol, mitochondria</td>
<td>Cytokine-mediated signaling pathway</td>
<td>IL-12(P40)2, DIAGRAM, EPIC-InterActs</td>
<td>Multiple sclerosis, liver cirrhosis, hypothermia, reperfusion injury, glioma, asthma, diabetes mellitus, skin diseases, hypersensitivity, brain ischemia, pneumonia</td>
<td>a) PEDF-induced signaling</td>
</tr>
</tbody>
</table>
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Signal transduction and molecular mechanism</th>
<th>Targets</th>
<th>Genes</th>
<th>Subcellular locations</th>
<th>Biological process</th>
<th>Associated drug(s)</th>
<th>Related disease(s) with this gene</th>
<th>Associated pathways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinase and transferase</td>
<td>Glycogen synthase kinase 3-β, Phosphatidylinositol-4,5-Bisphosphate 3 kinase, catalytic subunit-α, Glucokinase (Hexokinase 4)</td>
<td>GSK3B, PI3K, AKT1, GCK</td>
<td>Plasma membrane, endoplasmic reticulum, extracellular, Golgi apparatus, nucleus, peroxisome, cytoskeleton, vacuole, endosome</td>
<td>Cellular response to stress, signal transduction, hemostasis, signal transduction via activation of PI3K pathway</td>
<td>CHIR, SB216763, TWS119, Eplerenone</td>
<td>Alzheimer's disease, schizophrenia, bipolar disorder, prostatic neoplasms, depressive disorder, myocardial infarction, muscular atrophy, kidney injury, heart failure, arthritis, Parkinson disease, carcinoma, polycystic ovary syndrome, liver cirrhosis</td>
<td>a) Signaling by FGFR b) PI3K cascade c) Translation Insulin regulation of translation d) Development HGF signaling pathway e) Insulin receptor signalling cascade f) Signaling by interleukins g) Apoptotic pathways h) Regulation of β-cell development i) Metabolism j) Activation of cAMP-Dependent PKA</td>
</tr>
</tbody>
</table>

Note: '-' indicates growth factor does not have associated drug(s).

Abbreviations: BTD, biotidinase deficiency; cAMP, Cyclic adenosine monophosphate; ERK, extracellular signal-regulated kinase; FGFR, fibroblast growth factor receptors; GLUT1, glucose transporter 1; GPCR, G-protein-coupled receptor; HGF, Hepatocyte growth factor; PI3K, Phosphoinositide 3-kinase; PEDF, pigment epithelium-derived factor; TGF-Beta, transforming growth factor β; TWEAK, TNF-related weak inducer of apoptosis; RANK, receptor activator of nuclear factor kappa-B.

Table 2

<table>
<thead>
<tr>
<th>Targets</th>
<th>Gene</th>
<th>Subcellular locations</th>
<th>Molecular function</th>
<th>Biological process</th>
<th>Associated drug(s)</th>
<th>Related disease(s) with this gene</th>
<th>Associated pathways</th>
<th>Gene that shares disease with this gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Islet amyloid polypeptide</td>
<td>IAPP</td>
<td>Extracellular, endoplasmic reticulum, nucleus, plasma membrane</td>
<td>Signaling molecule, signal transduction</td>
<td>Aggregation of amyloid in insoluble amyloid fibrils and corresponds to insulin resistance</td>
<td>Pramlintide, exenatide amylinamide</td>
<td>Diabetes mellitus, amyloidosis, hypertension, stomach ulcer, primary malignant, neoplasms</td>
<td>1) Signaling by GPCR 2) PEDF induced signaling 3) ERK signaling 4) Akt signaling</td>
<td>TP53, TNF, VEGFA, BCL2, IL6, INS</td>
</tr>
<tr>
<td>ATP-sensitive potassium channel</td>
<td>KCNJ1</td>
<td>Extracellular, endoplasmic reticulum, nucleus, plasma membrane, cytoskeleton</td>
<td>Cation channel</td>
<td>Cation transport</td>
<td>Repaglinide, Nateglinide, Sulfonylurea</td>
<td>Diabetes mellitus, seizures, neonatal diabetes mellitus, insulin resistance, nesidioblastosis, hypertension, parkinsonian disorders, sciatic neuropathy, obesity</td>
<td>1) Type-II diabetes mellitus 2) Integration of energy metabolism 3) Inwardly rectifying K+ channels 4) Metabolism</td>
<td>INS-IGF2, IL6, VEGFA, ACE, APOE, INS-IGF2, PPAR, MTHFR</td>
</tr>
<tr>
<td>Protein</td>
<td>Gene Symbol</td>
<td>Localization</td>
<td>Function</td>
<td>Targets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat shock</td>
<td>HSPD1</td>
<td>Plasma membrane, cytosol, endosome, extracellular, endoplasmic reticulum, mitochondria, nucleus, chloroplast, vacuole</td>
<td>Chaperone, Protein metabolism 6-podoacetamido, subrem, feroxosine</td>
<td>Endotoxemia, HIV infection, adenocarcinoma, acute coronary syndrome, cardiomyopathy, infarction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin sensitizer</td>
<td>INS</td>
<td>Plasma membrane, cytosol, endosome, extracellular, endoplasmic reticulum, mitochondria, nucleus, chloroplast, vacuole</td>
<td>Chaperone, Protein metabolism Merformin sulfonyleuress cholesterol</td>
<td>Diabetes, Alzheimer’s disease, obesity, polycystic ovary syndrome, hyperinsulinism, hypertension, glucose intolerance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsomal</td>
<td>MTTP</td>
<td>Endoplasmic reticulum, extracellular, cytosol, Golgi apparatus, nucleus, plasma membrane, cytoskeleton</td>
<td>Chaperone, Protein metabolism Other transporter, transfer/carrier protein</td>
<td>Abetalipoproteinemia, fatty liver, abdominal obesity, hyperlipidemias, leukemia, cardiovascular disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein tyrosine</td>
<td>PTP1B</td>
<td>Endoplasmic reticulum, cytosol, nucleus, cytoskeleton, plasma membrane, endosome</td>
<td>Other transporter, transfer/carrier protein</td>
<td>Obesity, insulin resistance, insulin sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonyl</td>
<td>CBRI</td>
<td>Cytosol, nucleus, endoplasmic reticulum, mitochondria</td>
<td>Reductase</td>
<td>Obesity, insulin resistance, insulin sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 2 (Continued)

<table>
<thead>
<tr>
<th>Targets</th>
<th>Gene</th>
<th>Subcellular locations</th>
<th>Molecular function</th>
<th>Biological process</th>
<th>Associated drug(s) with this gene</th>
<th>Related disease(s) with this gene</th>
<th>Associated pathways</th>
<th>Gene that shares disease with this gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha glucosidase</td>
<td>GAA</td>
<td>Plasma membrane, cytosol, endosome, extracellular, endoplasmic reticulum, mitochondria, nucleus</td>
<td>Hydrolase</td>
<td>–</td>
<td>Acabose, miglitol, voglibose</td>
<td>Glycogen storage, left ventricular hypertrophy, cardiomyopathy, ventricular dysfunctioning, ataxia, neurodegenerative disease, diabetes mellitus, heart disease</td>
<td>1) Metabolism</td>
<td>TNF</td>
</tr>
<tr>
<td>Vascular endothelial growth factor B</td>
<td>VEGFB</td>
<td>Extracellular, mitochondria, nucleus</td>
<td>Signaling molecule</td>
<td>Hemostasis</td>
<td></td>
<td>Retinal vein occlusion, brain injury, atherosclerosis, hypertrophy, inflammation, tumor progression</td>
<td>1) Apoptotic pathways</td>
<td>VEGFA</td>
</tr>
<tr>
<td>Protein tyrosine phosphatase receptor type F</td>
<td>PTPRF</td>
<td>Plasma membrane, endoplasmic reticulum, extracellular, golgi apparatus, nucleus, peroxisome</td>
<td>Hydrolase</td>
<td>–</td>
<td></td>
<td>Stomach neoplasm, obesity, acromegaly, pheochromocytoma, breast carcinoma, melanoma, carcinoma, amastia</td>
<td>1) PAK pathway</td>
<td>MYC</td>
</tr>
</tbody>
</table>

in the control and regulation of insulin action describes its significance as a therapeutic target in Type-II DM.

SIRT-1: overproduction of ATP

SIRT-1 is located in the cytoplasm and nucleus of pancreatic β-cells. Moynihan et al observed that suppression of UCP-2 due to over expression of SIRT-1 in pancreatic β-cells of mice enhances the production of ATP. SIRT-1 increases the insulin secretion with some reduction in the glycolytic flux. The oxidative phosphorylation and suppression of mitochondrial UCP-2 uncoupling were proposed as the cause of elevated ATP levels. Whereas, Guarente and Kenyon observed that decreased SIRT-1 activity and elevated mitochondrial protein UCP-2 level causes significant reduction in the ATP production. PGC-1α is a transcriptional co-activator that favorably modulates the glucose-stimulated insulin secretion through the stimulation of activity of gluconeogenic genes and suppression of activity of glycolytic genes. The β-cells of pancreas secrete both SIRT-1 and PGC-1α in small quantities. Gerhart Hines et al reported that SIRT-1 causes activation of PGC-1α and exhibits inhibitory effect on glucose metabolism in liver. Sirtuin agonists enhance the metabolic efficiency through increased insulin secretion and/or improved insulin sensitivity. Sirtuin causes the extension of life span and improvement of metabolism in simple organisms. It suggests the role of sirtuin pathway as a therapeutic target in metabolic diseases. However, rigorous genetic tests that need to confirm the ability of sirtuin as modulator of metabolism are still awaited.

Protein tyrosine phosphatase 1B: a dynamic player in insulin resistance

Protein tyrosine phosphatase 1B (PTP1B), belongs to the family of PTP enzymes encoded by Ptpn1 gene. It is a ubiquitously expressed, monomeric enzyme having 435 amino acids with molecular weight of 50 kDa. Dephosphorylated PTP1B regulates the important cell signaling events during cell growth, differentiation and apoptosis. Structurally, the N-terminal domain of PTP1B consists of two aryl phosphate-binding sites namely a high-affinity catalytic site that contains the nucleophile cysteine residue and low-affinity non-catalytic site containing the Arg24 and Arg254 residues. Whereas, the C-terminal domain of PTP1B includes proline residues and the hydrophobic amino acid residues 400–435. These residues are responsible for locating PTP-1B at the cytoplasmic phase of the endoplasmic reticulum. In insulin signaling pathway, PTP1B dephosphorylates several substrates such as tyrosine residues 1,162 and 1,163, which causes subsequent termination of receptor tyrosine kinase cascade.
The binding of insulin to the insulin receptor (IR) phospho-
rylates the IR subunit 1 and causes the down-regulation of
insulin signaling pathway.35 Moreover, PTBP1 controls the
interaction between IRS\textsubscript{1} and IRS\textsubscript{2}, which modulates the
hepatic insulin action and insulin sensitivity.36 Thus, PTBP1
plays a vital role in the insulin resistance and it is one of the
important therapeutic targets in Type-II DM.

PTP1B inhibitors

It is evident that decreased PTP1B activity is related to
increased insulin activity, which has a protective effect in
diabetes.37 The PTP1B is a negative regulator of insulin
signaling. The ability of PTP1B inhibitors to prolong the
actions of insulin denotes their potential in the management of
Type-II DM.38 Ertiprotifib belongs to the class of compounds
that potently inhibit the PTP1B activity and normalizes plasma
glucose and insulin levels in genetically diabetic and/or obese
animals in experimental models of Type-II DM.39 One of
the synthetic tris-sulfotyrosyldodecapeptides inhibited the
IR dephosphorylation and enhanced the insulin signaling in
Chinese hamster ovary cells over expressing human IRs.40

Sodium-glucose linked transporter (SGLT): role in glucose transport and regulation

Type-II DM has complex and multifactorial pathophysi-
ology. Decrease in insulin secretion by pancreatic β-cells
due to development of insulin resistance is the hallmark of
Type-II DM. The insulin resistance in liver, brain and muscle
leads to increased glucagon secretion, lipolysis and increased
absorption of glucose by nephrons. Glucose is a vital source of
energy for carrying out various cellular and metabolic pro-
cesses. Lipoidal nature of cell membrane restricts the entry of
polar glucose to extracellular region. Glucose is transported
via two types of glucose transporters namely glucose trans-
porter (GLUT) transporter and sodium-glucose transporter
(SGT). There are 14 different types of GLUT transporters and
7 types of SGT are characterized. The GLUT transporter
protein is a 12 membrane-spanning helical structure having
amino and carboxyl terminals that are exposed on the cyto-
plasmic side of the plasma membrane. GLUT facilitates
passive transport of glucose according to concentration gradient.
In contrast, sodium glucose co-transporter involves the active
transfer of glucose across the cell membrane against concen-
tration gradient at the use of energy. Among various types of
SGLT, only SGLT-1 and SGLT-2 facilitate the reabsorption
of glucose into the plasma. Thus, inhibition of this process
is proposed to decrease the blood glucose level and promote
hypoglycemia. The kidney plays an important role in the glucose
homeostasis. In a healthy adult, about 180–190 g of glucose
per day is filtered from the glomeruli.41 Out of this filtered
glucose, about 95% is reabsorbed through SGLT and circu-
latory glucose levels are maintained.42 The up-regulation of
SGLT-2 in Type-II DM causes increased transportation of
glucose and subsequent hyperglycemia.

SGLT-2 inhibition: a prospect to amend our therapeutic strategy

It is well established that inhibition of glucose reabsorption
from kidney tubules improves the glucose homeostasis.43
Recently, SGLT-2 inhibitors demonstrated their effect on
glycemic control in animal models of diabetes as well as
Type-II DM patients.44 Clinical evidence for dual inhibition
of SGLT-1 and SGLT-2 is available.45 SGLT-1 is the chief
intestinal glucose transporter that reabsorbs about 10% of
total renal glucose.46 Functional deficit of SGLT-1 leads to
glucose malabsorption, which is exhibited by gastrointestinal
symptoms.47 As SGLT-1 inhibition is associated with glucose
malabsorption, selective SGLT-2 inhibitors were developed to
avoid the SGLT-1-induced malabsorption state. SGLT-2
inhibitor decreases renal glucose reabsorption, increases
urinary glucose excretion, improves the peripheral insulin
sensitivity and enhances pancreatic β-cell function to main-
tain blood glucose levels.48,49

Besides control of blood glucose level, SGLT-2 inhibitors
also reduce blood pressure, body weight and lower the risk
of hypoglycemia.50 The glucose-lowering effect of SGLT-2
inhibitors is comparable with the effect of metformin and
dipeptidyl peptidase-4, (DPP-4) inhibitors when used as
monotherapy. Thus, SGLT-2 inhibitors are suggested as
alternative first-line therapeutic agents when metformin
cannot be used. The first SGLT-2 inhibitor, canagliflozin
was approved by the FDA in March 2013.51 Canagli-
flozin was studied in Type-II DM patients and compared
clinically with standard antidiabetic drugs like metformin,
glimepiride, sitagliptin, pioglitazone, etc. In phase III trial,
canagliflozin at the dose of 100 mg and 300 mg showed
the favorable effects in Type-II DM patients. Following
the approval of canagliflozin, another SGLT-2 inhibitor,
dapagliflozin is approved by the FDA for use in adults
with Type-II DM in January 2014.52 The clinical efficacy
and safety of the dapagliflozin as a SGLT-2 inhibitor were
extensively studied using 14 clinical trials and evidence is
widely documented.53–55 Similarly, other molecules such as
ipragliflozin and ertugliflozin are in development pipeline
and currently at phase III trials.56
Figure 1 Involvement of different mechanisms for Type-ii diabetes with targets.

Abbreviations: HSD1, 11β-hydroxysteroid dehydrogenase type 1; AC, adenylyl cyclase; Accp, acyl carrier protein; AI CAR, 5-aminoimidazole-4-carboxamide nucleotide; AMPc, cyclic AMP; AMPK, AMP-activated protein kinase; AMPK-P, phosphorylated AMP-activated protein kinase; CaMKK, calcium mediated mitogen protein kinase kinase; coA, coenzyme A; COX2, cyclooxygenase2; CPT, carnitine palmitoyltransferase; DAG, Di-acyl glycerol; DM, diabetes mellitus; DPP, inhibitors of dipeptidyl peptidase 4; ERK, estrogen-related receptor-α; FA, fatty acid; FAS, fatty acid synthetase; fcoA, fluoroacetyl coenzyme A; FXR, farnesoid X receptor; GFR, growth factor receptor; GiP, gastric inhibitory polypeptide/glucose-dependent insulinotropic peptide; GLP-1, glucagon-like peptide-1; GPCR40, G-protein-coupled receptor 40 family; GSK3, glycogen synthase kinase 3; HSL, hormone sensitive lipase; IL1, interleukin 1; IRS, insulin receptor substrate; LK, β1 tumour suppressor kinase; LYN, belongs to Src family of protein tyrosin kinase; MCD, malonyl-CoA decarboxylase; mTOR, mammalian target of rapamycin; NAD, nicotinamide adenine dinucleotide; NF-κB, nuclear factor NF-kappa B; P, phosphorylation; P70rsk, p70 ribosomal S6 kinases; PHSL, P-hormone-sensitive lipase; P-HSP, phosphoinositide 3-kinase; PPAR, peroxisome proliferator-activated receptor; PPAR-γ, peroxisome proliferator-activated receptor; PTP-1β, protein tyrosine phosphatase 1β; RXR, retinoid X receptor; SGT, sodium glucose transporter; SReBP, sterol regulatory element-binding proteins; TNFα, tumor necrosis factor alpha; UKPDS, United Kingdom Prospective Diabetes Study; VLDL, very low density lipoprotein.
GSK-3: constructive treats
Glycogen synthase, is a rate limiting enzyme involved in glycogen biosynthesis. GSK-3 was identified in the late 1970s, and possesses an ability to phosphorylate the glycogen synthase.57,58 The GSK-3 is conserved signaling molecule that belongs to serine/threonine kinases. It has an important role in diverse biological processes. It was observed that abnormal GSK-3 activity is associated with multiple human pathologies such as diabetes, psychiatric diseases, neurodegenerative and inflammatory diseases.59 This observation laid down the foundation of hypothesis that GSK-3 inhibition has therapeutic benefits in various ailments. It has directed the research toward the discovery and design of selective GSK-3 inhibitors. The reported GSK-3 inhibitors include small molecules isolated from natural and marine sources or obtained from chemical synthesis. These inhibitors may act through multiple mechanisms, including competitive or non-competitive inhibition of ATP. Academic and industrial efforts have been made toward the discovery and development of novel GSK-3 inhibitors.60 Several chemical families with great structural diversity are reported to emerge as GSK-3 inhibitors. The number of small molecule GSK-3 inhibitors is on continuous rise and most of these inhibitors are in the early discovery phase.

Phosphatidylinositol 3-kinase/Akt
Phosphatidylinositol 3-kinase (PI3K) and its downstream effector, serine-threonine protein kinase (Akt) are chief signaling enzymes implicated in cell survival and metabolic control.61,62 The phosphorylation of downstream apoptotic molecules such as BAX, Bcl-2-associated death promoter (BAD) and GSK-3β by PI3K/Akt elicits potent anti-apoptotic effect. The PI3K/Akt pathway is responsible for insulin-mediated glucose metabolism as well as protein synthesis and inactivation of its downstream target GSK-3, which is crucial for glucose sensing and β-cell growth.63 Thus, GSK-3 β can be the possible target for β-cell protective agents.64 Wortmannin, an antagonist of PI3K through down-regulation of PI3K/Akt signaling, inhibited the cell proliferation and induced the apoptosis.65 Different mechanisms and biological targets involved in Type-II DM are presented as Figure 1 and Table 3.

Discontinued drugs
Diabetes is the 6th major cause of worldwide deaths.66 Alarming increase in the incidence of diabetes demands for successful therapies. American biopharmaceutical research organizations are engaged in the development of about 180 new medicines for diabetes and related conditions. Currently, about 200 clinical trials on diabetic patients are ongoing in USA. Promising leads from the development pipeline have shown a hope for the control of diabetes complications at an affordable cost. However, failure of drugs to demonstrate promising results in the clinical trials and incidences of market withdrawal have resulted in the decline in interest of major pharmaceutical companies in diabetes research. In between 2012 and 2013 and in 2014, ~22 and 14 antidiabetic drugs were discontinued from various phases of drug development. Details of these discontinued drugs are described in Table 4. Piramal Life Sciences discontinued the development of three antidiabetic drugs namely, P-11187, P-1736–05 and P-7435 in 2014. The P-11187 is G-protein-coupled receptor 40 (GPCR40) agonist, which showed promising results in Type-II diabetes. It acts through the stimulation of glucose-induced insulin secretion.67 P-11187 was described as an oral, highly selective and potent partial agonist of human, rat and

Table 3 Distribution of therapeutic targets of diabetes mellitus

<table>
<thead>
<tr>
<th>Molecular function</th>
<th>No of targets</th>
<th>Biological process</th>
<th>No of targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrosine kinase</td>
<td>1</td>
<td>Phosphorylation</td>
<td>1</td>
</tr>
<tr>
<td>Dehydrogenase</td>
<td>1</td>
<td>Lipid metabolism</td>
<td>1</td>
</tr>
<tr>
<td>Growth factor</td>
<td>1</td>
<td>Homeostasis</td>
<td>2</td>
</tr>
<tr>
<td>Transport</td>
<td>2</td>
<td>Insulin resistance</td>
<td>2</td>
</tr>
<tr>
<td>Serine/threonine kinase</td>
<td>2</td>
<td>Transport and uptake</td>
<td>2</td>
</tr>
<tr>
<td>Ligase</td>
<td>2</td>
<td>Fatty acid oxidation</td>
<td>2</td>
</tr>
<tr>
<td>Transfer carrier protein</td>
<td>2</td>
<td>Insulin release</td>
<td>3</td>
</tr>
<tr>
<td>Oxidoreductase</td>
<td>2</td>
<td>Signal transduction</td>
<td>4</td>
</tr>
<tr>
<td>Signaling molecule</td>
<td>3</td>
<td>Protein metabolism</td>
<td>5</td>
</tr>
<tr>
<td>Interleukin receptor</td>
<td>3</td>
<td>Cytokine mediated</td>
<td>5</td>
</tr>
<tr>
<td>Transcription factor</td>
<td>4</td>
<td>Other metabolism</td>
<td>5</td>
</tr>
<tr>
<td>Hydrolase and protease</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-protein-coupled receptor</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinase/Transferase</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4 Discontinued anti-diabetic drugs

<table>
<thead>
<tr>
<th>Compound</th>
<th>Company</th>
<th>Mechanism</th>
<th>Status (phase) at discontinuation</th>
<th>Date of discontinuation</th>
<th>Reason for discontinuation</th>
<th>Notes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-11187</td>
<td>Piramal</td>
<td>GPCR40 agonist</td>
<td>Phase I</td>
<td>–</td>
<td>Business focus</td>
<td>Highly selective, potent and orally active partial agonist of free fatty acid receptor 1 (GPCR40). Act through potentiation of glucose-stimulated insulin secretion</td>
<td>68</td>
</tr>
<tr>
<td>TAK-875</td>
<td>Takeda</td>
<td>GPCR40 agonist</td>
<td>Phase III</td>
<td>27 Dec 2013</td>
<td>Hepatotoxicity</td>
<td>GPCR40 agonist having potential to cause liver injury</td>
<td></td>
</tr>
<tr>
<td>P-7435</td>
<td>Piramal</td>
<td>DGAT-I inhibitor</td>
<td>Phase I</td>
<td>–</td>
<td>Business focus</td>
<td>Diacylglycerol acyltransferase I (DGAT-I) inhibitor. Potential to treat dyslipidemia and elevated glycaemia in Type-II diabetes</td>
<td>75</td>
</tr>
<tr>
<td>P-7436</td>
<td>Piramal</td>
<td>Unknown</td>
<td>Preclinical</td>
<td>–</td>
<td>Business focus</td>
<td>Initially designated as PPAR-γ activator but it failed to demonstrate this activity in preclinical studies</td>
<td></td>
</tr>
<tr>
<td>NN1954 and NN1956</td>
<td>Novo Nordisk</td>
<td>Oral insulin (to supply baseline insulin)</td>
<td>Phase I</td>
<td>–</td>
<td>Not disclosed</td>
<td>Long-acting insulin analogs delivered by oral tablets by so-called gastrointestinal permeation enhancement technology</td>
<td>68</td>
</tr>
<tr>
<td>MK-0893</td>
<td>Merck</td>
<td>Glucagon receptor antagonist</td>
<td>Phase II</td>
<td>–</td>
<td>Unexpected toxicity</td>
<td>Demonstrated toxicity in clinical studies like increased levels of LDL & transaminase, elevated blood pressure and body weight</td>
<td></td>
</tr>
<tr>
<td>BMS-788 (XL-652)</td>
<td>BMS (Exelixis)</td>
<td>Liver X Receptor (LXR) partial agonist</td>
<td>Phase I</td>
<td>03 Jan 2014</td>
<td>Not disclosed</td>
<td>LXR is a novel target for impacting cardiovascular and metabolic disorders acting through cholesterol transport. BMS-788 is a small-molecule agonist of LXR</td>
<td>68</td>
</tr>
<tr>
<td>Betatrophin</td>
<td>Janssen</td>
<td>β-cell trophin</td>
<td>Preclinical</td>
<td>–</td>
<td>Not disclosed</td>
<td>Betatrophin has role in the growth of pancreatic β-cells</td>
<td></td>
</tr>
<tr>
<td>LY-2382770</td>
<td>Eli Lilly</td>
<td>TGF-β mAb</td>
<td>Phase II</td>
<td>21 Apr 2014</td>
<td>Not disclosed</td>
<td>Demonstrated nephroprotective effect in both Type-I and Type-II diabetic subjects</td>
<td>68</td>
</tr>
<tr>
<td>DiaPep227 (AVE-0277)</td>
<td>Hyperion</td>
<td>Heat shock protein 60 (Hsp60)-derived peptide</td>
<td>Phase III</td>
<td>–</td>
<td>Data integrity</td>
<td>Effective in the prevention and treatment of Type-I diabetes and autoimmune Type-II diabetes</td>
<td></td>
</tr>
<tr>
<td>AJD-101</td>
<td>Ajinomoto/Daiichi Sanko</td>
<td>Insulin secretagogue</td>
<td>Phase II</td>
<td>02 Dec 2008</td>
<td>Unspecified</td>
<td>Stimulates insulin independent glucose uptake through the activation of insulin signaling pathway</td>
<td></td>
</tr>
<tr>
<td>KRP-104</td>
<td>Kyorin/ActiveX</td>
<td>Dipeptidyl peptidase 4 inhibitor</td>
<td>Phase II</td>
<td>–</td>
<td>Business focus</td>
<td>Acts through elevation of incretins. Discontinued due to strategic decision of company</td>
<td>68</td>
</tr>
<tr>
<td>NN9223</td>
<td>Novo Nordisk</td>
<td>GLP-1 agonist</td>
<td>Phase II</td>
<td>21 Jun 2012</td>
<td>Dropped in favor of new candidate semaglutide</td>
<td>Acts through incretin pathways</td>
<td></td>
</tr>
<tr>
<td>PF-04991532</td>
<td>Pfizer</td>
<td>Glucokinase activator</td>
<td>Phase II</td>
<td>10 May 2012</td>
<td>Unspecified</td>
<td>Hepatoselective glucokinase activator</td>
<td>68</td>
</tr>
<tr>
<td>Compound</td>
<td>Company</td>
<td>Mechanism</td>
<td>Status (phase) at discontinuation</td>
<td>Date of discontinuation</td>
<td>Reason for discontinuation</td>
<td>Notes</td>
<td>References</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------</td>
<td>----------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------</td>
<td>--</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>PSN-821</td>
<td>Astellas/OSI Pharmaceuticals</td>
<td>GPR119 agonist</td>
<td>Phase II</td>
<td>04 Feb 2013</td>
<td>Unspecified</td>
<td>GPR119 receptors are G-protein coupled receptors that respond to fatty acids and stimulate insulin secretion</td>
<td>68</td>
</tr>
<tr>
<td>Tagatose</td>
<td>Spherix/Biospherics</td>
<td>Hexose (fructose epimer)</td>
<td>Phase III</td>
<td>–</td>
<td>Failure to comply with regulatory requirements</td>
<td>It is a naturally occurring monosaccharide and functional sweetener</td>
<td>75</td>
</tr>
<tr>
<td>Tesaglitazar AZ-242</td>
<td>AZ</td>
<td>PPAR-α and PPAR-γ agonist</td>
<td>Phase III</td>
<td>May 2006</td>
<td>Adverse events</td>
<td>Demonstrated adverse effects like elevated serum creatinine and decreased glomerular filtration rate</td>
<td>75</td>
</tr>
<tr>
<td>Muraglitazar; BMS-298585</td>
<td>BMSS</td>
<td>PPAR-α and PPAR-γ agonist</td>
<td>Phase III</td>
<td>May 2006</td>
<td>Adverse events</td>
<td>Showed cardiovascular side effect</td>
<td>75</td>
</tr>
<tr>
<td>CYT009-GhrQb</td>
<td>Cytos Biotechnology</td>
<td>Ghrelin</td>
<td>Phase II</td>
<td>07 Nov 2006</td>
<td>Poor efficacy</td>
<td>CYT009-GhrQb is a vaccine</td>
<td></td>
</tr>
<tr>
<td>R-1438</td>
<td>Hoffmann-La Roche</td>
<td>Unspecified</td>
<td>Phase II</td>
<td>19 Oct 2006</td>
<td>Poor efficacy</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Sipoglitazar (TAK-654)</td>
<td>Takeda</td>
<td>Unspecified</td>
<td>Phase II</td>
<td>12 Sep 2006</td>
<td>Poor efficacy and adversity</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Troglitazone</td>
<td>Daiichi Sankyo</td>
<td>PPAR-α and PPAR-γ agonist</td>
<td>–</td>
<td>21 March 2000</td>
<td>Hepatotoxicity</td>
<td>About 63 liver failure deaths are linked with the use of troglitazone</td>
<td>76</td>
</tr>
<tr>
<td>Pioglitazone</td>
<td>Takeda</td>
<td>PPAR-γ agonist</td>
<td>–</td>
<td>2011 (France) 2013 (India)</td>
<td>Bladder cancer</td>
<td>Withdrawn from market due to increased risk of bladder cancer in patients taking Actos (pioglitazone) for a long time for the treatment of Type-II diabetes mellitus</td>
<td>5</td>
</tr>
<tr>
<td>Phenformin</td>
<td>Ciba-Geigy</td>
<td>AMP-activated protein kinase</td>
<td>–</td>
<td>October 1976</td>
<td>Lactic acidosis</td>
<td>Withdrawn from market due to potential to cause lactic acidosis</td>
<td></td>
</tr>
</tbody>
</table>

Note: ‘–’ indicates the date of discontinuation of drug is unclear.

Abbreviations: AMPK, AMP-activated protein kinase; GLP-1, glucagon-like peptide-1; GPCR-40, G-protein-coupled receptor 40; PPAR, peroxisome proliferator-activated receptor; LDL, low density lipoproteins; PPAR-γ, peroxisome proliferator-activated receptor.
mouse GPCR40 with effective concentration 50 (EC₅₀) value of 14.4, 2.53 and 4.25 nM, respectively. P-1736-50 was considered as a PPAR-γ activator, but in preclinical studies, it failed to demonstrate its efficacy and hence was discontinued from further research. Piramal Life Sciences also discontinued the development of diacylglycerol acyltransferase 1 inhibitor P-7435 due to business focus. Similarly, Takeda discontinued TAK-875 (Fasiglifam) due to its hepatotoxic potential in phase III clinical trial. The MK-0893 is another molecule discontinued from the development process by Merck due to safety issues. Glucokinase is a major enzyme that phosphorylates glucose into glucose-6-phosphate. It is essential for glycogenesis and plays an important role in the hepatic glucose clearance. In 2013, Takeda was developing TAK-329 as glucokinase activator, but due to unexpected reasons, Takeda discontinued the development of this drug. Glucagon-like peptide 1 (GLP-1) and GIP are produced in intestine. The active forms of GLP and GIP increase the insulin secretion and regulate the glucose homeostasis. Upon release, GLP and GIP are immediately inactivated by dipeptidyl peptidase-4 (DP4) hence they have very short half-life. Therefore, the discovery of DP4 inhibitors is a promising approach toward the development of novel anti-diabetic drugs. The SYR-472 was a highly selective, long active DP4 inhibitor from Takeda that was discontinued due to its high development cost. Recently, Takeda has discontinued the development of combined PPAR-γ/δ activator, sipoglitzazar in phase III. Various anti-diabetic drugs that are discontinued from further research or withdrawn from the market are described in Table 4.

Conclusion

Scientific studies encircling the diabetes and its complications are on continuous rise. The annual cost of diabetes to the USA health care system is $100 billion. Despite the availability of numerous antidiabetic drugs, search for the novel leads that completely cure Type-II DM is an ongoing quest. The disease architecture in Type-II DM is so complicated that even magic bullets, which selectively target one protein, fail to restore the biological network to healthy state. The current research scenario highlighted the need for identification and exploration of therapeutic targets in Type-II DM. Successful modulation of these biological targets can result in the cure of diabetes and associated complications. The present review provides an overview of therapeutic targets and their role in Type-II DM. This information can be used to plan the therapeutic strategies for the management of Type-II DM.

Search strategy

We searched data bases like PubMed, Medline, Google Scholar, Science Direct, Gene cards and DisGenNET along with proceedings available on websites of the American Diabetes Association and European Association for the Study of Diabetes. Full text articles published between 1980 and 2016 and written in English are included in present review. Databases were searched with keywords like names of target, gene, discontinued drugs, drugs withdrawn from market and inhibitors in development.

Acknowledgments

The authors gratefully acknowledge the financial support received under Young Scientist Research Scheme (File no SB/YS/LS-114/2013) of Science and Engineering Research Board (SERB), Department of Science and Technology, New Delhi, India. Also, the research support from the University Program for Advanced Research (UPAR) and Center-Based Interdisciplinary grants from the Office of the Deputy Vice Chancellor of Research and Graduate Studies of United Arab Emirates University, Al Ain, UAE to Shreesh Ojha is gratefully acknowledged.

Disclosure

The authors report no conflicts of interest in this work.

References

