PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition

Mohammed M Gad¹ Shaimaa M Fouda¹,² Fahad A Al-Harbi¹ Ritva Näpänkangas²,³ Aune Raustia²,³
¹Department of Substitutive Dental Sciences, College of Dentistry, University of Dammam, Dammam, Kingdom of Saudi Arabia; ²Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland; ³Medical Research Center, Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland

Abstract: This paper reviews acrylic denture base resin enhancement during the past few decades. Specific attention is given to the effect of fiber, filler, and nanofiller addition on poly(methyl methacrylate) (PMMA) properties. The review is based on scientific reviews, papers, and abstracts, as well as studies concerning the effect of additives, fibers, fillers, and reinforcement materials on PMMA, published between 1974 and 2016. Many studies have reported improvement of PMMA denture base material with the addition of fillers, fibers, nanofiller, and hybrid reinforcement. However, most of the studies were limited to in vitro investigations without bioactivity and clinical implications. Considering the findings of the review, there is no ideal denture base material, but the properties of PMMA could be improved with some modifications, especially with silanized nanoparticle addition and a hybrid reinforcement system.

Keywords: denture base, PMMA, reinforcement, nanoparticles, fibers, fillers

Introduction

Although dental implants are increasingly used in the treatment of edentulous patients, in many cases a conventional complete denture is still the treatment of choice for medical and financial reasons.¹ An ideal denture base material should have adequate mechanical and physical properties, besides biocompatibility and aesthetics.² Poly(methyl methacrylate) (PMMA) is frequently used to fabricate denture bases due to its various advantages, including low cost, biocompatibility, ease of processing, stability in the oral environment, and acceptable aesthetics. However, it is not considered an ideal material because of its inferior physical and mechanical properties.³

Several studies have been conducted with the goal of enhancing the properties of PMMA by using different curing methods and/or incorporating fillers in its composition.²,³ Addition of fillers and fibers to PMMA is a commonly used method to improve both its physical and mechanical properties.¹ This paper reviews different types of fibers and fillers added to PMMA denture base resin and evaluates their effect on the physical and mechanical properties. The review includes data and source information available from scientific papers, reviews, and abstracts published from 1974 to 2016. The published material was searched in dental literature using general and specialist databases (Google scholar/PubMed database) and the keywords: denture base, PMMA, reinforcement, nanoparticles, fibers, fillers.

Discussion

Many additives have been suggested to enhance the properties of denture base resin, such as fibers, fillers, or nanofillers (Table 1).
Fibers
Reinforcement of acrylic resin with fibers has been reported to improve the flexural and impact strength as well as the fatigue resistance of the resin. Several studies have been conducted using different types of fibers, such as nylon, polyethylene, polyamide fiber, and particularly glass fiber, due to their biocompatibility and superior aesthetics and mechanical properties.

Glass fiber
Glass fiber reinforcement has been found to significantly increase the flexural strength, impact strength, toughness, and Vickers hardness of acrylic resin. Also, a significant reduction in deformation of the denture base to less than 1% deformation was found. Moreover, a recent study found that the position of glass fiber within the denture base affects its flexural properties. Improvement of flexural strength, toughness, and flexural modulus was obtained from placement of glass fiber close to the surface of the denture base on its tensile stress side. When glass fiber was placed in neutral stress area, only flexural toughness was improved, and when placed in the compressive side, surface flexural modulus was increased. However, one study indicated that glass fiber impregnation into acrylic resin did not affect its linear dimensional stability.

Preimpregnated and silane [3-(Trimethoxysilyl) propyl methacrylate (TMSPM)]-treated glass fiber also increased the flexural strength and impact strength of acrylic resin. Silanized glass fiber was found to be biocompatible when added to heat-cured and light-cured resins. Moreover, fiber-reinforced nanopigmented PMMA showed reduced porosity and Candida albicans adherence.

Polyamide fiber
Polyamide fiber includes both Nylon and Aramid (Kevlar, DuPont, Wilmington, DE, USA) fiber. Aramid fiber-reinforced denture base resin was found biocompatible, and additionally its flexural strength and flexural modulus were increased. However, the hardness of the resin decreased with increasing fiber concentration. Also, its yellow color is considered a drawback. Nylon increased the fracture resistance of PMMA, as it has high resistance to continual stress. Therefore, incorporating nylon fiber in PMMA increased its structural elasticity.

Polyethylene and polypropylene fibers
Polyethylene fiber significantly increased the impact strength of PMMA, and a further increase was observed with fiber

Table 1
Summary of fiber, filler and nanofiller additive studies and its effect on denture base resin

<table>
<thead>
<tr>
<th>Additives</th>
<th>Modifiers</th>
<th>Effect on denture base resin</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber</td>
<td>Glass fiber</td>
<td>Flexural strength, impact strength, toughness, and reduced deformation of the denture base.</td>
<td>The most common reinforcement repair material under research is the silanated glass fiber. It highly improves the physical properties of denture base resin in addition to its biocompatibility. Also its ease of application renders its priority for use.</td>
</tr>
<tr>
<td></td>
<td>Silanized glass fiber</td>
<td>Flexural strength and impact strength.</td>
<td>Flexural strength and impact strength.</td>
</tr>
<tr>
<td></td>
<td>Aramid</td>
<td>Biocompatible, flexural strengths, and flexural moduli.</td>
<td>Hardness, yellow color.</td>
</tr>
<tr>
<td></td>
<td>Nylon</td>
<td>Fracture resistance and structural elasticity.</td>
<td>Wear resistance.</td>
</tr>
<tr>
<td></td>
<td>Polypropylene</td>
<td>Impact strength, transverse, tensile, and impact strength.</td>
<td>Flexural strength, transverse, tensile, and impact strength.</td>
</tr>
<tr>
<td></td>
<td>Polyethylene fiber</td>
<td>Impact strength.</td>
<td>Flexural modulus.</td>
</tr>
<tr>
<td></td>
<td>Vegetable fiber</td>
<td>Flexural strength.</td>
<td>Wear resistance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filler</th>
<th>Name</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina</td>
<td>Al₂O₃</td>
<td>Thermal conductivity,²⁵,²⁹,³¹ flexural strength, impact strength, tensile strength, and surface hardness of the resin.²⁵,²⁷,³¹,³₂</td>
</tr>
<tr>
<td>Silanized Al₂O₃</td>
<td></td>
<td>Compressive, tensile, flexural strength, wear resistance,²⁵,³⁵,³⁶ water sorption, and solubility.²⁶</td>
</tr>
<tr>
<td>Al₂O₃ NPs</td>
<td></td>
<td>Thermal stability,²⁹ flexural strength, water sorption, solubility,²⁷ and biocompatibility.²⁸</td>
</tr>
<tr>
<td>Zirconia</td>
<td>ZrO₂</td>
<td>Flexural strength,¹⁴,⁴⁰–⁴² impact strength, and surface hardness.²⁶,⁴⁰–⁴² Water sorption and solubility.²⁶</td>
</tr>
<tr>
<td>ZrO₂ NPs</td>
<td></td>
<td>Impact strength, flexural strength and radio-opacity.⁴⁴,⁴⁶</td>
</tr>
<tr>
<td>Silanized zirconia NPs</td>
<td></td>
<td>Flexural strength, impact strength,⁴¹–⁴⁴ fatigue strength, fracture toughness and hardness.⁴⁴,⁴⁶–⁴⁸ as well as color properties.⁴¹</td>
</tr>
<tr>
<td>Zirconia nanotubes</td>
<td></td>
<td>Flexural strength.⁴⁶</td>
</tr>
<tr>
<td>Silver</td>
<td>Silver</td>
<td>Flexural and fatigue strength, thermal diffusivity.¹¹ Water sorption, water solubility.⁷³ Tensile and flexural strengths.²⁵</td>
</tr>
<tr>
<td>Silver NP</td>
<td></td>
<td>Antifungal properties,⁶⁷–⁶⁹ thermal conductivity, and compressive strength.⁷⁴,⁷⁵ Not cytotoxic.⁶⁸,⁶⁹ Viscoelastic properties.⁷⁸</td>
</tr>
<tr>
<td>Titanium</td>
<td>TiO₂</td>
<td>Flexural strength, fracture toughness, and hardness.²⁴,⁴⁰,⁵⁷,⁶⁰ Flexure strength.³⁹,⁴⁰,⁵⁷</td>
</tr>
<tr>
<td>TiO₂ NPs</td>
<td></td>
<td>Impact strength, water sorption, and solubility.¹⁴ Flexural and thermal conductivity.⁷⁹</td>
</tr>
<tr>
<td>Titanate-coupling agents</td>
<td></td>
<td>Transverse strength, hardness, water sorption and solubility.⁶¹ Radio-pacifier,⁶⁴ thermally stable.⁶⁵</td>
</tr>
<tr>
<td>BaTiO₃</td>
<td></td>
<td>Fracture toughness.⁶⁴ High density.⁶⁵</td>
</tr>
<tr>
<td>Nano-gold</td>
<td>Silane-treated HA filler</td>
<td>Flexural strength and thermal conductivity.⁷⁹,⁸⁰ Flexural properties on water storage.⁸³</td>
</tr>
<tr>
<td>HA NPs</td>
<td></td>
<td>Fatigue and compression strengths.⁴⁸</td>
</tr>
<tr>
<td>Carbon Family</td>
<td>Nano-carbon</td>
<td>Impact strength and flexural strength.⁵⁷ Impact and transverse strength.⁹⁰</td>
</tr>
<tr>
<td>SWCNT’s</td>
<td></td>
<td>Flexural strength and resilience.¹⁰⁰</td>
</tr>
<tr>
<td>MWCNTs</td>
<td></td>
<td>Flexural strength and resilience.¹⁰⁰</td>
</tr>
</tbody>
</table>

- Alumina filler mainly used to improve thermal conductivity, and the silanized type improves physical and mechanical properties of denture base resin.
- Observational improvement in denture base properties with zirconia NPs incorporation. Silanized zirconia NPs resulted in superior mechanical properties and adequate surface properties of PMMA denture base resin.
- Silver mainly used as an antimicrobial agent, it was effective in reducing *Candida* adhesion.
- It also improved thermal conductivity, and it is biocompatible.
- TiO₂ NPs addition improves the mechanical and surface properties of denture base resin as well as thermal conductivity. An extra improvement was noticed with titanate-coupling of agents.
- Noticed improvement but need further investigations.
- Carbon NPs and nanotubes enhance denture base strength. Meanwhile silanized NPs improved the properties of denture base resin but it was decreased with silanized nanotubes.

(Continued)
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Additives</th>
<th>Modifications</th>
<th>Effect Increase/improve</th>
<th>Decrease/weaken/no effect</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td></td>
<td>Hardness and thermal conductivity, impact strength, fracture toughness, and scratch resistance</td>
<td>Fatigue resistance</td>
<td>Although few researches have been done on ND, it showed improvement in physical and mechanical properties, as well as thermal conductivity of denture base resin.</td>
</tr>
<tr>
<td>Glass flake</td>
<td></td>
<td>Fracture toughness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mica</td>
<td></td>
<td>Thermal dimensional properties, hardness</td>
<td>Flexural strength</td>
<td>Different forms of silica were used. The silanized and fluoridated one improved the mechanical properties and maintained surface properties of denture base resin, as well as improved denture hygiene.</td>
</tr>
<tr>
<td>SiO₂</td>
<td></td>
<td>Impact, transverse strength, and hardness</td>
<td>No effect (hardness)</td>
<td></td>
</tr>
<tr>
<td>Surface-treated silica</td>
<td></td>
<td>Flexural strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid reinforcement</td>
<td>Hybrid fibers</td>
<td>Flexural strength and toughness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal oxides and ceramics</td>
<td></td>
<td>Flexural strength and toughness, surface roughness, tensile modulus, hardness, and thermal conductivity, reduced shrinkage, and have antibacterial properties without showing cytotoxicity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber and other fillers</td>
<td></td>
<td>Impact strength, hardness, surface roughness, thermal conductivity, compressive, and fatigue strengths.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: C. albicans, Candida albicans; HA, hydroxyapatite; MWCNT, multiple wall carbon nanotube; ND, nano-diamond; NP, nanoparticle; OPEFB, oil palm empty fruit bunch; PMMA, poly(methyl methacrylate); SWCNT, single-wall carbon nanotube.

Fillers

Several studies were conducted on using fillers (Table 2). Natural fibers were suggested to reinforce denture base resins. Alumina (Al₂O₃) is a typical inorganic filler. Alumina powder and nanofillers improve the thermal properties of PMMA and thus improve its thermal stability compared with conventional PMMA. The high surface area, fine-size, and homogenous distribution of nanofillers improved the thermal properties of PMMA and increased its thermal stability compared with conventional PMMA. Several studies have been conducted on using fillers (Table 2). The highest impact strength was obtained with polypropylene fiber treated with plasma, which can be used to strengthen acrylic resin and reduce surface treatment. Polypropylene fiber increased the impact strength of PMMA reinforcement. The drawback of this fiber was its presentation in long form, which requires extra work, ie, cutting and preparation. Several studies were conducted on using fillers (Table 2). The highest impact strength was obtained with polypropylene fiber treated with plasma, which can be used to strengthen acrylic resin and reduce surface treatment. Polypropylene fiber increased the impact strength of PMMA reinforcement. The drawback of this fiber was its presentation in long form, which requires extra work, ie, cutting and preparation.

Natural fibers

Natural fibers were suggested to reinforce denture base resins, among which are oil palm empty fruit bunch (OPEFB) and vegetable fiber (ramie fiber). OPEFB significantly increased the flexural strength and flexural modulus of acrylic resin. Woven polyethylene fiber reinforcement can significantly increase the elastic modulus and toughness of PMMA. However, the procedures of woven fiber etching, preparing, and positioning were found impractical. Polypropylene fiber increased the impact strength of PMMA reinforcement. The drawback of this fiber was its presentation in long form, which requires extra work, ie, cutting and preparation.
improved its thermal conductivity and, accordingly, patient satisfaction was expected to increase.25,30–33 In addition, reinforcing PMMA with aluminum increased the flexural strength, impact strength, tensile strength, compressive strength, and surface hardness of the resin.26,30,32,34 Warpage also decreased significantly after addition of aluminum to PMMA. On the other hand, some studies found that adding aluminum decreases both the impact and tensile strength of PMMA.31,35 The resin was weakened due to stress concentration around the embedded metal and its poor adhesion to the polymer.

However, several methods such as sandblasting, silanization, and metal adhesive resins were suggested to improve the bond between the acrylic resin and metal surface.27 Treating aluminum oxide particles with a coupling agent increased the flexural properties of acrylic resin.36,37 Also, silane-treated aluminum particles significantly increased the compressive, tensile, and flexural strength and the wear resistance of reinforced denture base resin.25,37

Surface roughness and water sorption were not significantly changed with aluminum-reinforced denture resin.31,35 However, one study found a significant decrease in water sorption and solubility after addition of Al\textsubscript{2}O\textsubscript{3},26 and an increase in water sorption was found by another study.31

Safi28 concluded that adding Al\textsubscript{2}O\textsubscript{3} nanoparticles (NPs) to PMMA increases its thermal stability compared with pure PMMA. Addition of silanized Al\textsubscript{2}O\textsubscript{3} NPs to acrylic resin improved the thermal properties (decreased the thermal expansion coefficient and contraction) and flexural strength of acrylic resin, and at the same time this addition decreased water sorption and solubility.38 A recent study reported that alumina NPs have a good level of biocompatibility when added to microwave-treated and untreated PMMA powder.39 The disadvantage of aluminum-reinforced PMMA is discoloration of the resin, which limits its use to areas where it is not visible.38 Although the addition of Al\textsubscript{2}O\textsubscript{3} to PMMA significantly increased thermal conductivity, the flexural strength values of PMMA were not significantly changed.51

Zirconia (ZrO\textsubscript{2})

Several studies found that incorporating zirconia (ZrO\textsubscript{2}) fillers in PMMA significantly increased its flexural strength.26–42 However, a slight decrease in flexural strength was also reported; it may result from clustering of the particles within the resin, which weakened the material.43 In addition, the impact strength, fracture toughness, and hardness of PMMA were increased significantly by incorporating ZrO\textsubscript{2}.26,40 On the other hand, one study found an insignificant increase in the impact strength and surface hardness of zirconia-reinforced resin compared with unreinforced PMMA.41 A decrease in both impact strength and surface hardness was also reported.42 Also, addition of ZrO\textsubscript{2} significantly increased the thermal conductivity of PMMA.33 Different results were obtained regarding the effect of ZrO\textsubscript{2} on the water sorption and solubility of PMMA. It was found that adding ZrO\textsubscript{2} significantly decreased the water sorption and solubility of PMMA,26 while an insignificant difference in water solubility and an increase in water sorption within the limit of ADA specifications were also reported.41,42

Adding zirconia NPs was suggested to improve the mechanical properties of PMMA.44–47 Incorporating zirconia NPs in PMMA increased its impact strength, flexural strength,44,46,47 compressive strength, fatigue strength, as well as its fracture toughness and hardness.46,48,49 In addition, it may have an antifungal effect and may play a preventive role in patients susceptible to fungal infections.50 On the other hand, one study found an insignificant increase in the hardness of nano-ZrO\textsubscript{2}/PMMA, and its surface roughness was not significantly changed.44 Safi et al.51 studied the effect of zirconia NP addition on the color properties of PMMA and did not find any noticeable color changes.

Poor wettability between fillers and the resin matrix reduced improvement of the physical and mechanical properties of PMMA. Therefore, a silane coupling agent was used to improve the bond strength between zirconia NPs and PMMA. It resulted in increased flexural strength and impact strength of acrylic resin, but its tensile strength was not improved.51–54 However, one study found that silanized zirconia NPs improved the tensile strength and

Table 2 Classification of reviewed fillers and nanofillers

<table>
<thead>
<tr>
<th>Additives</th>
<th>Filler (Size -(\mu)m)</th>
<th>Nano-fill (Size -nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal oxides</td>
<td>Aluminum oxide (Al\textsubscript{2}O\textsubscript{3})</td>
<td>Al\textsubscript{2}O\textsubscript{3}</td>
</tr>
<tr>
<td></td>
<td>Zirconium oxide (ZrO\textsubscript{2})</td>
<td>ZrO\textsubscript{2} and nanotube</td>
</tr>
<tr>
<td></td>
<td>Titanium oxide (TiO\textsubscript{2})</td>
<td>TiO\textsubscript{2}</td>
</tr>
<tr>
<td>Noble metals</td>
<td>Silver (Ag)</td>
<td>AgNPs</td>
</tr>
<tr>
<td></td>
<td>Gold (Au)</td>
<td>Gold NPs</td>
</tr>
<tr>
<td></td>
<td>Platinum (Pt)</td>
<td>Platinum NPs</td>
</tr>
<tr>
<td></td>
<td>Palladium (Pd)</td>
<td>Palladium NPs</td>
</tr>
<tr>
<td>Mineral</td>
<td>HA</td>
<td>HA</td>
</tr>
<tr>
<td></td>
<td>Silicon dioxide (SiO\textsubscript{2})</td>
<td>SiO\textsubscript{2}</td>
</tr>
<tr>
<td></td>
<td>Mica</td>
<td>Nanoclay</td>
</tr>
<tr>
<td>Carbon family</td>
<td>Nano-carbon</td>
<td>Nano-carbon</td>
</tr>
<tr>
<td></td>
<td>NDs</td>
<td>NDs</td>
</tr>
</tbody>
</table>

Abbreviations: HA, hydroxyapatite; HNT, Halloysite nanotube; ND, nanodiamond; NP, nanoparticle.
fatigue strength of PMMA.55 Also hardness increased significantly and surface roughness increased slightly when silanized zirconia NPs were incorporated in acrylic resin, while apparent porosity,54,55 water sorption, and solubility decreased.55

In addition, zirconia nanotubes showed a better reinforcing effect than zirconia NPs. In contrast to zirconia NPs, surface treatment would lower the reinforcing effect of zirconia nanotubes. It was found that flexural strength was maximized when 2wt\% untreated zirconia nanotubes were added to PMMA.56

Titanium (TiO\textsubscript{2})

Several studies have investigated the effect of adding titanium dioxide (TiO\textsubscript{2}) on the properties of PMMA. It was found that adding TiO\textsubscript{2} particles could improve the flexure strength, fracture toughness, hardness of PMMA,26,40,57,58 as well as thermal conductivity.31 In addition, a significant increase in impact strength59 and a significant decrease in water sorption and solubility were found upon addition of TiO\textsubscript{2} to PMMA.26 Conversely, some studies found that TiO\textsubscript{2} did not improve the flexure strength of PMMA, which could be attributed to clustering of the particles within the resin, causing its weakness.50,57

Safi28 found that modifying PMMA with TiO\textsubscript{2} NPs has an effect on its thermal (decrease in the thermal expansion coefficient and contraction) and mechanical (decreased E-Modulus) stability, while a reduction in flexural strength and toughness was reported.9,59 Adhesion between the resin matrix and filler particles is very important in order to enhance the composite’s properties. Accordingly, a titanium coupling agent could be useful for improving the properties of titanium-reinforced PMMA.60 Incorporation of silanized TiO\textsubscript{2} NPs in PMMA improved the impact strength, transverse strength, and surface hardness of the resin and decreased its water sorption and solubility. Moreover, surface roughness increased with the addition of 3wt\% of silanized TiO\textsubscript{2} NPs to acrylic resin.61 Addition of apatite-coated titanium dioxide and fluoridated apatite-coated titanium dioxide after treatment with ultraviolet A irradiation of PMMA inhibited Candida adhesion due to their antifungal effect, and their use could be beneficial in obtaining appropriate denture hygiene.62,63 Addition of barium titanate (BaTiO\textsubscript{3}) as a radiopacifier to PMMA showed a slight decrease in fracture toughness properties.64 It was found that PMMA/BaTiO\textsubscript{3} composite is thermally stable, but its increased density affects denture retention.59,65

Noble metals
Silver (Ag)

Several studies found that addition of silver NPs (AgNPs) to denture base acrylic resin displayed antifungal properties,66-69 especially at high concentrations,70 and acted like a latent antifungal material with low-releasing Ag+.71 On the contrary, Wady et al72 found that incorporating silver NPs in PMMA did not affect the adhesion of C. albicans and biofilm accumulation.

Silver has an antimicrobial effect; its addition to PMMA could reduce microbial adhesion and colonization.66,67 Therefore, its use could be beneficial for immune-compromised and geriatric patients.65 In addition, silver-reinforced PMMA resin has increased flexural and fatigue strength and improved thermal conductivity.32,33 However, it was found that incorporating 0.5\% of antimicrobial silver–zinc zeolite in heat-cured acrylic resin did not affect its impact and transverse strength, the surface hardness, and the surface roughness of the resin. It did not change its color, but a significant decrease in water sorption and an increase in water solubility were found in the acrylic resin.71 On the other hand, it was suggested that, depending on its percentage, adding silver may negatively affect the mechanical properties of denture base resin.56 Incorporating silane-treated silver particles significantly increased the compressive strength of PMMA. Also, addition of 10wt\% and 20wt\% silane-treated silver fillers enhanced the tensile and flexural strength of PMMA.25 Addition of silver powder to PMMA significantly increased thermal conductivity; the flexural strength values of PMMA were not significantly changed.33

The physical and mechanical properties of PMMA were enhanced by the addition of silver NPs, including improvement of thermal conductivity and compressive strength.74,75 Therefore, it is recommended to be used in the palatal area of maxillary acrylic resin dentures.74 Also, it was found that PMMA-silver NPs are not cytotoxic.39,68 However, tensile strength did not change significantly after incorporating 0.2\% of AgNPs in comparison with unmodified PMMA, but it decreased significantly after incorporation of 2\%.76 In addition, poor color stability of PMMA-AgNPs was reported.71,77 Incorporating AgNPs in acrylic denture base material can improve its viscoelastic properties.78

Nano-gold (Au), platinum (Pt), palladium (Pd)

Nano-gold (Au) and platinum (Pt) NPs recently were suggested to improve the properties of PMMA denture base. The studies available on the effect of adding nano-gold to PMMA
are still limited at the present time. It has been observed that incorporating gold NPs considerably improved the flexural strength and thermal conductivity to almost double the value of pure PMMA, which could lead to more patient satisfaction.79,80 Addition of Pt NPs could improve mechanical properties of PMMA and provide antimicrobial effect.81 It was found that platinum significantly increased the bending deflection of PMMA and that palladium improved the bending strength when compared to silver and gold, which showed the lowest value of bending strength. Addition of gold and palladium improved Vickers hardness of PMMA and was decreased with the addition of platinum.82

Minerals

Hydroxyapatite fillers

Hydroxyapatite fillers (HA) added to PMMA resulted in superior mechanical properties. It increased the flexural strength as well as the flexural modulus of PMMA.83 The interfacial interaction between HA filler and the PMMA matrix is enhanced by treatment with γ-MPS.83,84 But a reduction in the flexural properties on water immersion was attributed to water’s plasticizing effect, which weakens the bonding between the HA filler and the PMMA matrix.85 The addition of HA NPs also increased both the fatigue and compression strength of PMMA resin in comparison with pure PMMA,86 in addition to significant increase in thermal conductivity.87

Silicon dioxide (SiO\textsubscript{2})

The mechanical and thermal properties of PMMA were enhanced by the incorporation of silicon dioxide (SiO\textsubscript{2}) NPs.88 Improvement of both the impact and transverse strength of PMMA was achieved by the addition of SiO\textsubscript{2} NPs. Surface hardness also increased with a higher SiO\textsubscript{2} NP concentration.89 However, improved hardness and fracture toughness were found with a low concentration of SiO\textsubscript{2} NPs. Increasing its content resulted in agglomeration and crack propagation, which reduces both hardness and fracture toughness.90 Addition of surface-treated silica improved the flexural strength of PMMA but did not affect hardness.91 On the other hand, a recent study found that silica NPs adversely affect the flexural strength of PMMA.92

Silica-based filler

Reinforcement of acrylic resin with glass flakes enhanced its fracture toughness, and the use of silane coupling resulted in further improvement of the resin’s properties.93 Micas are a group of lamellar silicate minerals, which have been suggested to improve resin’s properties. These lamellar silicate minerals are characterized by their high aspect ratio, and they improved the mechanical, thermal, as well as dimensional properties of PMMA.94 The hardness of acrylic resin increased with the incorporation of mica, but its flexural strength was reduced because of mica’s weak bond with the acrylic resin.95 It was also found that addition of fluoride glass fillers to PMMA decreased microbial adhesion, although it slightly increased surface roughness of the denture base resin.96–98 Nanoclay is another material which is used to improve the properties of composite and acrylic polymers. The addition of Nanoclay particles to PMMA improved its thermal conductivity, while it had a negative effect on the flexural strength.99 Placing silicon carbide filler powders in the palatal region of dentures can improve the thermal conductivity of PMMA without reducing strength or increasing weight.100 The halloysite nanotube is a silica-based naturally occurring mineral which introduced by Abdallah99 in 2016 to improve the properties of PMMA. Halloysite nanotube increased hardness of PMMA when added in small percentages, while the flexural strength and Young’s modulus did not show a significant increase.

Carbon family fillers

Carbon fillers are not commonly used to reinforce PMMA because of biological problems, poor aesthetics, as well as difficulty in handling and polishing.101 But nowadays, nanocarbon is one of the main branches of nanotechnology.102

Nano-carbon

Addition of 1% of carbon nanotubes to PMMA was found to significantly increase the impact strength and flexural strength of the resin, but its hardness was decreased.103 It was also found that adding 1.5% of single-walled carbon nanotubes significantly increased the impact and transverse strength of PMMA, but significantly decreased its surface hardness.104 Conversely, one study reported an insignificant effect of adding single-walled carbon nanotubes on the flexural strength of PMMA.105 Addition of 0.5% and 1% of multiple-wall carbon nanotubes (MWCNTs) improved the flexural strength and resilience of PMMA, while its fatigue resistance was decreased with higher concentrations of multiple-wall carbon nanotubes.106

Nano-diamonds

The outstanding properties of nano-diamonds (NDs), ie, high hardness and thermal conductivity, suggested its use to
Glass fiber reinforcement significantly increases the mechanical properties of PMMA.101,102 NDs significantly increased the impact strength of PMMA, and also improvement in fracture toughness was found, but only at the lowest concentration of NDs.103 Moreover, heat-treated NDs increased the scratch resistance of PMMA.104 Some drawbacks were attributed mainly to agglomeration of the NPs, which could act as points of stress concentration.105

Hybrid reinforcement

Reinforcement of PMMA by more than one type of fiber was first suggested by Vallittu in 1997.106 As listed in Table 3, the combination may be between different fibers,7 different metal oxides and ceramics,107–111 and fibers with metal oxides,112,113 or ceramic materials.48,114–116

Hybrid fiber reinforcement significantly increased the flexural strength and toughness of reinforced acrylic resin.14 Similar results were also obtained by incorporating metal oxides and ceramics, especially NPs, in PMMA.116 In addition to improving surface roughness,109 tensile strength, flexural modulus,114 hardness, and thermal conductivity,116 and radiopacity111 as well as reducing shrinkage,107,110 it has antibacterial properties without showing cytotoxicity.108

A combination of fibers and other fillers also increased impact strength, hardness,112 surface roughness, and thermal conductivity,113 as well as compressive and fatigue strengths.71

Summary and clinical implications

For years, acrylic dental prosthesis has been used for treatment of edentulous patients to improve their quality of life. It has several advantages including, considerable price, aesthetics, and ease of manipulation. However, it is susceptible to fracture or deformation due to its inferior mechanical and physical properties. Several attempts have been implemented to improve the properties of PMMA including addition of reinforcing material as fibers, fillers hybrid reinforcement, and, recently, NPs. However, the most effective reinforcement is not apparent, and clinicians are confused about designing such reinforcement. Moreover, some authors reported that reinforcement involved the addition of a foreign material to prostheses, and may thus be a risk factor for fracture development, rather than fracture prevention. Currently, reinforcement has two important purposes on a prosthesis. The initial purpose is to improve the strength and prevent fracture, and of the previous studies were conducted with a focus on this purpose. The second purpose is to improve the stiffness and prevent residual ridge resorption and overloading to residual teeth or structures. To summarize this review, reinforcements within denture base acrylic resins undoubtedly had some efficacy in improving the physical and mechanical properties, but the levels varied by material, form, concentrations, surface treatment, and position of the reinforcement. Considering these results, clinicians had better placed some kind of reinforcement in all removable dental prostheses to prevent prosthetic and other complications. However, most of the previous studies were carried out in terms of improving the strength, rather than the rigidity, and studies aimed at improving rigidity remained insufficient even in experimental model and specimen studies. Furthermore, clinical studies about the effect of reinforcement on both prostheses and patients were very few, and in particular, there were no randomized long-term clinical studies comparing prostheses with and without reinforcement. Therefore, further studies focusing on the rigidity of prostheses with reinforcement and its effect on underlying structures such as the residual ridge or implant as well as longitudinal clinical studies, are necessary to ensure the effect of reinforcement within dental prostheses. In the future, the possibilities to use a high strength biomaterial with low modulus should also be taken into consideration.

Table 3 Different hybrid reinforcement materials

<table>
<thead>
<tr>
<th>Hybrid type</th>
<th>Hybrid materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibers</td>
<td>Glass fiber + polyethylene fibers7</td>
</tr>
<tr>
<td>Fillers</td>
<td>– Al\textsubscript{2}O\textsubscript{3} + ZrO\textsubscript{2}114,109</td>
</tr>
<tr>
<td></td>
<td>– ABWs + Al\textsubscript{2}O\textsubscript{3}115,108</td>
</tr>
<tr>
<td></td>
<td>– ZrO\textsubscript{2} + TiO\textsubscript{2}116</td>
</tr>
<tr>
<td>Fibers + fillers</td>
<td>– Polyester fiber reinforced PMMA +</td>
</tr>
<tr>
<td></td>
<td>(clay, glass powder, SiO\textsubscript{2}, or ZrO\textsubscript{2})112</td>
</tr>
<tr>
<td></td>
<td>– Al\textsubscript{2}O\textsubscript{3} + plasma-treated polypropylene fiber113</td>
</tr>
<tr>
<td></td>
<td>nHA particles, micro-zirconia, glass fiber, and Kevlar fiber</td>
</tr>
<tr>
<td></td>
<td>(PMMA-nHA and glass fiber),</td>
</tr>
<tr>
<td></td>
<td>(PMMA-ZrO\textsubscript{2} and glass fiber)</td>
</tr>
<tr>
<td></td>
<td>(PMMA-nHA and Kevlar fiber),</td>
</tr>
<tr>
<td></td>
<td>(PMMA-ZrO\textsubscript{2} and Kevlar fiber)46</td>
</tr>
</tbody>
</table>

Abbreviations: ABW, aluminum borate whisker; nHA, nano-hydroxyapatite; PMMA, poly(methyl methacrylate).

Conclusion

Based on this comprehensive review it can be concluded that:

- Glass fiber reinforcement significantly increases the mechanical properties of PMMA. Natural fibers (OPEFB) and vegetable fiber can be used, but further investigations are needed.

- Obvious enhancement in the properties of denture base resin material properties was found with the addition of...
NPs and nanotubes, depending on the application and
manipulation.

• Silane coupling agents play a central role in improving
bonding between fillers and the resin matrix, and they
subsequently improved the resin’s properties.

• The newest reinforcement system is a hybrid one. Hybrid
fiber, hybrid fillers, or hybrid fiber and filler may consid-
erably enhance the properties of PMMA.

• Multiple studies were conducted in vitro, so further stud-
ies in vivo are needed, as well as clinical studies.

Acknowledgment
Authors would like to deeply thank Prof Neveen Ayad for her
valuable advice in the preparation of this review proposal.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Carlsson GE, Omar R. The future of complete dentures in oral reha-
2. Meng TR, Latta MA. Physical properties of four acrylic denture base
3. Alla R, Raghavendra KN, Vyas R, Konakanchi A. Conventional and
contemporary polymers for the fabrication of denture prosthesis: part I—
1:82–89.
reinforcement on the properties of denture base resins. J Biomat Nano-
5. Tacir IH, Kama JD, Zortuk M, Eskimze S. Flexural properties of glass
6. Moreno MV, Acosta-Torres LS, Barcel O-Santana FH, Vanegas-Lanc RD,
Plata-Rodriquez ME, Casta VM. Fiber-reinforced nano-pigmented poly
7. Sang-Hui YU, Yoon LE, Seunghan OH, Hye-Won CH, Yutaka OD,
Ji-Myung BA. Reinforcing effects of different fibers on denture base
resin based on the fiber type, concentration, and combination. Dent
of different types of acrylic denture base resins with and without
9. Hanouza IM, Beyari MM. Addition of glass fibers and titanium dioxide
nanoparticles to the acrylic resin denture base material: comparative
study with the conventional and high impact types. Oral Health Dent
10. Singh K, Sharma SK, Negi P, Kumar M, Raijurohi D, Khobre P.
Comparative evaluation of flexural strength of heat polymerized denture
base resins after reinforcement with glass fibers and nylon fibers: An
11. Agha H, Flinton R, Vaidyanathan T. Optimization of fracture resistance
and stiffness of heat-polymerized high impact acrylic resin with local-
ized e-glass fiber reinforcement at different stress points. J Prosthodont.
12. Dalkiz M, Arslan D, Tunedemir AR, Bilgin MS, Aykul H. Effect of different
palatal vault shapes on the dimensional stability of glass fiber
reinforced heat-polymerized acrylic resin denture base material. Eur J
13. Fonseca RB, Favaro IN, Cassaya VB, Abrão M, Da Luz NFM, Naves LZ.
Influence of glass fiber wt% and silanization on mechanical flexural
14. Hari Prasad A, Kalavathy, Mohammed HS. Effect of glass fiber and
silane treated glass fiber reinforcement on impact strength of maxillary
15. Mowade TK, Dange SP, Thakre MB, Kamble VD. Effect of fiber reinforcement
on impact strength of heat polymerized polymethyl-
16. Jassim RK, Radhi AA. Evaluation the biological effect of two types of
denture base materials reinforced with silanated glass fiber. J Bagh
reinforced with polyaromatic polyamide fibers of different orientations.
19. Chen SY, Liang WM, Yen PS. Reinforcement of acrylic denture base
resin by incorporation of various fibers. J Biomed Mater Res. 2001;58:
203–208.
20. Soygun K, Bolayir G, Boztug A. Mechanical and thermal properties of
polyamide versus reinforced PMMA denture base materials. J Adv
on the impact and transverse strength of a denture base resin. J Prosthet
22. Ismaeel IJ, Alalwan HA, Mustafa MJ. The effect of the addition of
silanated polypolypropylene fiber to polymethylmethacrylate denture base
material on some of its mechanical properties. J Bagh Coll Dent. 2015;
27:40–47.
properties of poly (Methyl Methacrylate) resin reinforced with oil palm
empty fruit bunch fibers: a preliminary finding. J Prosthodont. 2015;
24:233–238.
24. Xu J, Li Y, Yu T, Cong L. Reinforcement of denture base resin with
25. Yaday P, Mittal R, Sood VK, Garg R. Effect of incorporation of silane-
treated silver and aluminum microparticles on strength and thermal
26. Asar NV, Albayrak H, Korkmaz T, Turkylmaz I. Influence of vari-
ous metal oxides on mechanical and physical properties of heat-cured
polymethylmethacrylate denture base resins. J Adv Prosthodont. 2013;5:
241–247.
27. Shajjapal SB. Effect of metal fillers on some physical properties of
28. Safi IN. Evaluation the effect of nano-fillers (TiO2, Al2O3, SiO2) addi-
tion on glass transition temperature, E-Moudulus and coefficient of ther-
mal expansion of acrylic denture base material. J Bagh Coll Dent. 2014;
26:37–41.
29. Arora P, Singh SP, Arora V. Effect of alumina addition on properties
of polymethylmethacrylate — a comprehensive review. Int J Biotech
30. Ellakwa AE, Morhy MA, El-Sheikh AM. Effect of aluminum oxide addi-
tion on the flexural strength and thermal diffusivity of heat-polymerized
31. Abdulhamed AN, Mohammed AM. Evaluation of thermal conductivity
of alumina reinforced heat cure acrylic resin and some other properties.
32. Arora N, Jain V, Chawla A, Mathur VP. Effect of addition of sapphire
(Aluminum oxide) or silver fillers on the flexural strength, thermal
diffusivity and water sorption of heat-polymerized acrylic resins. Int J
33. Kul E, Aladağ LI, Yeşiladal R. Evaluation of thermal conductivity and
flexural strength properties of poly (methyl methacrylate denture)
base material reinforced with different fillers. J Prosthet Dent. 2016;

