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Abstract: Hodgkin’s lymphoma (HL) is highly curable with first-line therapy. However, a 

minority of patients present with refractory disease or experience relapse after completion of 

frontline treatment. These patients are treated with salvage chemotherapy followed by autologous 

stem cell transplantation (ASCT), which remains the standard of care with curative potential for 

refractory or relapsed HL. Nevertheless, a significant percentage of such patients will progress 

after ASCT, and allogeneic hematopoietic stem cell transplantation remains the only curative 

approach in that setting. Recent advances in the pathophysiology of refractory or relapsed HL 

have provided the rationale for the development of novel targeted therapies with potent anti-HL 

activity and favorable toxicity profile, in contrast to cytotoxic chemotherapy. Brentuximab vedotin 

and programmed cell death-1-based immunotherapy have proven efficacy in the management 

of refractory or relapsed HL, whereas several other agents have shown promise in early clinical 

trials. Several of these agents are being incorporated with transplantation strategies in order to 

improve the outcomes of refractory or relapsed HL. In this review we summarize the current 

knowledge regarding the mechanisms responsible for the development of refractory/relapsed 

HL and the outcomes with current treatment strategies, with an emphasis on targeted therapies 

and hematopoietic stem cell transplantation.

Keywords: relapsed/refractory Hodgkin’s lymphoma, pathophysiology, novel agents, immu-
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Introduction
Hodgkin’s lymphoma (HL) is the most common malignancy in adolescents and young 

adults.1 HL is divided into classical HL (cHL) accounting for 95% of cases and nodular 

lymphocyte-predominant HL, which is less common. The cHL subtype is defined by 

the presence of neoplastic cells of B-cell origin expressing CD30 and CD45, includ-

ing mononucleated Hodgkin cells and multinucleated Reed–Sternberg (RS) cells, 

which are in direct interaction with an inflammatory microenvironment consisting 

of granulocytes, mast cells, T and B lymphocytes, plasma cells and fibroblasts.2 The 

cross talk between cancer cells and microenvironment is critical for the pathogenesis 

and progression of HL.3,4

First-line chemotherapy and/or radiation for cHL in patients with advanced disease 

is associated with cure rates between 70% and 75%.5,6 However, 25%–30% of patients 

either have primary refractory disease or will relapse following first-line therapy.7 

Salvage chemotherapy followed by autologous stem cell  transplantation (ASCT) is 
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the standard of care for these patient groups. However, only 

a subset of patients with primary refractory or relapsed HL 

achieves long-term progression-free survival (PFS) with this 

approach, and the prognosis is influenced by the presence 

or absence of certain risk factors.8,9 Patients who progress 

or relapse after ASCT have poor prognosis with a median 

survival of 12–29 months.10,11 Thus, development of novel 

therapeutic approaches is critical for the treatment of relapsed 

or refractory HL. The antibody–drug immunoconjugate 

targeting CD30, named brentuximab vedotin, and immuno-

therapies targeting programmed cell death-1 (PD-1) receptor 

represent the most promising new therapies,12,13 while several 

promising agents are in development or in early clinical trials. 

However, to date, allogeneic hematopoietic stem cell trans-

plantation (alloHCT) remains the only potentially curative 

approach for relapsed or recurred disease.14

The purpose of this review is to summarize recent data 

regarding the molecular mechanisms implicated in the devel-

opment of refractory or relapsed HL and novel therapeutic 

approaches for the management of patients failing frontline 

therapy.

Mechanisms involved in the 
development of refractory and 
relapsed HL
The role of microenvironment
In contrast to most other neoplastic diseases, the non-

neoplastic cells of the tumor microenvironment outnumber 

the neoplastic cells in HL, and the distribution of these cells 

may contribute to the emergence of resistance to conventional 

therapy.15,16

Macrophages
Infiltration of the cHL microenvironment by CD68+ mac-

rophages is considered a negative predictor of PFS for cHL 

after induction with doxorubicin, bleomycin, vinblastine, 

dacarbazine (ABVD) treatment with or without radiotherapy, 

independent of the International Prognostic Score.17 High 

numbers of CD68+ and CD163+ macrophages in cHL are 

associated with worse overall survival (OS), but they also 

correlate with the presence of Epstein–Barr virus (EBV) 

in the neoplastic cells18 which, in turn, has been associated 

with worse outcomes mainly in older individuals.19,20 The 

exact mechanism underlying the negative impact of macro-

phages on the above-described outcomes has not been fully 

elucidated, but it is believed that these cells have an immu-

nosuppressive role and, therefore, may hamper the antitumor 

immune responses (Figure 1). In support of this hypothesis, 

macrophages in the tumor microenvironment can inhibit the 

response of T cells by releasing various immunosuppressive 

cytokines, such as IL-10 and TGF-β.21 Moreover, TNF-α and 

IL-10 secretion from monocytes induces the expression of 

PD-L1 by the same cells in an autocrine manner, leading to 

decreased T-cell activity and proliferation.22 Tumor-associated 

macrophages are also known to secrete CCL22, which pro-

motes the trafficking of regulatory T (Treg) cells in the tumor 

microenvironments through the activation of CCL22/CCR4 

axis.23 In turn, Treg cells inhibit antitumor T-cell responses, 

further supporting the immunosuppressive role of macro-

phages in the microenvironment of cHL.

T cells
The presence of Treg and CD4+ T cells, especially with Th2 

phenotype, in the tumor microenvironment has been associ-

ated with worse prognosis likely through immune escape.24 

Higher density of Treg cells and decreased density of cyto-

toxic T cells correlate with poorer PFS and OS in patients 

with cHL.25 Moreover, higher CD4/CD8 ratio in the tumor 

microenvironment is an independent factor for ABVD treat-

ment failure in patients with HL.26

Interactions between HL and cells of the 
microenvironment
The interactions between the neoplastic cells and the cells of 

the microenvironment play a critical role in the development 

of refractory or relapsed HL. RS cells produce various Th2 

and Treg cell chemoattractive cytokines such as IL-4, IL-5 

and IL-1027,28; CCL22 and CCL529 and also cytokines with 

macrophage chemotactic activity, such as IL-5 and IL-8.30 The 

recruitment of these cells is reinforced by the reactive cells 

themselves and particularly macrophages secreting CCL-3, 

CCL-4 and CCL-8.31,32 Similarly, the neoplastic cells secrete 

TNF-α and TGF-β promoting the activation of fibroblasts.33,34 

In turn, collagen IV produced by fibroblasts in the tumor 

microenvironment is recognized by the DDR1 receptor in 

RS cells,35 which is a tyrosine kinase promoting the survival 

and proliferation of these cells.36 These mechanisms generate 

a vicious cycle between the neoplastic cells and particular 

components of the microenvironment, promoting resistance 

to treatment and disease progression. The inflammatory cells 

of the tumor microenvironment express surface antigens that 

act as survival signals for the neoplastic cells. These include 

CD40L expressed on T cells and CD30L expressed on masts 

cells, and bind the CD40 and CD30 receptors, respectively, 

which are expressed on RS and Hodgkin cells (Figure 

1).30,37 CD40L:CD40 signaling leads to increased survival 
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of  Hodgkin cells and disease progression.38 CD40 ligation 

inhibits Fas-mediated apoptosis of Hodgkin cells potentially 

promoting the development of resistant disease.39 CD40 

also promotes the upregulation of IRF4/MUM1 expression 

through the activation of NF-κB.40,41 Addition of sCD40L in 

cultures of Hodgkin cells protects them from the apoptotic 

effect of bortezomib by downregulating IRF4,42 which acts 

as a survival factor. CD40-mediated activation can promote 

the survival and growth of Hodgkin and RS cells via ERK 

phosphorylation and might be involved in the contact and 

interaction of the malignant cells with activated cytokine-

producing CD4+ T cells in the tumor microenvironment 

creating a positive feedback loop that leads to Hodgkin and 

RS cell expansion.43,44 Similarly, CD30L expressed on mast 

cells of the tumor microenvironment interacts with CD30 

on the surface of RS cells and leads to activation of NF-κB 

signaling, resulting in increased cell survival, proliferation45 

and secretion of cytokines including IL-6 and TNF-α.46

These signaling events and secreted factors have a 

significant effect in the cellular composition of the tumor 

microenvironment and the development of refractory and 

relapsed HL.

Aberrant activation of signaling pathways 
in HL cells
Several oncogenic pathways have been implicated in the 

development of disease resistance and progression. As men-

tioned earlier, aberrant activation of NF-κB is a hallmark of 

HL cell lines47 as well as primary RS and Hodgkin cells.48 

Activation of IKK via upregulation of TRAF is one of the 

main mechanisms implicated in the activation of NF-κB in 

HL.49 Oligomerization of CD30 molecules recruits TRAFs 

leading to IKK activation and subsequent NF-κB upregula-

tion.50 Gain-of-function mutations in positive regulators of 

NF-κB such as BCL3 and inactivating mutations of its nega-

tive regulators such as TNFAIP and NFKBIA have been identi-

fied with high frequency in HL.24 Activation of NF-κB in HL 

promotes cell cycle progression by upregulation of cyclins 

D1 and D2,51 c-myc52 and c-myb,53 and inhibits apoptosis by 

induction of antiapoptotic molecules such as BCL-X
L

54 and 

c-FLIP.55 NF-κB also promotes secretion of various cytokines 

such as CCL5, CCL7 and IL-6 by Hodgkin cells, which not 

only act as autocrine promoters of cancer cell proliferation 

but also alter the tumor microenvironment by regulating the 

trafficking of macrophages.24
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Figure 1 Dysregulation of the TME involved in the development of refractory/relapsed HL and targets of novel compounds targeting the TME or the malignant cells. 
Notes: In HL, macrophages release TNF-α and IL-10 that induce the expression of PD-L1/2 by monocytes and malignant cells in an autocrine manner leading to decreased 
T-cell activity and antitumor function. PD-L1/2 are also increased in neoplastic cells through gene amplification with simultaneous increase of JAK2 and activation of JAK–STAT 
signaling. Tumor-associated macrophages also produce T-cell immunosuppressive cytokines IL-10 and TGF-β, as well as CCL22, which promote the recruitment of Treg cells 
in the tumor microenvironment through the activation of CCL22/CCR4 axis, thereby further inhibiting anti-tumor T-cell responses. Novel therapies target signaling pathways 
that promote the expression of inhibitory receptors, recruit Treg cells and suppress T-cell immune function. CD30 expressed on malignant cells is a novel therapeutic target.
Abbreviations: HL, Hodgkin’s lymphoma; Treg, regulatory T; PD-L1/2, programmed cell death-L1/2; mTOR, mammalian target of rapamycin; TME, tumor microenvironment; 
HDAC, histone deacetylases.
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PI3K pathway signaling alterations have been identified 

in HL, and the efficacy of PI3K, Akt and mTOR inhibitors in 

HL is currently under evaluation. INPP5, a PI3K inhibitor, is 

silenced in HL cells,56 PI3K activation has been implicated 

in the development of resistance to brentuximab vedotin, 

while inhibition of PI3K by TGR-1202 increases the efficacy 

of the drug by promoting mitotic arrest.57 STAT proteins are 

activated in RS and Hodgkin cells.58 and are essential for 

their survival and proliferation.59,60 Moreover, JAK2 rear-

rangements leading to constitutive JAK2 activation and STAT 

signaling are recurrent in cHL,61 while inhibitors of this path-

way, such as lestaurtinib, induce apoptosis in HL cell lines.62 

Nonsense, missense and frameshift mutations of PTPN1, a 

negative regulator of JAK–STAT signaling, are observed 

in a high percentage of HL cell lines and HL cases,63 while 

HSP90 is critical for the activation of JAK–STAT signaling 

in HL cells.64 Importantly, selective amplification of the 

9p24.1 chromosome region is associated with simultaneous 

amplification of PD-L1 and JAK2. As a consequence, the 

enhanced JAK–STAT signaling further promotes the expres-

sion of PD-L1 and PD-L2 in Hodgkin cells,65 thereby inhibit-

ing T-cell activation and antitumor immunity. Coexpression 

of PD-L1 and PD-1 in the HL microenvironment serves as 

an independent poor prognostic factor,66 while a subgroup 

analysis demonstrated that the prognostic value of PD-1 is 

significant for patients with limited-stage cHL.67

EBV infection
Monoclonal EBV infection occurs in 40% of cHL and up to 

90% of HIV-related HLs suggesting that EBV may be impli-

cated in oncogenic signaling. Indeed, EBV-infected HL cells 

overexpress LMP1, which leads to constitutive activation 

of TNF-α receptor, NF-κΒ signaling and protection from 

apoptosis.68 The absence of mutations of IκBα, a suppres-

sor of NF-κB activation, in EBV-positive HL cells suggests 

that EBV activates an alternate (non-IκBα-dependent) 

mechanism of NF-κB activation.69 EBV-infected HL cells 

overexpress LMP2 which induces the upregulation of E2F, 

EBF and Pax-5, promoting cell survival and proliferation.70 

Despite the confirmed overexpression of oncogenes encoded 

in the EBV genome in Hodgkin and RS cells, studies regard-

ing the impact of EBV infection on prognosis and response 

to treatment are inconclusive.

Novel therapeutic approaches 
for primary refractory and early 
relapsed HL
Advancements in the understanding of HL pathophysiology 

have led to the development of novel therapeutic approaches 

for the management of relapsed or refractory disease. 

Compounds that have been evaluated in clinical trials for 

this purpose include agents targeting the oncogenic signal-

ing in the neoplastic cells or the tumor microenvironment 

(Table 1).

Targeting the malignant cells
Multiple oncogenic pathways are upregulated in HL cells, 

including CD30 downstream signaling pathways, JAK–

STAT and PI3K–Akt–mTOR. Compounds individually tar-

geting these signaling pathways as single agents or as part of 

Table 1 Novel agents for relapsed/refractory HL 

Agent Target Line of therapy Results Reference

Brentuximab vedotin CD30 Refractory/relapsed HL OR 50% with a median duration of 10 months 12

Relapsed/refractory HL after ASCT ORR 75%, CR 35% 72

Relapsed/refractory HL after ASCT or 
unable to do ASCT

Brentuximab vedotin before AlloSCT 
improved PFS

73

Relapsed/refractory HL after ASCT OR 50%, CR 38%, median PFS 7.8 months 77
Nivolumab PD-1 Relapsed/refractory HL OR 87%, CR 17%, PR 70% 13

Relapsed/refractory HL after ASCT OR 66.3% 90
Pembrolizumab PD-1 Relapsed/refractory HL after ASCT PR 48%, OR 65% 91
Mocetinostat HDAC Relapsed/refractory HL Disease control rate 35% 95
Panobinostat HDAC Relapsed/refractory HL after ASCT OR 27%, PR 23%, CR 4% 96
Bortezomib NF-κB Relapsed/refractory HL No response 84
Lenalidomide NF-κB Relapsed/refractory HL (87% with prior 

ASCT)
PR 16%, stable disease 14% 88

Relapsed/refractory HL after ASCT in 
combination with cyclophosphamide

ORR 38%, clinical benefit 62% 89

SB1518 JAK2 Relapsed/refractory HL CR 12%, PR 44% 78
Everolimus mTOR Relapsed/refractory HL (84% with prior 

ASCT)
ORR 47%, PR 42%, CR 5% 79

Abbreviations: ASCT, autologous stem cell transplantation; CR, complete response; HL, Hodgkin’s lymphoma; OR, overall response; ORR, overall response rate; PFS, 
progression-free survival; PR, partial response.
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combinational approaches have generated promising results, 

especially in patients with refractory or relapsed disease. 

Brentuximab vedotin, an antibody–drug immunocon-

jugate targeting CD30, has demonstrated high efficacy in 

cHL.71 In a Phase I trial including 45 patients with refractory 

or relapsed HL, the objective response at the maximum tol-

erated dose was 50% with a median duration of 10 months, 

whereas 86% of evaluable patients had some disease regres-

sion.12 In a subsequent Phase II clinical trial in patients 

with relapsed and refractory HL after ASCT, the objective 

response rate was 75%. Approximately one-third of patients 

achieved complete response (CR) with a median duration of 

20.5 months.72 Moreover, brentuximab vedotin has been used, 

as a single agent or in combination, as salvage chemotherapy 

prior to ASCT with low toxicity and promising efficacy.73–75 

Similarly, the administration of brentuximab vedotin before 

alloHCT has been associated with improved 2-year PFS 

and OS and decreased relapsed rate.76 This is particularly 

critical for the improvement of outcomes in patients who 

progress after ASCT and proceed to alloHCT. Administra-

tion of brentuximab vedotin after failure of alloHCT was 

associated with an overall response (OR) rate of 50% and a 

CR rate of 38% without any differences in the rates of graft 

versus host disease (GVHD) and cytomegalovirus (CMV) 

reactivation.77 Together, these data strongly suggest that 

brentuximab vedotin is a promising therapeutic modality 

for patients with relapsed and refractory HL before or after 

failure of ASCT. Moreover, administration of brentuximab 

vedotin before alloHCT may improve transplant outcomes.

The efficacy of a novel JAK2 inhibitor, SB1518, was 

evaluated in 34 patients with relapsed or refractory HL or 

non-HL demonstrating CR in 4 patients and partial response 

(PR) in 15 patients.78 The mTOR inhibitor everolimus as 

single agent is associated with an OR rate of 47% and PR in 

42% of patients.79 These clinical outcomes strongly support 

the conclusion that therapeutic targeting of oncogenic path-

ways in HL cells represents a promising treatment approach 

in patients with relapsed or refractory disease. Moreover, the 

combination of such targeted therapies with chemotherapy 

during early stages of disease warrants further investigation.

It should be noted that not all molecular/immunological 

aberrations of HL neoplastic cells are amenable to targeted 

therapies. Although some RS cells – as well as infiltrating 

lymphocytes – express CD20, the use of the anti-CD20 mono-

clonal antibody rituximab in combination with chemotherapy 

has not provided clinical benefit for the treatment of cHL.80,81 

Similarly, CD80, which is expressed on RS cells and immune 

cells in the tumor microenvironment, has also been used as 

a therapeutic target, but the anti-CD80 monoclonal antibody 

galiximab did not provide a significant benefit.82

Targeting cellular components of the 
tumor microenvironment
Given the critical role of the cross talk between the neoplastic 

cells and the cellular components of the tumor microenviron-

ment, compounds targeting these interactions have shown 

significant efficacy in HL (Figure 1). 

The efficacy of bortezomib and lenalidomide has been 

evaluated in patients with advanced HL with a goal to target 

NF-κB, which is activated by the interactions of cancer cells 

with components of the tumor microenvironment, as previ-

ously discussed. Bortezomib as single agent, or in combina-

tion with dexamethasone or gemcitabine, has not shown any 

significant activity in patients with relapsed or refractory 

disease,83–85 whereas addition of bortezomib to ifosfamide-

based combination regimens led to more encouraging 

results.86,87 In a Phase II clinical trial, lenalidomide as single 

agent led to an OR of 19% and a cytostatic OR rate of 33% 

in heavily pretreated patients with cHL.88 In another study 

including 46 patients with refractory or relapsed HL after 

ASCT, lenalidomide in combination with metronomic low-

dose cyclophosphamide was associated with an OR rate of 

38%, whereas 62% of the patients achieved clinical benefit.89 

These conclusions support a beneficial role of lenalidomide 

potentially in combination with chemotherapy in patients 

with refractory or relapsed HL. It should be noted, however, 

that the mechanisms accounting for the antilymphoma effect 

of lenalidomide in HL have not been fully elucidated and 

may extend beyond the interference with the NF-κB pathway.

Various clinical studies provide compelling evidence that 

targeting the PD-1/PD-L1 pathway is a promising approach 

for patients with relapsed or refractory HL. Specifically, a 

recent Phase I clinical trial demonstrated that the PD-1 block-

ing antibody, nivolumab, has a good toxicity profile. Adverse 

events of any grade and those of grade 3 occured in 78% 

and 22% of patients, respectively.13 In this study, objective 

responses were observed in 20 of 23 patients (87%), although 

CR was not common (17%).13 Subsequently, a single-arm 

Phase II clinical trial evaluating the efficacy of nivolumab 

in patients with HL after failure of ASCT and brentuximab 

vedotin reported OR in 66.3% of patients.90 Pembrolizumab, 

a different PD-1 blocking antibody, was recently shown to 

induce PR in 48% of patients with HL relapsing after ASCT 

with objective responses in the order of 65%.91 Pembroli-

zumab was also associated with objective responses in 80% 

of patients with relapsed/refractory HL who failed previous 
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treatment with brentuximab vedotin. Thus, targeting PD-1/

PD-L1 interaction in the tumor microenvironment is a prom-

ising therapeutic approach for patients with relapsed and 

refractory HL.

HDACs are commonly overexpressed or overactivated 

in neoplastic diseases, and targeting of HDACs has been 

employed as a novel therapeutic approach in various malig-

nancies including lymphomas.92 In HL, activation of HDACs 

has been associated with downregulation of B-cell-specific 

antigens and p21, upregulation of STAT signaling and sup-

pression of caspase pathways.93 In addition, tumor-infiltrating 

lymphocytes in cHL express high levels of HDACs,94 sug-

gesting that HDAC inhibitors might target not only neoplastic 

cells but also immune cells of the tumor microenvironment. 

Recent Phase II clinical trials have demonstrated significant 

efficacy of HDAC inhibitors in patients with relapsed95 

and recurrent HL following ASCT.96 The HDAC inhibitor 

panobinostat alters the secretion of cytokines including 

TNF-α and IFN-γ, thus modulating the activity of lympho-

cytes in the tumor microenvironment and promoting cancer 

cell autophagy and death.97 These panobinostat-mediated 

cytokine modulations have been recently associated with 

alterations in PD-1 expression in T cells,98 suggesting that 

the combination of HDAC inhibitors and PD-1/PD-L1 inhibi-

tors might be a promising therapeutic approach in HL. Other 

studies have focused on the combination of HDAC inhibitors 

with molecules targeting oncogenic signaling in HL including 

mTOR inhibitors, such as everolimus and sirolimus,99,100 or 

angiogenesis inhibitors, such as sorafenib.101

Transplantation strategies for 
refractory or relapsed HL
Outcomes of refractory or relapsed HL treated with con-

ventional dose salvage chemotherapy were historically 

characterized by transient responses and low probability for 

long-term remission or cure.102 Although the development 

of novel targeted therapies with potent activity against HL 

is promising, long-term outcomes with these agents are not 

well established. The role of ASCT in refractory and relapsed 

HL is well established and ASCT remains the standard of 

care for patients who are candidates for curative therapy. 

AlloHCT is typically reserved for carefully selected patients 

who relapse after ASCT. Moreover, several transplantation 

strategies in the autologous or allogeneic setting have been 

developed with the goal to further improve outcomes, albeit 

with variable success (Table 2).

Table 2 Transplantation strategies for relapsed/refractory HL 

Transplantation strategies References

ASCT following high-dose chemotherapy is associated with PFS advantage over nontransplant strategies and is considered the 
standard of care in patients with relapsed or refractory HL who are responding to salvage therapy.

8,103–108,135–138

A variety of pre-ASCT salvage regimens can be considered and are associated with ORR in approximately two-thirds of patients 
and CR in approximately one-third of patients. Common regimens include ICE, ESHAP, DHAP, GV, GDV, and more recently BV in 
sequence or in combination with cytotoxic chemotherapy or PD-1 inhibitors. There is not enough evidence that one regimen is 
superior to others.

8,13,73–75,111–120

A variety of myeloablative conditioning regimens are considered acceptable for patients with relapsed or refractory HL 
undergoing ASCT, most commonly BEAM, CBV, busulfan-based or TBI-based regimens. BEAM may be superior to other 
conditioning regimens for HL based on retrospective registry data. 

8,106,107,113, 
121–134

Pre-ASCT FDG-PET is a major determinant of post-ASCT relapse risk and may be used for risk-adapted treatment design. 74,113,141,148–152
Frontline ASCT as consolidation for high-risk HL is not associated with a survival benefit. 154–156
SHDCT is associated with increased toxicity and no survival benefit in patients with relapsed ASCT. 163
Tandem ASCT may be of some benefit to chemoresistant patients with relapsed or refractory HL, but routine use has not been 
adopted due to lack of randomized data.

164–168

BV maintenance post-ASCT is associated with PFS benefit in patients with relapsed or refractory HL undergoing HL with one or 
more high-risk factors.

142

Second ASCT may be considered in patients with long remission duration after first ASCT, but data are limited. 172
alloHCT should be offered to patients who relapse post-ASCT, who are not considered curable with standard chemotherapy, 
and is associated with long-term disease control in a minority of patients.

173,174,177–182, 
187, 191–199

RIC alloHCT is associated with less TRM and is considered the standard of care, although there is no consensus regarding the 
optimal conditioning regimen and intensity.

175–177,180, 
184,199

Alternative graft sources (UCBT, haploidentical) are acceptable in patients who lack suitable HLA-matched related or unrelated 
donors.

191–198

Abbreviations: alloHCT, allogeneic hematopoietic stem cell transplantation; ASCT, autologous stem cell transplantation; BV, brentuximab vedotin; BEAM, carmustine 
(BCNU), etoposide, cytarabine (Ara-C) and melphalan; CBV, cyclophosphamide, carmustine and etoposide; CR, complete response; DHAP, dexamethasone, cisplatin 
and cytarabine; ESHAP, etoposide, methylprednisolone, cytarabine and cisplatin; GV, gemcitabine and vinorelbine; GVD, GV with doxorubicin; HL, Hodgkin’s lymphoma; 
ICE, ifosfamide, carboplatin and etoposide; ORR, overall response rate; PFS, progression-free survival; RIC, reduced intensity conditioning; SHDCT, sequential high-dose 
chemotherapy; TRM, treatment-related mortality; UCBT, umbilical cord blood transplantation.
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Autologous transplantation (ASCT)
Early experience with the use of high-dose chemotherapy 

requiring autologous stem cell support for the treatment of 

relapsed or refractory HL showed promising results.103–105 

The British National Lymphoma Investigation compared 

in a randomized fashion the outcomes of patients with HL 

relapsing after first-line chemotherapy who were treated 

either with non-myeloablative doses of carmustine (BCNU), 

etoposide, cytarabine (Ara-C) and melphalan (mini-BEAM) 

administered without stem cell support, or with high-dose 

BEAM conditioning followed by ASCT.106 Event-free survival 

(EFS) and PFS were significantly improved in the arm treated 

with BEAM plus ASCT. Similarly, in a study by the German 

Hodgkin Study Group, 161 patients with relapsed HL were 

treated with two cycles of non-myeloablative doses of dexa-

methasone and BEAM (Dexa-BEAM), and the responders 

were subsequently randomized to two more cycles of either 

Dexa-BEAM or BEAM followed by ASCT.107 Freedom from 

treatment failure (FFTF) at 3 years was significantly improved 

in chemosensitive patients who underwent ASCT compared 

to those who received conventional chemotherapy, although 

no significant OS benefit was shown. In both studies, radio-

therapy was allowed for patients with residual sites of disease. 

A systematic review and meta-analysis of these two random-

ized studies again demonstrated that ASCT was associated 

with improved PFS (hazard ratio [HR] = 0.55; 95% confidence 

interval [CI]: 0.35–0.86; p = 0.009), but only a trend toward 

improved OS (HR = 0.67; 95% CI: 0.41–1.07; p = 0.10),108 

most likely due to lack of statistical power. Based on the 

results of these two randomized controlled trials, high-dose 

chemotherapy followed by ASCT has been established as the 

standard of care for patients with relapsed or refractory HL.

Although the indication of ASCT for patients with 

relapsed disease is supported by randomized trials, there 

are no randomized data with regard to the optimal salvage 

therapy and conditioning regimens. A concern with the 

use of melphalan-containing salvage regimens, such as 

mini-BEAM or Dexa-BEAM which were used in the two 

randomized ASCT trials, is the relatively high treatment-

related mortality (TRM) and bone marrow toxicity, which 

may compromise adequate stem cell collection in prepara-

tion for ASCT.109–111 Therefore, alternative chemotherapy 

regimens incorporating non-cross-resistant agents have been 

extensively studied as salvage treatment for cytoreduction 

before ASCT. The combination of ifosfamide, carboplatin 

and etoposide (ICE) was developed at Memorial Sloan Ket-

tering Cancer Center8,112 and is one of the most commonly 

used salvage regimens for HL. In a cohort of 65 patients 

with relapsed/refractory HL, two cycles of ICE given every 

2 weeks were associated with an OR rate of 88% and resulted 

in a long-term EFS of 68% in 57 patients who proceeded to 

ASCT incorporating involved-field radiation therapy.8 An 

augmented ICE regimen with intensified doses of ifosfamide 

and etoposide has also been employed for patients with 

unfavorable risk factors.74,113 Other commonly used salvage 

regimens include combinations of platinum agents with 

cytarabine, such as dexamethasone, cisplatin and cytarabine 

(DHAP),114 or etoposide, methylprednisolone, cytarabine 

and cisplatin (ESHAP).115,116 Gemcitabine-based chemo-

therapy regimens have also been developed, such as gem-

citabine, dexamethasone and cisplatin (GDP),117 gemcitabine 

and vinorelbine (GV),118 GV with doxorubicin (GVD)119 or 

ifosfamide, gemcitabine and vinorelbine (IGeV).120 Such 

gemcitabine-based regimens offer the advantage of outpa-

tient administration, and there is some evidence that may 

achieve similar response rates and superior PFS compared 

to mini-BEAM, with less toxicity.111 

The advent of new targeted or immunotherapy agents for 

relapsed/refractory HL (detailed in the “Novel therapeutic 

approaches for primary refractory and early relapsed HL” 

section) has been embraced with enthusiasm, because they 

offer the potential for effective salvage therapy without 

excessive toxicity, in contrast to conventional cytotoxic 

chemotherapy. There is currently no consensus with regard to 

the optimal salvage strategy for patients with relapsed/refrac-

tory HL. However, given the importance of pretransplant 

disease status for posttransplant outcomes, it is reasonable 

to attempt a second non-cross-resistant regimen in patients 

with inadequate response to first salvage, with the goal to 

achieve CR prior to ASCT.

A variety of conditioning regimens have been used for 

ASCT in patients with relapsed or refractory HL, but there 

is no agreement with regard to optimal regimen. The two 

Phase III prospective randomized studies that established 

the role of ASCT in such patients used BEAM condition-

ing,106,107 which remains one of the most commonly used 

regimens to date. Other common regimens include cyclo-

phosphamide, carmustine and etoposide (CBV) with various 

dosing modifications121–125; busulfan-based regimens such 

as busulfan and cyclophosphamide (BuCy),126 busulfan 

and melphalan (BuMel),127 busulfan, etoposide and cyclo-

phosphamide (BuCyE)128,129 a or triple alkylator regimen of 

busulfan, melphalan and thiotepa (BuMelTt).130,131 total body 

irradiation (TBI) (or total lymphoid irradiation [TLI])-based 

regimens have also been used as conditioning regimens in 

previously nonirradiated patients8,113,123,132,133; however, there 
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has been a swift away from such regimens over time due to 

concerns for increased associated risk of secondary malig-

nancies and long-term toxicity. Based on registry analyses, 

BEAM appears to be superior to CBV, TBI-based therapies, 

or BuCyE as a preparative regimen in patients with HL 

undergoing ASCT.129,134

Prognostic factors for patients with 
relapsed/refractory HL undergoing ASCT
Considering different combinations of salvage and condition-

ing regimens, many single-arm studies or retrospective analy-

ses support the role of ASCT in patients with relapsed and/

or refractory HL, which was previously established by two 

prospective Phase III studies in relapsed HL patients.135–138 

Moreover, several such studies have sought to identify prog-

nostic factors for ASCT outcomes. Prognostic factors can 

be divided into patient-related, disease-related at the time of 

disease relapse or progression, and factors related to disease 

status prior to ASCT. Age and performance status are the 

most important patient-related factors and likely influence 

the risk of TRM.139–141 Factors at the time of disease relapse or 

progression that have been associated with clinical outcomes 

include duration of remission, anemia, B-symptomatology, 

stage IV disease or extranodal involvement and bulky dis-

ease.8,139,140,142–144 Although primary refractory HL is thought 

to confer worse prognosis, such patients may also derive ben-

efit from ASCT, depending on the risk factors present.145,146

Importantly, pre-ASCT factors such as the number of 

salvage chemotherapy lines, stage and response to salvage 

therapy are important prognostic factors for post-ASCT 

outcomes.138,147 Functional imaging by Gallium scans in the 

past or, most commonly, by fluorodeoxyglucose (FDG)-

positron emission tomography (FDG-PET) is preferred over 

computed tomography (CT) for assessment of response to 

salvage therapy, because it can differentiate viable tumor from 

residual fibrotic tissue in patients with PR to therapy by CT.142 

Moreover, several groups have shown that normalization of 

pre-ASCT functional imaging and, in particular, FDG-PET 

is an independent prognostic factor for post-ASCT risk of 

relapse, PFS and possibly OS, and may be superior to other 

risk factors at the time of relapse.141,148–151 These findings 

were corroborated in a recent meta-analysis.152 Based on the 

notion that FDG-PET response to salvage therapy is predic-

tive of clinical outcomes, MSKCC has performed two Phase 

II studies of PET-adapted sequential salvage therapy,74,113 in 

which patients with relapsed or refractory HL who did not 

achieve CR to first salvage therapy were switched to a dif-

ferent salvage regimen prior to ASCT. PET-adapted salvage 

strategies may increase the proportion of patients achieving 

FDG-PET negativity and consequently leading to higher 

chances of cure. However, such strategies may be limited 

by the inadequate sensitivity and specificity of the test.152

ASCT for frontline consolidation of 
patients with high-risk HL
In view of the improved outcomes of ASCT in relapsed or 

refractory HL and early data in the preemptive setting,153 

subsequent randomized clinical trials tested ASCT as a 

consolidation strategy for patients with unfavorable high-risk 

HL in first CR or PR, in comparison with standard induction 

chemotherapy154,155 or intensified induction with or without 

radiotherapy.156 Despite the different definitions of adverse 

risk factors, neither study showed a failure-free or a survival 

benefit in patients receiving frontline ASCT, suggesting that 

a large fraction of patients with nonchemorefractory unfa-

vorable HL are cured with standard induction chemotherapy 

or effectively salvaged with ASCT at the time of relapse. 

Consequently, despite prior controversy,153,157–159 ASCT is 

not recommended for frontline consolidation in patients 

with advanced or high-risk HL responding to induction 

chemotherapy.

Intensification of salvage and sequential 
high-dose chemotherapy (SHDCT)
Approximately 30–50% of patients with relapsed or refrac-

tory HL undergoing ASCT will eventually develop disease 

progression after transplant. The risk is influenced by the 

presence of disease-related risk factors and, possibly, by the 

type of the conditioning regimen.134,160,161 Some investiga-

tors have favored more intensive salvage regimens prior to 

ASCT135,162 with variable results. However, in the absence 

of prospective comparative trials, such approaches have not 

been widely adopted. A Phase III European intergroup study 

investigated whether SHDCT – consisting of sequential high 

doses of cyclophosphamide, methotrexate and etoposide 

administered to patients responding to two cycles of ESHAP 

before BEAM ASCT – might decrease the risk of post-ASCT 

relapse.163 The intervention was proven toxic without survival 

benefit. Thus, intensification of conditioning did not lead to 

improved ASCT outcomes.

Tandem ASCT for relapsed/refractory 
ASCT
The use of tandem ASCT has also been investigated as a 

strategy to improve the outcomes in patients with relapsed 
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or refractory HL. In the prospective Phase II GELA/SFGM 

H96 trial, poor-risk patients164 received salvage treatment 

followed by tandem ASCT 45–90 days apart.165 The first 

conditioning was CBV with mitoxantrone (CBVM) or 

BEAM, and the second was TBI, cytarabine (Ara-C) and 

melphalan (TAM) or busulfan, cytarabine (Ara-C) and mel-

phalan (BAM) in patients who had received prior irradia-

tion. Long-term follow-up results of the trial showed 46% 

and 57% freedom from second failure and OS at 5 years, 

and 41% and 47% at 10 years, respectively, which were 

comparably favorable to the historic rates especially in 

patients not achieving CR to cytoreductive therapy.165,166 

Other groups using different salvage and conditioning 

regimens167,168 have similarly suggested that tandem ASCT 

may be an effective treatment strategy for primary refrac-

tory or poor-risk-relapsed HL. However, in the absence of 

randomized studies and considering the advent of newer 

effective agents that can be used for salvage or post-ASCT 

maintenance, tandem ASCT is not routinely performed and 

has no role in the management of standard risk patients 

in particular.

Post-ASCT maintenance
An alternative strategy to improve the outcomes of ASCT 

consists of the use of post-ASCT consolidation or main-

tenance. Early attempts with the use of cytotoxic chemo-

therapy169 or immunotherapeutic agents (rIL-2 and IFN-α)170 

were not widely adopted due to lack of efficacy or tolerabil-

ity. In contrast, the multicenter Phase III AETHERA trial 

evaluated the use of brentuximab vedotin as post-ASCT 

maintenance therapy in 329 patients with primary refrac-

tory or unfavorable-risk-relapsed HL, defined as <12 month 

initial remission duration or extranodal involvement prior to 

salvage chemotherapy.142 Patients were randomized to receive 

brentuximab vedotin for up to 1 year versus placebo. Patients 

randomized to the treatment arm had significantly improved 

2-year PFS of 63% by independent review compared to 51% 

in the placebo group. The PFS benefit of brentuximab vedotin 

maintenance was consistent across subgroups, although less 

notable in patients who achieved PET-negative remission 

before ASCT. No OS benefit was observed, but the major-

ity of control patients received brentuximab vedotin at the 

time of progression. Based on the results of the AETHERA 

trial, brentuximab vedotin has received FDA approval for 

post-ASCT maintenance in patients with HL at high risk 

for relapse or progression. The use of other targeted agents, 

including HDAC inhibitors and PD-1 inhibitors, for con-

solidation is appealing given the high response rates and 

favorable side- effect profile of such agents, but their role in 

this setting remains to be shown.

Allogeneic stem cell transplantation 
(alloHCT)
Patients who relapse after ASCT have poor prognosis and, in 

general, they are not considered curable with standard chemo-

therapy.10,14 Perhaps the only exception includes patients with 

truly localized disease that may be salvaged with radiation.171 

A second ASCT may be considered for post-ASCT-relapsed 

HL patients,172 especially in those who have had a long 

remission interval following first ASCT. However, alloHCT 

has been most commonly considered for such patients as a 

potentially curative intervention.

Early experience with myeloablative (MAC) alloHCT 

in HL patients was associated with limited success due to 

high rates of TRM and relapse, likely due to the inclusion of 

heavily pretreated or advanced HL patients.173,174 Moreover, 

alloHCT was not found to be superior to ASCT in terms of 

survival outcomes.175,176 Consequently, alloHCT is not recom-

menced in lieu of ASCT in the management of relapsed/

refractory HL and is reserved for carefully selected medically 

fit patients relapsing after ASCT.

More recently, reduced intensity conditioning (RIC) 

alloHCT, commonly with the use of fludarabine and mel-

phalan or BEAM conditioning, with or without in vivo 

T-cell depletion, has been embraced by many centers due to 

the lower risk of TRM and is considered the recommended 

approach for patients with relapsed HL who are candidates 

for alloHCT.177–181 This recommendation is also supported by 

a retrospective analysis by the Lymphoma Working Party of 

the European Group for Blood and Marrow Transplantation, 

which demonstrated significantly lower TRM and improved 

OS survival with RIC compared to MAC alloHCT.182 Prog-

nostic factors for TRM included chemorefractory disease, 

poor performance status and age >45 years, whereas PFS and 

OS determinants included performance status and disease 

status at transplant.183 However, it should be noted that in a 

more recent analysis, MAC alloHCT was associated with a 

nonsignificant improvement in PFS due to somewhat better 

disease control and decreasing TRM in recent years. Con-

sequently, the issue of conditioning intensity may be revised 

in the future.184 Despite recent improvements, the optimal 

conditioning regimen for patients undergoing alloHCT for 

HL remains undetermined, and relapse continues to be a com-

mon cause of treatment failure. Finally, patients who relapse 

after alloHCT have limited treatment options including donor 

lymphocyte infusions (DLIs), second alloHCT, radiation 
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therapy and palliative chemotherapy, and, in general, their 

prognosis is grim.185,186

There is conflicting evidence regarding the susceptibil-

ity of HL to graft versus lymphoma (GVL) effect, which is 

more crucial in the setting of RIC alloHCT. In support of a 

potent GVL effect, some studies have shown high rates of 

clinical responses in heavily treated allografted HL patients 

to DLI187,188 and a reduction in relapse risk in allografted 

patients developing acute or chronic graft versus host disease 

(GVHD).175,182,183 However, a large Center for International 

Blood and Marrow Transplant Research (CIBMTR) study 

showed no association between GVHD and reduction of 

relapse risk after MAC or RIC alloHCT for HL arguing 

against a potent GVL effect in these patients.189 Moreover, 

relapse risk remains high for allografted HL patients (espe-

cially in comparison with indolent lymphomas).190

Although most of the alloHCT experience for HL (and 

other lymphomas) is based on patients transplanted with 

HLA-matched related or unrelated donors, several patients 

lack suitable HLA-matched donors. Alternative graft sources 

including mismatched unrelated donors, haploidentical-

related donors and unrelated cord blood have extended 

allograft access to patients with lymphoma (including HL), 

with acceptable and largely comparable results to matched 

unrelated donor transplants.191–193 Similarly, although data 

specific to HL patient cohorts allografted with alternative 

donors are more limited, they support the notion that all 

graft sources can be considered in patients who are felt to be 

candidates for a potentially curative alloHCT.194–198

In view of the development of novel targeted agents 

with high activity against HL and favorable side-effect 

profiles, it is likely that alloHCT may play a lesser role in 

the management of such patients in the proximate future. 

Moreover, questions remain unanswered regarding the 

incorporation and optimal sequence of new agents in 

the treatment plan, without compromising safety. As an 

example, brentuximab vedotin has been successfully used 

prior to allogeneic transplantation199,200 as a single agent or 

in combination with DLI for post-alloHCT relapse.201,202 

In contrast, PD-1 blockade prior to or after alloHCT 

may exacerbate GVHD due to prolonged or permanent 

inhibition of pathways with a key role in the induction of 

self-tolerance.203,204

Summary and future directions
In summary, HL is a highly curable disease, but ~25%–30% 

of patients will progress during or following first-line che-

motherapy and will require further treatment. High-dose 

chemotherapy followed by ASCT remains the standard of 

care for patients with relapsed or refractory HL who respond 

to salvage therapy, and affords long-term PFS in ~50% of 

such patients, but ASCT success varies widely depending on 

the risk factors present and pre-ASCT disease status. There 

is presently not enough evidence to support a routine role of 

upfront ASCT in high-risk HL, SHDCT or tandem ASCT. HL 

relapsing after ASCT is associated with adverse prognosis, 

and alloHCT in that setting is the only potentially curative 

treatment modality, although historically limited by high rates 

of TRM and associated morbidity. Recent advancements in 

the understanding of HL pathogenesis and the development 

of novel targeted therapies with promising efficacy and favor-

able toxicity profiles have provided hope for improving the 

outcomes of patients with relapsed or refractory HL. Such 

novel therapies, including brentuximab vedotin and PD-1 

inhibitors, have been successfully incorporated in the cur-

rent treatment paradigm, specifically as salvage therapy of 

HL patients relapsing after frontline therapy, as post-ASCT 

maintenance for relapsed or refractory HL with high-risk 

features and as bridge therapy prior to ASCT or AlloSCT, 

either alone or in combination with other agents. Moreover, 

in view of the promising results of such agents, the role of 

AlloSCT for the management of relapsed or refractory HL 

might need to be revised. Nevertheless, although the devel-

opment of numerous novel agents with activity against HL 

is exciting, further studies are required to determine their 

long-term efficacy and the optimal combination or sequence 

of such therapies, ideally in a risk-adapted fashion.
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