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Abstract: Invasive aspergillosis (IA) is a particularly devastating manifestation of Aspergillus 

infection affecting profoundly immunocompromised patients. Voriconazole has been approved 

as first-line therapy for IA since 2003; however, nonlinear pharmacokinetics, adverse effects, 

and drug–drug interactions at time hinder its use. Isavuconazole is a new broad-spectrum tri-

azole with potent activity against Aspergillus species. In animal models and clinical trials in 

humans, isavuconazole has shown comparable efficacy to that of voriconazole in the treatment 

of IA. Advantages of isavuconazole include a more favorable pharmacokinetic profile and fewer 

adverse events. This review summarizes the pharmacologic characteristics, in vitro activity, and 

clinical data supporting the use of isavuconazole as an emerging alternative therapy for IA.

Keywords: isavuconazole, invasive aspergillosis, antifungal therapy, fungal infection

Introduction
Aspergillus species are ubiquitous in the environment and are found in soil, water, food, 

and air. The usual route of infection is through inhalation of Aspergillus conidia into 

the lungs. The spectrum of illness varies according to the immune status of the host. 

Invasive aspergillosis (IA) is a particularly devastating manifestation of Aspergillus 

infection with mortality rates of 20–40% depending on the site of infection, underlying 

immune deficits, and type of therapy.1–3 Those at highest risk for IA are profoundly 

immunocompromised, including patients with chronic granulomatous disease, acute 

myelogenous leukemia, solid organ and hematopoietic stem cell transplant (HSCT) 

recipients, patients receiving prolonged corticosteroid therapy, and patients with 

acquired immunodeficiency syndrome. Less commonly, invasive infection may occur 

in immunocompetent hosts following local tissue invasion from contaminated central 

venous catheters or surgical wounds.

The approval of voriconazole, a second-generation triazole, in 2002 was an 

important therapeutic advance in the treatment of IA. Compared to amphotericin B 

deoxycholate, patients treated with voriconazole demonstrate higher clinical response 

rates and decreased mortality.4 However, nonlinear pharmacokinetics, drug–drug inter-

actions, side effects, and need for therapeutic drug monitoring at times hinder its use. 

Isavuconazole is a new broad-spectrum triazole with potent activity against Aspergil-

lus species. It is recommended as an alternative primary therapy for IA syndromes in 

the 2016 Infectious Diseases Society of America guidelines.5 The aim of this review 

is to summarize the pharmacologic characteristics, in vitro activity, and clinical data 

supporting the use of isavuconazole for the treatment of IA.
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Role of host immune response
Defects in the innate and adaptive immune systems may 

lead to Aspergillus species infection in susceptible hosts. 

Respiratory epithelial cells act as a physical barrier to inva-

sion by inhaled Aspergillus species by promoting mucocili-

ary clearance. Once the conidia of Aspergillus species are 

inhaled into the alveoli, the pulmonary alveolar macrophages 

constitute the first line of innate defense. This is followed by 

recruitment of peripheral blood monocytes and neutrophils 

to the site of infection. Neutrophils are a key component 

of innate immunity as a central cellular component of the 

inflammatory response. They are the dominant host defense 

against Aspergillus hyphae, the tissue-invasive form. NADPH 

oxidase activity in phagocytes generates reactive species of 

oxygen that facilitate the release of antimicrobial proteases 

from granules. In addition, pathogen recognition receptors in 

the host recognize microbial-specific molecules, such as beta-

glucan in the cell wall of fungi, and activate innate immune 

responses. Classes of cell-associated and soluble pathogen 

recognition receptors include toll-like receptors, dectin-1, 

surfactant proteins A and D, mannose-binding lectin, and 

pentraxin-3. The activation of pathogen recognition recep-

tors also promotes maturation of antigen-presenting cells 

that prime cell-mediated immunity, including helper T cells 

and regulatory T cells.6

The patient populations at greatest risk for IA are those 

with qualitative and quantitative defects in neutrophil func-

tion. Patients who are profoundly neutropenic lose a critical 

line of defense against Aspergillus species. Corticosteroids 

impair several key functions of neutrophils, including phago-

cytes, oxidative metabolism, phagolysosome formation, 

release of defensins, and impaired regulation of cytokines 

and chemokines. Defects in NADPH activity, as seen in 

patients with chronic granulomatous disease, are associated 

with recurrent bacterial and fungal infections.

Epidemiology
The most common Aspergillus species causing invasive 

infection is A. fumigatus, followed by A. flavus, A. terreus, 

and more recently, A. niger.7,8 Recognition of IA depends 

initially upon the identification of susceptible hosts. The most 

commonly infected patients are those with a malignancy who 

develop persistent and profound neutropenia due to chemo-

therapy or underlying disease and/or are receiving corticoste-

roids. Indeed, IA remains the most common cause of invasive 

fungal infection in HSCT recipients despite implementation 

of anti-mold prophylaxis at many transplant centers and 

is a leading cause of infection-related mortality in HSCT 

recipients, as well as those with acute leukemia.9–11 Among 

solid organ transplant recipients, lung transplant patients 

are particularly at risk for IA. In the Transplant-Associated 

Infection Surveillance Network, IA accounted for 44% of 

invasive fungal infections in this population.2 Unique risk 

factors include a vulnerable bronchial anastomotic site, con-

tinuous airway exposure, and transplant disruption of local 

pulmonary host defenses such as mucociliary clearance.12

Clinical manifestations
The sinopulmonary tract is the most common site of Asper-

gillus infection. Pulmonary aspergillosis may be classified 

as acutely invasive, chronic, and allergic. Allergic forms of 

aspergillosis, such as allergic bronchopulmonary aspergil-

losis, result from a poorly controlled inflammatory response 

to hyphae colonizing the sinopulmonary tract. Aspergilloma 

typifies chronic infection of the lung, such as those involving 

cavities due to pulmonary tuberculosis, sarcoidosis, bronchi-

ectasis, and cystic fibrosis.

Acute IA of the respiratory tract in immunocompromised 

patients develops as a bronchopneumonia or as invasive 

sinusitis. Invasive pulmonary aspergillosis (IPA) may be 

complicated by pulmonary hemorrhage, hemoptysis, invasion 

of contiguous structures, or dissemination to extra-thoracic 

organs. Chronic necrotizing pulmonary aspergillosis is an 

indolent infection often associated with subtle defects in 

systemic host defense due to malnutrition, alcoholism, dia-

betes mellitus, or low-dose corticosteroids. It presents as a 

chronic refractory bronchopneumonia with fever, weight loss, 

cough, progressive infiltrates, and evidence of IA on biopsy.

Other target organs for disseminated aspergillosis include 

the brain, eye, skin, liver, gastrointestinal tract, kidneys, 

bone, and thyroid. The skin may also be the portal of entry, 

as reported in cases of intraoperative acquisition and con-

taminated traumatic or burn wounds.13,14

Diagnosis
Biopsy and culture of tissue is the most definitive means by 

which to establish a diagnosis of IA. Aspergillus species in 

tissue forms hyaline angular dichotomously branching sep-

tate hyphae. The invasive tissue form has no conidiophores, 

vesicles, phialides, or conidia. These structures may occasion-

ally be seen, however, in cavitary lesions that communicate 

directly with the tracheobronchial tree. In patients who are 

too coagulopathic to undergo biopsy, bronchoalveolar lavage 

(BAL) fluid from patients with suspected IA should be 

processed by both clinical microbiology and cytopathology 

laboratories. BAL fluid may be processed by centrifugation, 
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direct examination, and special stains, including fluorescent 

dyes (Fungi-Fluor®, Calcofluor®, Blankofluor®), periodic 

acid Schiff stain, and Gomori methenamine silver stain.

Galactomannan (GM), a component of fungal cell wall 

that can be detected by a sandwich-type enzyme-linked 

immunosorbent assay (ELISA), is used as a diagnostic 

adjunct for IA.15 Depending upon the patient population, 

sensitivity ranges from 50% to 95% and specificity ranges 

from 87% to 99% for the diagnosis of IA. Serial serum GM 

antigen levels permit therapeutic monitoring and have prog-

nostic implications including clinical response and survival at 

12 weeks.16 GM testing in BAL fluid has also been evaluated; 

it demonstrates improved sensitivity compared to serum GM 

for the diagnosis of IPA.17

(1→3)-β-d-glucan is a cell-wall-derived biomarker 

for detection of invasive fungal infections, including IA. 

However, the detection of (1→3)-β-d-glucan in serum is 

not specific for IA and warrants further evaluation such as 

BAL for immunocompromised patients with pulmonary 

infiltrates.

Real-time polymerase chain reaction (PCR) for the 

diagnosis of invasive fungal infection has been studied most 

extensively with Aspergillus species. Most studies test for a 

pan-Aspergillus PCR that targets ribosomal RNA common to 

all Aspergillus species; however, primers that are used vary 

among laboratories, raising issues of standardization. Clini-

cal reports of sensitivities and specificities range from 43% 

to 100% and 64% to 100%, respectively.18 Studies compar-

ing the diagnostic performance of PCR and GM assays for 

Aspergillus species show similar performance in both serum 

and BAL fluid.19

Of note, the sensitivity of GM, (1→3)-β-d-glucan, and 

PCR is considerably reduced in patients receiving antifungal 

prophylaxis, such that routine screening using these biomark-

ers is not recommended in that population.

Treatment
Since 2002, voriconazole has been licensed for the primary 

treatment of IA in most patients.20 In the largest random-

ized controlled trial of therapy for IA, voriconazole was 

associated with significantly improved survival (71% versus 

58%) compared to amphotericin B deoxycholate.21 Lipo-

somal amphotericin B has also been studied for primary 

therapy of IA and is associated with 12-week survival 

rates of 72% and 59% at doses of 3 mg/kg per day and  

10 mg/kg per day, respectively.22 Liposomal amphotericin B 

may also be useful as primary therapy for patients with pre-

existing liver disease or in those with ultrarapid  metabolizing 

genotypes23 and suspected mixed infection with mucormyco-

sis. Recently, the role of combination therapy with voricon-

azole and anidulafungin in the treatment of IA as primary 

or salvage therapy is suggested by preclinical data and by a 

recent prospective, controlled clinical trial.24,25

The development of voriconazole represented a major 

advance in the therapy of aspergillosis. However, the drug’s 

side effect profile, drug–drug interactions, and need for 

therapeutic drug monitoring pose management challenges in 

immunocompromised patients with multiple comorbid con-

ditions. Isavuconazole is the newest triazole to be approved 

for the treatment of IA and the first triazole to be approved 

as primary therapy for mucormycosis.26 Robust preclinical 

data support its efficacy as comparable or greater than that 

of other antifungal agents in the treatment of IA. Moreover, 

in phase 2 and 3 clinical trials, isavuconazole is safer and 

better tolerated than voriconazole, thus offering an emerging 

alternative. The following sections review the pharmacology 

of isavuconazole and the in vitro, in vivo, and clinical data 

for its use in the treatment of IA.

Isavuconazole
Chemical structure and mechanism of 
action
Isavuconazole is administered as a prodrug, known as isa-

vuconazonium sulfate (Figure 1), which rapidly releases the 

parent molecule, isavuconazole (Figure 2), in the presence 

of serum esterases. By comparison, voriconazole is adminis-

tered as a triazole solubilized in sulfobutylether cyclodextrin 

(Figures 3 and 4). The active molecules, voriconazole and isa-

vuconazole, differ structurally in several respects. Both mol-

ecules share an isopropyl alcohol core, a C-1 triazolyl moiety, 

C-2-di-fluorophenyl substitution, and a 3-alpha-methyl 

group. However, located on the C-3-atom, voriconazole has 

a fluoropyrimidinyl group (Figure 3), while isavuconazole 

has a thiazolyl-benzonitrile substitution (Figure 2).
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Figure 1 Chemical structure of isavuconazonium sulfate.
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Pharmacokinetics
Table 1 compares the pharmacokinetic profiles of isavuconazole 

versus voriconazole. The pharmacokinetic profile of isavucon-

azole is well described in healthy volunteers.29,30 Isavuconazole 

is more than 99% protein bound in serum, has a large volume 

of distribution (approximately 450 L), and displays an elimina-

tion half-life of ~80 -130 hours.27 To achieve rapid steady state 

concentrations, the drug is administered as a loading dose of 

200 mg every 8 hours for six doses, followed by 200 mg once 

daily. Isavuconazole follows linear dose proportionality of area 

under the curves (AUCs) within the dosage ranges studied. The 

drug is available in intravenous (IV) and oral formulations. 

The oral bioavailability is 98%, and the maximum plasma 

concentration (C
max

) (2–2.5 µg/mL) is reached in 1–3 hours.27

Hepatic metabolism is the primary mode of elimination. 

The isavuconazole molecule is eliminated largely unchanged 

by the liver. Minor metabolites are produced by CYP3A4 and 

CYP3A5 as the predominant enzymes involved in phase 1 

metabolism, followed by modification by uridine diphosphate 

glucuronosyltransferase (UGT) and excretion in feces and 

bile. Subjects with mild-to-moderate liver disease receiv-

ing a single dose of isavuconazole demonstrate decreased 

clearance of isavuconazole as indicated by increased serum 

concentrations, increased mean half-life, and increased total 

systemic exposure measured as AUC
0→∞.

31 Desai et al32 used 

a modeling procedure combining data from two studies to 

determine the pharmacokinetics of isavuconazole in patients 

with mild-to-moderate hepatic impairment receiving the rec-

ommended clinical dosage. A less than twofold increase in the 

plasma isavuconazole trough concentration was  calculated. 
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Figure 2 Chemical structure of isavuconazole.

Figure 3 Chemical structure of voriconazole.
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Figure 4 Chemical structure of sulfobutylether cyclodextrin.

Table 1 Comparison of the pharmacokinetic profiles of 
isavuconazole and voriconazole

Parameters Isavuconazole  
(200 mg/day)

Voriconazole  
(4 mg/kg twice/day)

Available formulations Oral or IV Oral or IV
Oral bioavailability 98% 96%
Food effect Absent Cmax and AUC reduced 

by high-fat meals
Cmax at steady state 4 µg/mL 5.4 µg/mL
Elimination half-life 130 hours Dose-dependenta

Protein binding >99% 58%
Volume of distribution 450 L 4.6 L/kg
CSF penetration No data available ~50% CSF:plasma
Metabolism Hepatic Hepatic
Elimination 45% feces, 45% urine  

(as inactive metabolites)
>80% urine (as 
inactive metabolites)

Dose proportionality Linear Nonlinear

Notes: Cmax, maximum plasma concentration. aFollows nonlinear Michaeles–Menten 
saturation kinetics. Data from Rybak et al27 and Astellas.35

Abbreviations: AUC, area under the curve; CSF, cerebrospinal fluid; IV, intravenous.

Similar to other azoles, isavuconazole prevents fungal cell 

wall synthesis via inhibition of lanosterol 14α-demethylase. 

This cytochrome P450 enzyme catalyzes demethylation of 

lanosterol, thereby forming ergosterol, the predominant sterol 

in the fungal cell membrane.27 The thiazolyl cyanophenyl 

moiety of the active isavuconazole molecule allows greater 

avidity of isavuconazole for the binding pocket in the fungal 

cytochrome P450 (CYP) 51 protein, conferring broader anti-

fungal spectrum even to pathogens resistant to other azoles.

Spectrum of activity
Isavuconazole has broad in vitro activity against many 

yeasts and molds including Aspergillus species, Mucorales, 

Fusarium species, and dematiaceous molds.28
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At this time, no dosage adjustment is recommended in liver 

dysfunction. Less than 1% of isavuconazole is excreted 

unchanged in urine, and no renal dosage adjustments are 

necessary.

The safety and pharmacokinetics of isavuconazole admin-

istered as antifungal prophylaxis in patients with prolonged 

neutropenia have been evaluated in one study.33 This open-

label, sequential cohort, phase 2 study assigned 24 patients 

with acute myelogenous leukemia receiving induction or 

subsequent chemotherapy to receive low-dose (12 patients) 

or high-dose (12 patients) IV isavuconazole for a maximum 

of 28 days. The low-dose cohort received three loading doses 

of IV isavuconazole at 400 mg, 200 mg, and 200 mg every 

8 hours on day 1, followed by further loading doses of 200 mg 

twice daily on day 2, and then a once-daily maintenance dose 

of 200 mg from day 3 to the end of treatment. The high-dose 

cohort received doses of isavuconazole that were twofold 

higher, i.e., 800 mg/400 mg/400 mg on day 1, 400 mg twice 

daily on day 2, and 400 mg once daily thereafter. A total of 21 

and 18 patients were evaluable for pharmacokinetic analyses 

on days 1 and 7, respectively. At 12 hours after the start of 

treatment, the mean plasma isavuconazole concentration 

was 1.5 µg/mL and 2.5 µg/mL in the low- and high-dose 

cohorts, respectively. The C
max

 and the area under the plasma 

concentration–time curve from time 0 hour to 24 hours after 

the initiation of isavuconazole administration (AUC
0–24

) on 

day 7 were 3.6 µg/mL and 60.1 µg·h/mL in the low-dose 

cohort, respectively, and 8.0 µg/mL and 113.1 µg·h/mL in 

the high-dose cohort, respectively. At day 7, the interpatient 

variability for C
max

 and AUC
0–24

 was low. Of note, the 95% 

confidence intervals of the ratios of isavuconazole dose-

normalized geometric mean C
max

 and AUC
0–24 

values were 

slightly outside the normal acceptance range.

Tissue penetration
The concentration of isavuconazole in epithelial lining fluid 

(ELF) correlates well with that obtained in plasma but is 

lower, including the C
max

 of isavuconazole. In one study, the 

penetration of isavuconazole in ELF compared to plasma 

based on total drug was between 35.8% and 72.5%.34 Stud-

ies of penetration of isavuconazole into cerebrospinal fluid 

(CSF), brain tissue, and vitreous are limited and warrant 

further quantitative evaluation.

Drug interactions
Triazole antifungal agents inhibit CYP enzymes, although 

the degree to which they inhibit different CYP families varies 

according to compound. Isavuconazole is both a sensitive 

substrate of and a mild-to-moderate inhibitor of CYP3A4. 

Potential drug–drug interactions are shown in Figure 5. 

Rifampin, a potent 3A4 inducer, decreases isavuconazole 

plasma AUC by 40-fold. Ketoconazole, a strong inhibitor 

of CYP enzymes, increases the isavuconazole plasma AUC 

by fivefold. Up to a twofold increase is seen in midazolam 

plasma AUC and a 1.84-fold increase in sirolimus plasma 

AUC when these drugs are administered concurrently with 

isavuconazole. In drug–drug interaction studies, isavuco-

nazole did not affect the pharmacokinetics of substrates 

Figure 5 Drug–drug interactions with ISA.
Note: Data from Miceli and Kauffman.26

Abbreviation: ISA, isavuconazole.

Isavuconazole

Lopinavir/ritonavir

Increases ISA levels

Decreases ISA levels
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barbiturates
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Mycophenolate
mofetil
Digoxin
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Dagibatran
Atorvastatin
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Drug levels
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of CYP1A2, CYP2C8, CYP2C9, CYP2C19, or CYP2D6, 

although it did have mild inhibitory effects on P-glycoprotein, 

substrates of UGT and CYP2B6.35

In the patient population most likely to receive isavuco-

nazole for treatment and prophylaxis, potentially clinically 

relevant drug–drug interactions include rifampin, sirolimus, 

tacrolimus, cyclosporine, mycophenolate mofetil, cyclophos-

phamide, and vincristine. Groll et al36 reported several phase 

1 drug–drug interaction studies in healthy adults receiving 

clinical doses of oral isavuconazole (200 mg three times 

daily for 2 days; 200 mg once daily thereafter). These studies 

demonstrated the following increases in mean whole blood or 

plasma AUC
0–∞: tacrolimus, 125%; sirolimus, 84%; cyclospo-

rine, 29%; and mycophenolic acid, 35%. Mean C
max

 values 

of tacrolimus, sirolimus, and cyclosporine were 42%, 65%, 

and 6% higher, respectively; mean C
max

 of mycophenolic acid 

was 11% lower. There was little change to the plasma AUC 

of prednisolone when prednisone and isavuconazole were 

given together. Overall, the degree of interaction between 

isavuconazole and these immunosuppressive agents was 

less than that which has been previously reported with other 

triazoles including voriconazole. However, attention to thera-

peutic drug monitoring of these immunosuppressive agents 

and possible dose adjustments are likely to be necessary for 

cyclosporine, sirolimus, and tacrolimus in patients receiving 

concomitant isavuconazole to ensure adequate concentrations 

and to avoid adverse toxicokinetic effects. Also of note, the 

CYP2C19 gene polymorphisms, which may necessitate a 

change in antifungal agent or dosage adjustment for vori-

conazole,23 are not observed in isavuconazole metabolism.

In vitro activity against Aspergillus species
Isavuconazole demonstrates antifungal activity against a 

wide range of Aspergillus species. In studies using Clinical 

and Laboratory Standards Institute (CLSI) methodology, the 

MIC50 and MIC90 for the two most common Aspergillus 

species, A. fumigatus and A. flavus, ranged 0.5–2 µg/mL and 

1–2 µg/mL for A. fumigatus and 0.5–2 µg/mL and 1–4 µg/mL 

for A. flavus (Table 2).37–40 Higher minimum inhibitory con-

centration (MIC) values have consistently been observed with 

A. niger.37,38,40,41 When obtained by using the methodology set 

by the European Committee on Antimicrobial Susceptibility 

Testing (EUCAST), the MIC50 and MIC90 of isavuconazole 

against Aspergillus species appear similar.39,42,43

The clinical significance of MIC variability accord-

ing to Aspergillus species is not yet clear. However, it is 

important to identify organisms to the species level in the 

clinical microbiology laboratory because species-specific 

 epidemiologic cutoff values (ECVs) will aid identification 

of resistant isolates. Espinel-Ingroff et al44 defined isavuco-

nazole ECVs for wild-type Aspergillus species using MIC 

data from laboratories in Europe, India, Mexico, and the 

USA. MICs were determined by the CLSI M38-A2 broth 

microdilution method. ECVs were 1 µg/mL for A. fumigatus 

species complex, 1 µg/mL for A. flavus species complex, 

0.25 µg/mL for A. nidulans species complex, 4 µg/mL for 

A. niger species complex, 1 µg/mL for A. terreus species 

complex, and 1 µg/mL for A. versicolor species complex. 

The EUCAST described similar ECVs for Aspergillus spe-

cies and recently determined interpretive break points for 

isavuconazole and Aspergillus species.45 The break point is 

1 µg/mL for A. fumigatus and A. terreus and 0.25 µg/mL for 

A. nidulans. The EUCAST concluded that there is insuffi-

cient evidence to establish interpretive break points for other 

Aspergillus species. CLSI has not established clinical break 

points for isavuconazole and Aspergillus species.

Isavuconazole appears to have resistance patterns similar 

to those of voriconazole. A. fumigatus isolates with molecu-

larly characterized cyp51A alterations L98H, G138C, Y431C, 

G434C, and G448S showed elevated MICs to all triazoles, 

including isavuconazole.46 The greatest isavuconazole MIC 

elevations are observed in the TR34/L98H mutants.43,46 

In contrast, the isavuconazole MICs of the majority of 

G54 mutants were within the wild-type range.43,46 Isolates 

with G54 alterations tend to demonstrate itraconazole and 

posaconazole resistance while maintaining voriconazole 

susceptibility. Therefore, in clinical practice, isavuconazole 

should be avoided for the treatment of infections with Asper-

gillus species with elevated voriconazole MICs. Furthermore, 

MIC testing for isavuconazole should be performed on cul-

tures of infecting organisms when available.

Table 2 In vitro activity of isavuconazole against different 
Aspergillus speciesa,b

Species N MIC50  
(µg/mL)

MIC90  
(µg/mL)

MIC range  
(µg/mL)

References

A. fumigatus 14 2 2 1–4 37
602 1 1 0.125–4 38
62 0.5 2 0.125–2 40

A. flavus 12 2 4 1–4 37
34 1 1 0.25–2 38
187 – – 0.125–2 39
20 0.5 1 0.5–2 40

A. terreus 19 1 2 0.5–4 37
25 1 1 0.125–1 38
18 0.5 0.5 0.25–0.5 40

A. niger 2 – – 2–4 37
32 1 2 0.25–4 38
18 0.5 2 0.25–2 40

Notes: aData were obtained using the CLSI methodology. bCells were marked with 
a dash (“–”) when MIC50 and MIC90 data were not available.
Abbreviation: CLSI, Clinical and Laboratory Standards Institute.
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Animal models
Preclinical animal model pharmacokinetic/pharmacody-

namic investigations are important for defining antifungal 

efficacy, safety, and dosage optimization. Animal models 

provide a framework for predicting drug exposure and its 

relationship to clinical outcome. In addition, they allow 

examination of the susceptibility break points in an era 

where drug resistance is increasingly common. The efficacy 

of isavuconazole has been evaluated in experimental mod-

els of disseminated candidiasis and aspergillosis. Lepak et 

al47 examined the pharmacodynamics of isavuconazole in 

a murine model of IPA that included wild-type and cyp51 

mutant isolates of A. fumigatus. The investigators demon-

strated that the isavuconazole pharmacodynamic index AUC/

MIC ratio (median free-drug value of 5.0) correlates well with 

treatment outcome. An MIC of 0.5–1 µg/mL was a strong 

predictor of success regardless of the presence or absence 

of a cyp51 mutation. Furthermore, in a neutropenic murine 

model of disseminated A. flavus, isavuconazole treatment 

led to decreased fungal tissue burden and improved survival 

similar to itraconazole and voriconazole.48

A rabbit model of experimental IPA has been used to 

further define the pharmacokinetics and pharmacodynamics 

of isavuconazole.49,50 Persistently, neutropenic rabbits treated 

with isavuconazole at 40 mg/kg per day and 60 mg/kg per 

day demonstrated significant dose-dependent reduction 

in residual fungal burden, decreased pulmonary injury, 

prolonged survival, lower GM index in serum and BAL 

fluid, and lower serum (1→3)-β-d-glucan levels.50 Using 

mathematical modeling, Kovanda et al49 evaluated the expo-

sure–response relationship of this model of experimental 

IPA using reduction in GM index as a marker of disease 

clearance. This bridging analysis using Monte Carlo simu-

lation demonstrated a strong concordance with the clinical 

trial and the robustness of the rabbit model of IPA to predict 

patient outcomes.

Combination therapy
Response to treatment with a single antifungal agent is 

often unsuccessful, as acquired resistance and breakthrough 

infections have been reported among patients with long-term 

exposure to a single antifungal drug class. Combination anti-

fungal therapy is a strategy to improve antimicrobial activity 

and clinical outcomes.

In vitro combination studies have found that isavuconazole 

and micafungin are synergistically active against A. fumigatus, 

A. flavus, and A. terreus. In contrast, the interaction between 

the combination of isavuconazole and amphotericin B 

 deoxycholate was antagonistic in A. fumigatus and A. flavus 

and indifferent in A. terreus.51

Combination therapy has been studied in vivo in 

persistently neutropenic rabbits with experimental IPA 

(A.  fumigatus). Compared to rabbits treated with isavucon-

azole monotherapy, Petraitis et al52 demonstrated that rabbits 

treated with isavuconazole plus micafungin demonstrated 

synergistic interaction resulting in significantly lower serum 

GM index, serum (1→3)-β-d-glucan levels, and mortality. In 

addition, synergistic interaction of combinations of isavucon-

azole 20 mg/kg per day or 40 mg/kg per day plus micafungin 

was observed in the reduction of organism-mediated pulmo-

nary injury, resulting in significantly lower lung weights and 

pulmonary infarct scores. Clinical studies are needed to better 

understand the role of combination therapy in the treatment 

of IA in human subjects.

Clinical trials
Invasive aspergillosis
Extensive preclinical data have established that isavu-

conazole has potent in vitro and in vivo activity against 

most Aspergillus species. These data served as a basis for 

the SECURE clinical trial, a multicenter, randomized, 

double-blind, non-inferiority trial of isavuconazole versus 

voriconazole for the treatment of invasive fungal infections 

due to Aspergillus species and other filamentous fungi.53 

Adult patients with proven, probable, or possible invasive 

fungal infection according to established criteria54 were 

randomized in a 1:1 ratio to treatment with isavuconazole 

(200 mg IV three times per day for six doses followed 

by 200 mg IV or orally daily thereafter) or voriconazole 

(6 mg/kg IV twice daily for two doses followed by 4 mg/kg 

IV twice daily or 200 mg orally twice daily thereafter). The 

primary outcome measure of the trial was day 42 all-cause 

mortality in the intention-to-treat (ITT) arm using a 10% 

non-inferiority margin. Of note, patients were excluded 

if they had chronic pulmonary aspergillosis or allergic 

bronchopulmonary aspergillosis, if they had received a 

mold-active triazole for ≥4 days in the 1 week prior to 

starting the study drug, or if they had a creatinine clear-

ance of <50 mL/min.

Hematological malignancies were the most common 

underlying condition (84%); 65% were neutropenic, and 

20% had received an allogeneic hematopoietic cell trans-

plant. The median durations of treatment were 45 days 

and 47 days for patients receiving isavuconazole and 

voriconazole, respectively. All-cause mortality through 

day 42 in the ITT population of 516 subjects was 18.6% 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Orphan Drugs: Research and Reviews 2017:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

44

Jacobs et al

and 20.2% in the isavuconazole and voriconazole treat-

ment groups, respectively, meeting the primary objective 

of non-inferiority. Isavuconazole was also non-inferior to 

voriconazole in the prespecified analysis of 231 patients 

with proven or probable IA in which all-cause mortality 

on day 42 was 19% in isavuconazole-treated patients and 

22% in voriconazole-treated patients.

Of note, the relationship between clinical response 

and Aspergillus MIC was evaluated among those patients 

who had Aspergillus species cultured at baseline.35 Among 

isavuconazole-treated patients, using CLSI methods, isavu-

conazole demonstrated MIC50 and MIC90 values against 51 

baseline Aspergillus species isolates of 1 µg/mL and 4 µg/mL, 

respectively, with MICs ranging from 0.25 µg/mL to 32 µg/

mL. Voriconazole MIC values for these isolates were similar 

(MIC50: 1 µg/mL; MIC90: 2 µg/mL; range: 0.12–32 µg/mL). 

Among voriconazole-treated patients, voriconazole MIC50 

and MIC90 values against 25 baseline Aspergillus isolates 

of 1 µg/mL and 2 µg/mL, respectively, with MICs ranging 

from 0.25 µg/mL to 2 µg/mL. Isavuconazole MIC values 

for these isolates were similar (MIC50: 1 µg/mL; MIC90: 

2 µg/ mL; range: 0.25–4 µg/mL). Overall response at the end 

of treatment was favorable at a range of MIC values in both 

the isavuconazole and voriconazole treatment groups. There 

was no observed relationship between outcomes and MIC.

Treatment with isavuconazole was generally well-toler-

ated, and drug-related treatment-emergent adverse events 

(TEAEs) occurred less frequently in the isavuconazole 

versus voriconazole treatment groups. Further discussion 

of isavuconazole safety is provided in the following section.

Adverse effects
Treatment with isavuconazole is generally well tolerated. 

The relatively greater safety and tolerability of isavuco-

nazole compared to voriconazole is a key distinguishing 

feature of the drug. Approximately 1700 total patients 

have received isavuconazole in phase 1, 2, and 3 studies. 

In the VITAL trial of isavuconazole for the treatment of 

mucormycosis55 and in the SECURE trial the most common 

adverse events were nausea, diarrhea, vomiting, pyrexia, 

constipation, and hypokalemia. In the SECURE trial, sig-

nificantly fewer drug-related TEAEs occurred in patients 

treated with isavuconazole (42%) versus voriconazole 

(60%) (p<0.001).53 In particular, fewer adverse events 

occurred in the following system-organ classes in patients 

receiving isavuconazole versus voriconazole: hepatobili-

ary disorders (9% versus 16%), eye disorders (15% versus 

27%), and skin and subcutaneous tissue disorders (33% 

versus 42%). Permanent drug discontinuation due to 

TEAEs was 14% and 23% in patients taking isavuconazole 

and voriconazole, respectively.

Most triazole antifungal agents are associated with QT 

prolongation. Notably, in the SECURE and VITAL studies, 

isavuconazole caused dose-dependent QTc shortening of up 

to 13 ms at the Cmax of the proposed 200 mg maintenance 

dose.35 The clinical significance of this observed QT shorten-

ing is unknown. No ventricular arrhythmias were observed, 

and no medical interventions were required. However, 

isavuconazole is currently contraindicated in patients with 

familial short QT syndrome.

Future directions
A growing body of in vitro, animal, and human data con-

tinues to support the clinical use of isavuconazole for the 

treatment of infections due to Aspergillus species and other 

fungi. Additional research is needed, however, in several key 

areas. Isavuconazole has not been studied in patients with 

chronic pulmonary and allergic forms of aspergillosis or in 

patients with central nervous system and musculoskeletal 

aspergillosis. Pediatric data, including pharmacokinetic, 

pharmacodynamics, safety, and efficacy studies, are needed. 

Drug–drug interaction studies with other immunosuppressive 

agents such as vincristine are crucial in patients receiving 

chemotherapy. Finally, initiatives to understand the role of 

isavuconazole in antifungal prophylaxis in immunocompro-

mised hosts are being developed.

Conclusion
As shown in a large randomized controlled clinical trial and 

supported by preclinical data, isavuconazole is at least as 

effective as voriconazole for the treatment of IA. Advantages 

to isavuconazole include its predictable, linear pharmacoki-

netics, high prodrug water solubility (such that cyclodextrin 

is not needed), and fewer adverse effects. Clinical experi-

ence with isavuconazole remains limited, and therefore, 

voriconazole remains the first-line therapy for aspergillosis 

syndromes. However, isavuconazole is an emerging alterna-

tive, particularly in patients intolerant of voriconazole.
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